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This chapter discusses the importance of mathematics knowledge for 
acquiring numeracy skills and developing problem-solving abilities. It 
presents the concept of “opportunity to learn” and argues that measuring 
opportunity to learn is of critical importance for international comparisons 
of curricula and student performance. An overview of the data on 
opportunity to learn in PISA 2012 shows that education systems differ 
greatly in the degree to which students are exposed to mathematics 
concepts and also in the way mathematics problems are formulated and 
presented to students.

Why Access to Mathematics 
Matters and How it Can  

be Measured

The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The 
use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli 
settlements in the West Bank under the terms of international law.
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The teacher of mathematics has a great opportunity. If he fills his allotted time with drilling his 
students with routine operations he kills their interest, hampers their intellectual development, 
and misuses his opportunity. But if he challenges the curiosity of his students by setting them 
problems proportionate to their knowledge, and helps them to solve their problems with 
stimulating questions, he may give them a taste for, and some means of, independent  
thinking (Polya, 1973).

Countries repeatedly reform their mathematics curricula to make sure they are relevant to 
students and societies (Cai and Ni, 2011; Usiskin and Willmore, 2008). Over time, reforms have 
been based on various factors, including on two observations: both national and international 
assessments proved that too many students were completing compulsory schooling without 
being able to use basic mathematics; and the evidence often showed that disadvantaged students 
were relegated to mathematics courses that were poorer in content and quality – a violation of 
the principle that all students should be exposed to high-quality instruction.

What the data tell us

Numeracy skills are used daily in many jobs and are important for a wide range of 
outcomes in adult life, from successful employment to good health and civic participation.

In 2012, the average 15-year-old student in an OECD country spent 3 hours and 
32 minutes per week in regular mathematics lessons at school; 13 minutes more per 
week than the average student did in 2003.

On average across OECD countries, less than 30% of students reported to know well 
the concept of arithmetic mean; less than 50% of students reported to know well the 
concepts of polygon and divisor.

There are large international differences in students’ average familiarity with algebraic 
and geometric concepts. Students in Macao-China reported the most familiarity with 
algebraic concepts, while students in Shanghai-China had the most familiarity with 
geometric concepts.

There is only a weak correlation between students’ exposure to applied mathematics and 
to pure mathematics at the system level, suggesting that the two methods of instruction 
rarely complement each other.

International data on students’ classroom experiences with mathematics are illuminating because 
they show that policy makers and experts in charge of reform tend to think about mathematics 
differently than students do (Schoenfeld, 1983; Brown et al., 2008). For the skilled mathematician, 
solving a mathematics problem is an exciting process of discovery and mental training; for many 
students towards the end of compulsory education, mathematics is a well-defined set of facts that 
must be rehearsed until it is learned (Echazarra et al., 2016).

Notwithstanding the good intentions of mathematics teachers, weaker students who are 
underexposed to the practice of mathematics problem-solving – in many cases, these are students 
from disadvantaged families – never get an opportunity to develop a “taste for, and some means 
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of, independent thinking” (Polya, 1973). Given the importance of mathematics reasoning for life, 
mathematics curricula need to be enriching and challenging also for those students who do not 
plan to continue their formal education after compulsory schooling and for those who have fallen 
behind, in knowledge and self-confidence, since primary school.

Achieving equitable opportunities to learn involves not only the content and flexibility of the 
curriculum, but also how students from different socio-economic backgrounds progress through 
the system, how well learning materials match students’ skills, and how teachers understand and 
manage the learning needs of diverse students. No matter how detailed and flexible the curriculum 
might be, mathematics teachers need to make difficult trade-offs to design mathematics lessons 
that are both accessible to weak students and challenging to bright ones.

This report uses data from PISA 2012 to describe students’ opportunity to learn mathematics, 
including mathematics instruction time and the mathematics content to which students are 
exposed. It illustrates how students’, schools’ and systems’ characteristics interact in affecting 
students’ capacity to use the mathematics knowledge they acquire at school to solve real-world 
problems. Figure 1.1 shows the analytical framework of the report. This chapter introduces 
the concept of opportunity to learn, describes the metrics on content coverage and exposure 
developed for PISA 2012, and discusses how these metrics capture international differences in 
mathematics curricula. The second chapter takes one step back to examine student-, school- and 
system-level variables that can explain how these differences arise. The third chapter looks at 
how time spent on pure and applied mathematics tasks affects student performance in PISA, 
while the fourth chapter focuses on the relationship between content exposure and students’ 
attitudes towards mathematics, such as mathematics self-concept and anxiety, which are closely 
related to mathematics performance. The fifth chapter discusses the policy implications of the 
preceding analyses.

What these results mean for policy

All students need mathematics for their adult life. Reducing socio-economic inequalities 
in access to mathematics content is thus an important policy lever for increasing social 
mobility.

In many countries, the small share of students who reported that they know well and 
understand basic concepts signals the need to increase the effectiveness of mathematics 
teaching by focusing on key mathematics ideas and making more connections across 
topics.

The large differences between the intended, the implemented and the achieved 
curriculum suggest the importance of regularly collecting data on students’ exposure to 
mathematics content.

International comparisons of curriculum standards, frameworks and teaching material 
can help countries to design reforms that increase the coherence of the mathematics 
curriculum.
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 Figure 1.1 
The analytical framework

The importance of mathematics skills in everyday life

Mathematics teachers are accustomed to answering questions about the usefulness of what they 
teach. Not only students, but also parents and policy makers often worry about a mismatch 
between what is taught at school and the quantitative skills needed in everyday life. While it 
might be difficult to explain why students spend so much time learning algebra and geometry, 
mathematics is a core part of the curriculum for virtually every secondary student in the world. 
Is this justified? Should all students learn a significant amount of mathematics beyond what is 
needed to make simple calculations?

One of the rationales used to explain the central role of mathematics in global education 
curricula is the idea, dating back to Plato, that mathematics education enhances higher-order 
thinking skills. Those who are good at mathematics tend to be good thinkers, and those who are 
trained in mathematics learn to be good thinkers. According to this view, mathematics should be 
taught for its own sake, rather than to serve more concrete and practical aims.

Beyond the effects of mathematics training on some abstract mental faculties, there is a more 
intuitive and practical benefit from mastering mathematics at a reasonably good level: mathematics 
is a gatekeeper. The mathematics studied at school is the main entry point to quantitative literacy, 
and without solid quantitative skills a person cannot do many jobs. Exam scores in mathematics 
are, in fact, important factors in determining acceptance into higher education programmes 
leading to scientific and professional careers.
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The demand for STEM (science, technology, engineering and mathematics) professionals has been 
continuously rising over recent years. For example, employment of STEM professionals across the 
European Union was approximately 12% higher in 2013 than it was in 2000, notwithstanding 
the effects of the economic crisis (European Parliament, 2015). Moreover, organisations compete 
for talent, and many of them now use rigorous quantitative assessments that test both verbal and 
mathematical ability when selecting employees (Schmitt, 2013).

The value of having quantitative skills has risen over recent years. Our societies are “drenched 
with data” (Steen, 2001), and the level of number skills needed to carry on daily life activities has 
increased. Understanding concepts such as “exponential growth” or “line of best fit”, assessing 
the rate at which a variable is changing or knowing what to expect from the flip of a coin have 
become important for making informed judgements and choices. Computers have reduced the 
need for mechanical calculations, but the importance of understanding numbers has become 
even greater in the digital age. In fact, the more people can do with information technology in 
mathematics, the greater the need for their understanding of and their ability to critically analyse 
what they are doing (OECD, 2015).

Data from the Survey of Adult Skills, a product of the OECD Programme for the International 
Assessment of Adult Competencies (PIAAC), provide some tools for assessing the value of 
quantitative skills at work and in everyday life (Box 1.1). The survey assesses numeracy skills, 
defined as “the ability to access, use, interpret, and communicate mathematical information 
and ideas, in order to engage in and manage the mathematical demands of a range of 
situations in adult life” (OECD, 2013a). Numeracy thus refers not just to the ability to perform 
basic calculations, but  to a wide range of skills, such as being able to measure, use and 
interpret statistical information; understand and use shape, design, location and direction; 
and think critically about quantitative and mathematical information (Gal and Tout, 2014). 
The survey measures numeracy from adults’ answers to a set of carefully designed and 
contextualised problems.

Box 1.1. The Survey of Adult Skills (PIAAC)

The Survey of Adult Skills is an international survey conducted as part of the Programme for 
the International Assessment of Adult Competencies (PIAAC). It measures the key cognitive 
and workplace skills needed for individuals to participate in society and for economies to 
prosper. The survey is conducted among adults aged 16 to 65. It assesses their literacy and 
numeracy skills, as well as their ability to solve problems in technology-rich environments, 
and collects a broad range of information, including how skills are used at work, at home 
and in the community. 

The first round was conducted in 2011-2012 in 24 countries and subnational regions. 
Results of the second round, released in June 2016, include 9 additional countries.

Source:
http://www.oecd.org/site/piaac/

http://www.oecd.org/site/piaac
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Figure 1.2 shows the extent to which various numeracy skills are used at work, as assessed in the 
Survey of Adult Skills. On average across participating OECD countries, 38% of workers aged 16 
to 65 use or calculate fractions, decimals or percentages, 29% use simple algebra or formulas, 
and 4% use advanced mathematics at work at least once a week. More than one in three workers 
in Estonia, Germany, Norway and Poland use algebra at work weekly or daily, as do more than 
one in two workers in the Czech Republic and Finland. The use of mathematics at work is not 
limited to the top-paying occupations. On average across OECD countries, 36% of workers in 
the highest earnings quartile use algebra at work, compared to 18% of workers in the bottom 
earnings quartile (Table 1.1b).
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Note: The OECD countries included in the analysis are: Australia, Austria, Flanders (Belgium), Canada, the Czech Republic, 
Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Japan, Korea, the Netherlands, Norway, Poland, the Slovak 
Republic, Spain, Sweden, England/Northern Ireland (UK) and the United States.
Countries and economies are ranked in ascending order of the percentage of workers who reported that they use or calculate 
fractions or percentages at work.
Source: OECD, Survey of Adult Skills (PIAAC) (2012), Table 1.1a.
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Important decisions in one’s personal life, on the job, and in matters of public interest call for 
sophisticated quantitative reasoning (Schoenfeld, 2002). For example, perceptions about the 
levels of health risks are less accurate among individuals with low numeracy (Carman and 
Kooreman, 2014), and low numeracy constrains informed patient choice, reduces medication 
compliance and limits access to treatments (Nelson et al., 2008). Data from the Survey of Adult 
Skills show that higher numeracy skills are strongly correlated with other outcomes, such as 
participation in the labour market, income, good health, participation in volunteer activities, 
feeling that one has an influence on political life, and the level of trust in others (Figure 1.3). 
Adults performing 50 points higher than the mean on the survey’s numeracy scale are 27% more 
likely to have a job and 55% more likely to earn high wages than adults performing at the mean. 
A numeracy score 50 points above the mean raises the odds of being employed to the same level 
as completing two additional years of education would do. 

Years of education Numeracy

1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60
Odds ratio

Trusts others

Thinks he/she can influence the political system

Participates in voluntary activities

Is in good general health

Is in the top quarter of earnings

Has a job

Relationship between years of education and numeracy,
and economic and social outcomes

Increase in the likelihood of the outcome related to an increase of one standard
deviation in years of education or in numeracy; OECD average (22 countries)

How to read the chart: An odds ratio of 1.27 corresponding to the outcome “has a job” and “numeracy” means that an 
individual who scored one standard deviation higher than another on the Survey of Adult Skills (PIAAC) numeracy scale is 
27% more likely to be employed. 
Notes: “Years of education” has an average standard deviation of 3.7 years; “numeracy” has an average standard deviation 
of 51 points.
The OECD countries included in the analyses are: Australia, Austria, Flanders (Belgium), Canada, the Czech Republic, 
Denmark, Estonia, Finland, France, Germany, Ireland, Italy, Japan, Korea, the Netherlands, Norway, Poland, the Slovak 
Republic, Spain, Sweden, England/Northern Ireland (UK), and the United States.
Source: OECD, Survey of Adult Skills (PIAAC) (2012), Table 1.2.

 Figure 1.3 

 12 http://dx.doi.org/10.1787/888933376878
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These results from the Survey of Adult Skills show relationships, and cannot be interpreted as the 
causal effect of mathematics instruction on life outcome. However, the findings are consistent 
with a large literature showing that attending more advanced mathematics courses has an impact 
on labour market outcomes (Joensen and Nielsen, 2009; Levine and Zimmerman, 1995). In a 
study on students’ earnings a decade after graduation in the United States, Rose and Betts (2004) 
find that the math curriculum is responsible for around 27% of the earnings gap experienced by 
students from lowest-income families relative to middle-income families. 

The relationship between mathematics knowledge 
and mathematical literacy

Many argue that the traditional mathematics curriculum fails students because it emphasises a 
type of mathematics that is radically different from the one used at the workplace (Steen, 2001). 
Problem solving at work is characterised by pragmatic approaches and techniques that are quick 
and efficient for specific types of tasks, while the formal mathematics taught at school strives for 
consistency and generality (Hoyles et al., 2010). This argument has gained popularity because it 
is not easy to define which mathematics content in the curriculum is most likely to help develop 
numeracy. Workplace mathematics is also a moving target: changes in society, in technology and 
in the practice of mathematics also shift the priorities among the many mathematics topics that 
can be useful for solving problems at work.

Are the differences between school mathematics and the numeracy skills used in life really 
so large? A look at the PISA performance of students with different levels of exposure to 
mathematics at school can help to answer this question. PISA assesses the mathematical literacy 
of students. Mathematical literacy is closely related to the concept of numeracy used in the 
Survey of Adult Skills,1 even if it has a stronger connection with the mathematics knowledge 
acquired at school.

The mathematics framework of PISA defines mathematical literacy as:

“an individual’s capacity to formulate, employ, and interpret mathematics in a variety of contexts. 
It includes reasoning mathematically and using mathematical concepts, procedures, facts, and 
tools to describe, explain, and predict phenomena. It assists individuals to recognise the role that 
mathematics plays in the world and to make the well-founded judgments and decisions needed 
by constructive, engaged and reflective citizens” (OECD, 2013b).

The focus of PISA has been less about what students know after studying a particular curriculum, 
and more on students’ ability to use what they have learned at school to address authentic, 
real-life challenges and problems (OECD, 2013b; Cogan and Schmidt, 2015). In the description 
of what students should know and be able to do at different levels of achievement, the PISA 
mathematics framework refers to “big ideas” (core concepts); it does not specify algebra or 
geometry or any other specific facet of mathematics. But this does not mean that the structure 
of the mathematics curriculum, the mastery of concepts and the time spent on mathematics 
exercises do not matter for developing students’ mathematical literacy.
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Mathematical literacy and mathematics knowledge – defined as familiarity with mathematics 
concepts and procedures – are, in fact, not separate but intertwined. Mathematics content areas 
and concepts have been developed over time as a means to understand and interpret natural 
and social phenomena (OECD, 2013b). Exposure to this codified content helps students to 
understand the underlying structure of real problems, shaping what they see and how they 
behave when they encounter new situations related to those they have previously abstracted and 
codified (Roterham and Willingham, 2010).

Figure 1.4 shows a simplified version of the stages through which students use the mathematics 
they learn at school to solve real-life problems. In the first stage, the student takes advantage of 
his or her knowledge of mathematics first to recognise the mathematical nature of a problem and 
then to formulate the problem in mathematical terms. The downward-pointing arrow in Figure 1.4 
depicts the work undertaken as the problem-solver uses mathematical concepts, procedures, 
facts and tools to obtain the results. This stage typically involves mathematical reasoning, 
manipulation, transformation and computation. Next, the results need to be interpreted in terms 
of the original problem. These processes of formulating, employing and interpreting mathematics 
draw on the problem-solver’s knowledge about individual topics and on a range of fundamental 
mathematics capabilities.

Challenge in  real world  context
Mathematical content categories: Quantity; Uncertainty and data; Change and relationships; Space and shape
Real world context categories: Personal;  Societal; Occupational; Scienti�c

Mathematical thought and action
Mathematical  concepts, knowledge and skills
Fundamental mathematical capabilities: Communication; Representation; Devising strategies;
Mathematisation; Reasoning and argument; Using symbolic, formal and technical language and
operations; Using mathematical tools
Processes: Formulate; Employ; Interpret/Evaluate
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 Figure 1.4 
The PISA model of mathematical literacy
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Exposure to mathematics content helps students to navigate through the processes of formulating, 
employing and interpreting mathematics. However, becoming mathematically literate requires 
more than just acquiring knowledge and practicing. Students have to learn to recognise how 
mathematics can help them deal with situations, solve problems and make sound judgements. 
The challenge for schools, beyond selecting which fundamentals to teach, is how to teach these 
fundamentals in a way that improves students’ problem-solving abilities. Teachers not only have 
to carefully select the content of their lessons, but they also have to tailor the delivery of this 
content to suit the different capacities of students.

PISA 2012 included detailed information on the types of mathematics students had the 
opportunity to learn. In an assessment focusing on mathematics skills for life, this information 
provides a unique opportunity to better understand the relationship between the mathematics 
taught in school and that used outside of school.

The concept of opportunity to learn

The opportunity to learn (OTL) concept refers to the notion that what a student learns at school is 
related to the content taught in the classroom and the time a student spends learning this content 
(Cogan and Schmidt, 2015; Schmidt and Maier, 2009). The most quoted definition of OTL comes 
from Husen’s report of the 1964 First International Mathematics Study (FIMS): “whether or not 
students have had the opportunity to study a particular topic or learn how to solve a particular 
type of problem presented by the test” (Husen, 1967, pp. 162-163, cited in Burstein, 1993). 
Research on opportunity to learn started as an afterthought in FIMS when analysts became 
concerned that not all the tested students had the same opportunities to study a particular topic 
or to learn how to solve a particular type of problem presented in the assessment (Floden, 2002).

Carroll’s (1963) model of school learning provides a strong theoretical basis for the analysis of 
OTL. The model expresses key factors of learning, including aptitude and ability, in the metric of 
time, so that the crucial question is no longer “What can this student learn?” but “How long will 
it take this student to learn?”. The following relationship describes the elements of the model:

Learning = f
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Aptitude, ability and perseverance are student characteristics, while opportunity to learn and 
the quality of instruction are mainly controlled by teachers within the conditions established 
by the education system. After Carroll, several authoritative reviews of research concluded that 
time spent on content and the way in which time is organised are primary factors influencing 
student achievement (Carroll, 1989; Scheerens and Bosker, 1997; Marzano, 2003). Within a 
short period of time, OTL had a profound impact on the thinking of researchers and practitioners 
alike (Marzano, 2003).
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The school curriculum defines the intended objectives of the education system in terms of 
content coverage and time allocated to topics. Beyond the intended curriculum, what matters 
for students’ learning is the implemented curriculum, or the content actually delivered by the 
teachers. The existence of a single coherent mathematics curriculum delivered by all teachers 
is nothing more than a myth: discrepancies between the intended and the delivered curriculum 
exist across all education systems (Floden, 2002; Schmidt et al., 1997; Schmidt et al., 2001). Even 
when highly structured textbooks are used, teachers make independent choices regarding which 
topics will be covered and to what extent (Doyle, 1992; Valverde et al., 2002). Teachers might 
depart from the intended curriculum because some of their students are not sufficiently prepared 
to absorb the content of overly ambitious and lengthy textbooks, or because the curriculum 
itself dissuades teachers from sticking closely to its plans. For example, teachers might omit 
some material because they know that the students’ future teachers will have to cover the same 
material again. Starting from what is taught in classrooms and how it is taught, the achieved 
curriculum – what students actually learn – is, in turn, related to students’ ability, aptitude and 
attitudes towards learning.

Students’ opportunity to learn depends on both the intended and the implemented curriculum. 
Students may not be exposed to certain mathematics concepts because these concepts are not 
included in the curriculum or because teachers may not cover them. Data collected as part 
of  the 2011 Trends in International Mathematics and Science Study (TIMSS) (Mullis et al., 2012) 
show that a core set of topics is covered in the intended curriculum of most countries. However, 
large differences across countries exist in the allocation of these topics to different grades, and in 
the percentage of teachers who actually teach the topic in each grade (Table 1.3). The percentage 
of students who are taught basic topics, like fractions, in grade 8 is relatively low (less than 50% 
in most participating countries), consistent with the fact that fractions are supposed to be covered 
in the early grades (in most countries, fractions are not expected to be covered after grade 7). 
In contrast, linear equations and formulas for perimeters, areas and volumes are expected to be 
covered in the eighth grade in almost all participating countries. But in Hong Kong-China, Japan, 
Norway, Slovenia, Sweden, Chinese Taipei and Ukraine – where linear equations are part of the 
eighth-grade curriculum – less than 50% of students in grade 8 are taught them. Teachers may 
decide not to cover a certain topic with some students or to cover it in earlier or later grades, 
especially when the curriculum allows for such flexibility. 

Standardisation policies – such as using a common curriculum across all classes in a school – can 
limit the freedom of teachers to define the content of their instruction. Figure 1.5 shows that there 
are large differences across countries in the level of standardisation of mathematics teaching. 
Around 60% of students in OECD countries are in schools that adopt standardised mathematics 
policies with shared instructional materials accompanied by staff development and training. 
These policies are relatively rare in the Nordic countries, but relatively common in several 
Asian countries and economies. In all countries and economies but Denmark, Luxembourg 
and Sweden, the majority of students attends schools where teachers are required to follow a 
mathematics curriculum that specifies the content to be covered each month. 

Textbooks are a key link between the intended and the implemented curriculum. Textbooks 
influence which topics are likely to be covered by teachers, in which order and through 



© OECD 2016  equations and inequalities: making Mathematics accessible to all46

1
Why access to mathematics matters and how it can be measured

20 30 40 50 60 70 80 90 100 %

Denmark
Norway
Uruguay
Sweden

Lithuania
Japan
Spain

Argentina
Serbia

Belgium
France

Peru
Iceland

Netherlands
Chile

Colombia
Costa Rica

Latvia
Bulgaria

Switzerland
Germany

Italy
Liechtenstein
Macao-China

Chinese Taipei
Luxembourg

Tunisia
Slovak Republic

Austria
OECD average

Finland
Korea

Slovenia
Mexico

Hungary
Greece

Brazil
Romania

United Kingdom
Turkey

Portugal
Jordan

Australia
Croatia
Canada

New Zealand
Ireland

Indonesia
Poland

United Arab Emirates
Hong Kong-China

Thailand
Russian Federation

Israel
Estonia

United States
Montenegro

Czech Republic
Albania

Singapore
Kazakhstan

Malaysia
Viet Nam

Shanghai-China
Qatar

Standardised mathematics textbooks
Standardised mathematics policies Standardised mathematics curriculum

 Figure 1.5 
Use of standardised practices for curriculum and teaching

Percentage of students in schools that practice standardised policies
for mathematics teaching, curriculum and textbooks

Note: A standardised policy for mathematics consists of a school curriculum with shared instructional materials 
accompanied by staff development and training. A standardised curriculum speci�es content that mathematics teachers 
should follow at least monthly. All measures are reported by the school's principal.
Countries and economies are ranked in ascending order of the percentage of students in schools that use standardised 
mathematics policies.
Source: OECD, PISA 2012 Database, Table 1.5.
 12 http://dx.doi.org/10.1787/888933376885
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which pedagogical strategies (Freeman and Porter, 1989; Grossman and Thompson, 2008; 
Johansson, 2005; Reys et al., 2003; Stathopoulou, Gana and Chaviaris, 2012). Adopting a 
single textbook for all mathematics classes in a school is a common practice in most countries 
(Figure 1.5), but at the same time teachers have a major role in selecting textbooks. On average 
across OECD countries, 77% of students attend schools where teachers choose textbooks, while 
principals and school governing boards are less involved (Table 1.4). Only in Greece, Jordan, 
Luxembourg and Malaysia over 80% of students attend schools where the national education 
authority chooses which textbooks are used in the school. 

Measuring opportunity to learn in PISA

For international comparisons, measures of OTL are relevant in two ways: as a possible factor 
leading to international differences in achievement, and as indicators of cross-national and 
within-countries differences in the implemented curriculum. If OTL is not taken into account 
in cross-national comparisons, its effects might be mistakenly attributed to other characteristics 
of students or education systems (Schmidt et al., 2014). A clear international picture of the 
similarities and differences in the content students are given the opportunity to learn provides 
each country with a context for considering curriculum reforms and evaluating equity in access 
to learning opportunities.

There are two main approaches to measuring OTL. The first, adopted in early studies, such as 
the First International Mathematics Study (FIMS), measures students’ exposure to content at the 
classroom level through a teacher survey. The second, used in PISA 2012, presents exemplar 
problems to test-takers, asking them whether they have seen anything similar during their school 
lessons. Both approaches have advantages and shortcomings. Teachers’ reports are generally 
more accurate descriptions of the delivered curriculum. Students’ reports can provide more 
reliable measures of the time students are actually engaged in learning the topic, under the 
assumption that students can objectively establish the similarity between what they do in class 
and what they see in the problems presented in the questionnaire.

The student questionnaire in PISA 2012 included several questions on the degree to which 
students encounter various types of mathematics problems in their courses, how familiar they 
are with certain formal mathematics content, and how frequently they are taught to solve 
specific mathematics tasks. Responses to these questions were used to construct a number of 
OTL measures and indices, as detailed in Box 1.2.

Based on students’ self-reports, the data show substantial variation across education systems 
in students’ exposure to mathematics content. These international differences emerge clearly 
from the simplest measure of OTL in PISA – the time students reported spending in mathematics 
classes each week. In 2012, the average 15-year-old student in an OECD country spent 3 hours 
and 32 minutes per week in mathematics lessons (Figure 1.6). However, behind this average lie 
great variations among school systems. While 15-year-old students in Canada spent more than 
5 hours per week in mathematics lessons, students in Hungary spent 2 hours and 30 minutes 
per week. 



© OECD 2016  equations and inequalities: making Mathematics accessible to all48

1
Why access to mathematics matters and how it can be measured

Box 1.2. Measures of Opportunity to Learn in PISA 2012

PISA 2012 assessed Opportunity to Learn mathematics through a number of measures: 

Time spent per week in regular mathematics lessons, in minutes. 

Exposure to different types of mathematics tasks during time in school (Question 1 at the 
end of this chapter), which was scaled to derive two indices (both indices are normalised 
to have an OECD average of 0 and a standard deviation of 1): 

The index of exposure to applied mathematics refers to student-reported experience 
with applied tasks at school, such as working out from a train timetable how long it 
would take to get from one place to another or calculating how much more expensive 
a computer would be after adding tax. 

The index of exposure to pure mathematics measures student-reported experience with 
mathematics tasks at school that require knowledge of algebra (linear and quadratic 
equations). 

Familiarity with mathematics concepts: Question 2 (reproduced at the end of this chapter) 
asked students to judge how familiar they were with 13 mathematics concepts. Replies 
were used to create the index of familiarity with mathematics, which was normalised to 
have an OECD average of 0 and a standard deviation of 1. Part of the analysis contained 
in this report looks at familiarity with: 

Algebra, measured as the average student’s familiarity with the concepts of exponential 
function, quadratic function and linear equation.

Geometry, measured as the average student’s familiarity with the concepts of vector, 
polygon, congruent figure and cosine.

The question about familiarity also included three foils, i.e. non-existing pseudo-concepts. 
Responses indicating that students heard of these concepts or knew them well were 
considered to indicate overclaiming. The index of familiarity with mathematics used in this 
report is corrected for overclaiming.

Frequency of experience with specific mathematics tasks in mathematics lessons and in 
tests, including the following:

Algebraic word problems (Question 3a, reported at the end of this chapter), such as: 
“Ann is two years older than Betty and Betty is four years older than Sam. When Betty 
is 30, how old is Sam?”. 

Procedural tasks (Question 3b), such as solving a linear equation or finding the volume 
of a box. 

Pure mathematics problems (Question 3c), such as determining the height of a pyramid 
using geometrical theorems, and solving a problem with prime numbers.

Contextualised mathematics problems (Question 3d), such as interpreting a trend in 
a chart.
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 Figure 1.6 
Change between 2003 and 2012 in the time spent

per week in mathematics classes

Notes: Statistically signi�cant changes between 2003 and 2012 in the time spent per week in regular mathematics lessons 
are shown next to the country/economy name.
Only countries with comparable data for both PISA 2003 and PISA 2012 are included.
Countries and economies are ranked in descending order of the time spent in mathematics classes per week in 2012.
Source: OECD, PISA 2012 Database, Table 1.6.
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Time spent in mathematics classes has increased over the past decade. Across OECD countries, 
students in 2012 spent an average of 13 minutes more per week in mathematics classes than 
their counterparts did in 2003. In some countries, the average time spent in regular mathematics 
classes increased much more than that. In Canada and Portugal, for example, students in 2012 
spent 1.5 hours more in mathematics classes than their counterparts in 2003 did, and students in 
Norway, Spain and the United States spent at least 30 minutes more. The amount of time students 
spent in mathematics lessons increased by more than 15 minutes in another 11 countries and 
economies. Only in Korea, which had the fifth longest mathematics class time in 2003, did that 
class time shrink over the period – by more than 30 minutes.

Education systems differ substantially not only in the time allocated to mathematics teaching, 
but also in how this time is allocated to different topics. PISA asked students how familiar they 
are with certain formal mathematics content, including such topics as quadratic functions, 
radicals and the cosine of an angle (see Box 1.2 for a description of the index of familiarity 
with mathematics). On average across OECD countries, less than 30% of 15-year-old students 
reported to know well and understand the concept of arithmetic mean; less than 50% of 
students reported to know well and understand the concepts of divisor and polygon (Table 1.7). 

Students in Hong Kong-China, Japan, Korea, Macao-China, Shanghai-China, Spain and 
Chinese Taipei are most familiar with mathematics concepts in general (Table 1.8). More 
specifically, Figure 1.7 shows that students in Japan, Macao-China and Singapore reported 
greater familiarity with the algebraic concepts of linear equation, quadratic function and 
exponential function. Most students in Shanghai-China reported frequent exposure to the 
geometric concepts of vector, polygon, congruent figure and cosine. The high levels of exposure 
to advanced mathematics concepts among Asian students is partly due to the academically 
oriented mathematics curricula in those countries/economies (Morris and Williamson, 2000), 
to the emphasis on advanced mathematics courses in teacher-training programmes (Ding et al., 
2013), and to a culture of high-stakes examinations that requires teachers to cover all the topics 
students will need to know for their future tests (Yang, 2014).

At the other end of the spectrum, the majority of students in Sweden reported that they had 
either never encountered or had encountered only once or twice these algebraic and geometric 
concepts. In several countries, students reported greater familiarity with algebra than with 
geometry, or vice versa. For example, while 15-year-old students in Greece were among the most 
frequently exposed to geometry, they lagged behind the OECD average in exposure to algebra.

Another set of questions in PISA 2012 was intended to determine whether the teaching of 
mathematics was more oriented towards pure or applied mathematics (see Question 1 at the end 
of this chapter). Students’ responses to these questions were used to derive the two indices of 
exposure to pure mathematics and exposure to applied mathematics (Box 1.2). 

Students in Korea, the Russian Federation, Singapore and Spain reported the most frequent 
exposure to pure mathematics at school. Students in Kazakhstan, Korea, Poland and Thailand 
reported the greatest exposure to applied mathematics (Figure 1.8). Across education systems, 
there is only a weak relationship between average exposure to applied mathematics and average 
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 Figure 1.7 
Students’ familiarity with algebra and geometry

Self-reported knowledge of mathematics concepts

Notes: Familiarity with geometry is measured as the average student’s familiarity with the concepts of vector, polygon, 
congruent figure and cosine. Familiarity with algebra is measured as the average student’s familiarity with the concepts of 
exponential function, quadratic function and linear equation.
Countries and economies are ranked in ascending order of average familiarity with algebra.
Source: OECD, PISA 2012 Database, Table 1.8.
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exposure to pure mathematics. Several education systems, including those in Greece, Hong 
Kong-China, Italy, Japan, Macao-China, the United States and Viet Nam, devote more time to 
pure mathematics problems than to applied problems, while the opposite is observed in Brazil, 
Denmark, Jordan, Mexico, Montenegro, Qatar, Romania, the Slovak Republic, Sweden, Thailand 
and the United Arab Emirates (Table 1.9a).
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 Figure 1.8 
Relationship between exposure to applied mathematics

and exposure to pure mathematics

Notes: The index of exposure to pure mathematics measures student-reported experience with mathematics tasks requiring 
knowledge of algebra (linear and quadratic equations).
The index of exposure to applied mathematics measures student-reported experience with applied mathematics tasks at 
school, such as working out from a train timetable how long it would take to get from one place to another or calculating 
how much more expensive a computer would be after adding tax.
Source: OECD, PISA 2012 Database, Table 1.9a.
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A suitable balance between formal and applied content has been one of the most contentious 
issues in the public debate on mathematics education. “Maths wars” have raged between those 
who think that “underlying ideas must be elevated above the examples that illustrate them” 
(Munson, 2010) and those who believe that “algorithms are harmful” and children should be left 
free “to invent their own arithmetic without the instruction they are now receiving from textbooks 
and workbooks” (Kamii and Dominick, 1998: 132). This debate has focused on the structure, 
presentation and type of problems included in mathematics textbooks; on the extent to which all 
students should learn mathematics, the type of mathematics they should learn, and the types of 
problems that are suitable for them to work on as they learn it; and on the type of representations 
emphasised for student learning and problem solving (Goldin, 2008; Schoenfeld, 2004).

The alternating fortunes of the advocates of “traditional” and “reform” mathematics have 
influenced curriculum changes, the direction of pedagogical innovations and the content of 
in-service or pre-service teacher training (Klein, 2003; Schoenfeld, 2004). Some mathematics 
curricula have tried to reach a middle ground between the two extremes, emphasising the 
importance of both a high level of mathematics rigour and of opportunities to use mathematics 
in real-life contexts. In Germany, for instance, the ability to construct models to interpret and 
understand real problems is one of six compulsory competencies in the new national “Educational 
Standards” for mathematics (OECD, 2011).

Exposure to mathematics tends to increase as students move to higher grades in schools, but this 
progression varies across different mathematics content (Figure 1.9). The indices of exposure 
to pure mathematics and familiarity with mathematics show clear progressions as students 
advance through the school system. The progression is steeper for familiarity with mathematics 
because the 13 mathematics concepts included in the measure cover an exhaustive range of 
material at different levels of difficulty, while the index of exposure to pure mathematics is 
based on a set of algebraic concepts (linear and quadratic equation) of average difficulty for 
15-year-old students. 

By contrast, students in lower and higher grades reported similar levels of exposure to 
applied mathematics. This may be because the index of applied mathematics in PISA is 
based on students’ reports of exposure to relatively simple contextualised tasks that require 
basic numeric skills. Different patterns of exposure to applied mathematics, depending on 
the students’ grade level, are observed across countries. Students in the Netherlands are 
relatively frequently exposed to applied mathematics, and this exposure increases among 
older students. By contrast, in the Czech Republic and the Slovak Republic, teachers in higher 
grades tend to focus less on the types of applied mathematics tasks that are presented in the 
PISA questionnaire (Table 1.10).

It is difficult to teach mathematics as both general and concrete. Research suggests that, to achieve 
this, several different representations (e.g. numerical, verbal, symbolic and graphical) of concepts 
and phenomena are essential, as are the links and transitions between these representations (e.g. 
Janvier, 1987). The questions on opportunity to learn in PISA 2012 tried to illustrate international 
differences in the way mathematics problems are presented to students (Box 1.2).
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Word problems are used consistently throughout the mathematics curriculum. They are often 
developed by teachers who wish to connect the mathematics tasks to students’ experiences 
more directly, and to provide contexts to which students can more easily relate (see Question 3a 
at the end of the chapter). On average across OECD countries, 87% of students see this type of 
problem at least sometimes in their mathematics lessons, and 79% see these problems at least 
sometimes in their assessments (Table 1.11a). In the East Asian economies of Hong Kong-China, 
Macao-China, Shanghai-China and Viet Nam, less than 20% of students are frequently exposed 
to algebraic word problems (Figure 1.10a). 

Another question asked students to describe the extent to which they encounter contextualised 
mathematical problems, similar to those used in PISA, during their mathematics lessons and 
assessments (see Question 3d at the end of this chapter). This type of problem requires students 
to apply mathematics knowledge to find a solution to a problem that arises in everyday life or 
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 Figure 1.9 
Exposure to mathematics content in class, by grade

OECD average (23 countries)
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 Figure 1.10a 
Exposure to algebraic word problems during mathematics lessons

Percentage of students who reported that they are frequently exposed
to algebraic word problems during their mathematics lessons

Note: An example of an algebraic word problem is the following: “Ann is two years older than Betty and Betty is four years 
older than Sam. When Betty is 30, how old is Sam?”
Countries and economies are ranked in ascending order of the percentage of students who reported that they are frequently 
exposed to algebraic word problems during mathematics lessons.
Source: OECD, PISA 2012 Database, Table 1.11a.
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work, such as interpreting a trend in a chart. Most mathematics teachers make limited use of 
PISA-type mathematics problems in their lessons. Only 21% of students reported seeing this type 
of problem frequently at school (Figure 1.10b), and 45% reported seeing these problems only 
sometimes (Table 1.11b). Applied mathematics problems requiring interpretation and reasoning 
in a real-life context are even more rarely used in assessments.

PISA-type mathematics problems often require a skill in “mathematics modelling” – making 
connections between the real world and mathematics. Mathematics modelling has been 
discussed and recommended most intensely during the past few decades (Blum and Borromeo 
Ferri, 2009); however, it is rarely applied in everyday school practice, possibly because it is 
more difficult both for students and teachers than the replication of routine exercises. Several 
high-performing countries and economies are among those where students are less likely to 
report exposure to the kinds of contextualised mathematics problems like those included in the 
PISA test (Figure 1.10b). This does not mean that exposure to contextualised tasks has a negative 
effect on performance: rather, it is more likely that contextualisation is used to facilitate access to 
complex mathematics concepts of students with a weaker knowledge base (see also Table 3.8b 
on the relationship between exposure to contextualised tasks and performance within countries). 
Teaching mathematics is complex, and there are other factors that influence performance more 
than the amount of real-life connections students make during a task (Mosvold, 2008). Moreover, 
effectively applying contextualised problems in the classroom significantly depends on teachers’ 
ability to support students’ capacity to transfer what they learned in a specific context to similar 
problems in different contexts (see Box 1.3). 

Formalised tasks that require applying procedural knowledge (such as those presented in 
Question 3b at the end of this chapter) are most commonly used in mathematics instruction. 
PISA shows that around 68% of students in OECD countries see this type of problem frequently in 
their mathematics lessons (Figure 1.10c), and another 25% of students are sometimes exposed to 
these problems (Table 1.11c). Almost 90% of students reported solving these problems as part of 
their assessments at least sometimes (Table 1.11c). At the system level, countries and economies 
whose students reported frequent exposure to procedural mathematics problems also frequently 
use algebraic word problems in mathematics classes (Table 1.12). 

The dominance of procedural mathematics compared with modelling is problematic if students 
fail to establish the connection between procedures and concepts. For example, students often 
look at the operational side of equations arriving at the solution with no real understanding of 
the concept of the equation (Niss, 1987). In the long-standing debate about the relationship 
between procedural and conceptual knowledge, there is a prevalent view that instruction 
should develop conceptual knowledge before focusing on procedural knowledge (Grouws 
and Cebulla, 2000; NCTM, 2000, 2014). A recent analysis of the evidence further suggests 
that conceptual understanding and procedural fluency are equally important as interdependent 
strands of mathematical proficiency (Rittle-Johnson et al., 2015). Both contribute to the long-term 
development of problem-solving skills. 

Pure mathematics problems are also examined in the PISA student questionnaire (see Question 
3c at the end of this chapter). These problems require a foundation of conceptual knowledge 
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 Figure 1.10b 
Exposure to contextualised mathematics problems during mathematics lessons

Percentage of students who reported that they are frequently exposed to contextualised
mathematics problems during their mathematics lessons

Note: Contextualised mathematics problems require the application of mathematics knowledge to �nd an answer to a 
problem that arises in everyday life or work, such as interpreting a trend in a chart.
Countries and economies are ranked in ascending order of the percentage of students who reported that they are frequently 
exposed to contextualised mathematics problems during mathematics lessons.
Source: OECD, PISA 2012 Database, Table 1.11b.
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and the use of procedures that are not automatised, but rather require conscious selection, 
reflection and sequencing of steps. Three out of four students across OECD countries see this 
type of problem either frequently or sometimes in their mathematics lessons (Table 1.11d), and 
two out of three students solve these problems at least sometimes in the tests they take at school. 
Students in Finland, Norway and Sweden are less exposed to this type of task than students in 
other countries and economies.

Box 1.3. Advantages and possible costs of contextualised mathematics 

Mathematics and science teachers at all levels are frequently encouraged to incorporate 
concrete, meaningful, real-world examples into their lessons when teaching new material 
(Rivet and Krajcik, 2008). First, concrete examples are easier to process than more abstract 
representations and connect the learner’s existing knowledge with new, to-be-learned 
knowledge. For instance, a mathematics instructor teaching simple probability theory may 
present probabilities by rolling a six-sided die. Second, tasks embedded in real-life contexts 
have high motivational power; students are most easily engaged with problems that are 
taken from their everyday lives (Hiebert et al., 1996). Well-designed real-life tasks can also 
encourage the idea that mathematics is a useful discipline (Trafton et al., 2001).

Despite these advantages, research suggests that concrete examples may also come with a 
cost. For example, any information presented that is not essential tends to distract learners 
from the relevant content, leading to poorer recall for that material (the “seductive details 
effect”; Day et al., 2015; Harp and Mayer, 1998). Grounding mathematics using concrete 
contexts can thus potentially limit its applicability to similar situations in which just the 
surface details are changed, particularly for low-performers. In a series of experiments with 
undergraduate and high school students, Kaminski et al. (2008) found that learning one, two 
or three concrete examples resulted in little or no transfer, whereas learning one generic 
example resulted in significant transfer. On these grounds, the benefits of contextualised 
problems exceed their costs only if the tasks are very well designed (e.g. minimising 
unnecessary distractions) and if teachers address the transfer problem, for instance by 
presenting a concrete example and then a generic example for the same topic. 

Mathematics teaching in the Netherlands has traditionally had the highest amount of 
connections to real-life (Hiebert et al., 2003); most textbook problems present some 
kind of real-life context (Mosvold, 2008). Several other countries have taken initiatives to 
increase the frequency and to improve the quality of real-life mathematics tasks students 
tackle in class. For example, the Singapore Mathematics Assessment and Pedagogy 
Project (SMAPP) developed a new assessment system that includes real-life mathematics, 
producing contextualised tasks that teachers can use in their lessons. According to the 
SMAPP framework, a good task should: include links to real life using relevant data; connect 
to the curriculum; assess multiple competencies and content knowledge; enrich student 
experiences; and include scaled levels of difficulty. The tasks were developed by a team of 
mathematicians, reviewed by teachers, and then revised after testing in real lessons. Japan 
recently revised its “Course of Study” and introduced mathematical activities with stronger 
connections with real-life problems.
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 Figure 1.10c 
Exposure to procedural mathematics tasks during mathematics lessons

Percentage of students who reported that they are frequently exposed
to procedural mathematics tasks during their mathematics lessons

Note: Solving a linear equation or finding the volume of a box are examples of procedural mathematics tasks.
Countries and economies are ranked in ascending order of the percentage of students who reported that they are frequently 
exposed to procedural mathematics tasks during mathematics lessons.
Source: OECD, PISA 2012 Database, Table 1.11c.
 12 http://dx.doi.org/10.1787/888933376953
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 Figure 1.10d 
Exposure to pure mathematics problems during mathematics lessons

Percentage of students who reported that they are frequently exposed
to pure mathematics problems during mathematics lessons

Note: Pure mathematics problems require the use of mathematics knowledge to draw conclusions, without referring to any 
practical application (e.g. determining the height of a pyramid using geometrical theorems).
Countries and economies are ranked in ascending order of the percentage of students who reported that they are frequently 
exposed to pure mathematics problems during mathematics lessons.
Source: OECD, PISA 2012 Database, Table 1.11d.
 12 http://dx.doi.org/10.1787/888933376962
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PISA provides substantial data on the international variation in the intensity, topic coverage and 
representation of mathematics instruction. These data show remarkable differences between 
education systems in the opportunity to learn mathematics. The value of these data for education 
policy emerges when they are used in combination with information on student performance on 
the PISA assessment of mathematics (Chapter 3), and when the analysis moves beyond country 
means to look at how opportunity to learn is distributed among students of different socio-
economic status (Chapter 2). If a solid knowledge of mathematical concepts is necessary to solve 
non-routine mathematics problems and to apply mathematics in complex contexts outside the 
classroom, then socio-economic differences in access to mathematics knowledge will perpetuate 
differences in student performance – and in later social and economic outcomes – that are linked 
to socio-economic status.
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Questions used to measure opportunity to learn in PISA 2012 

The PISA 2012 student questionnaire contains six questions on opportunity to learn mathematics. 
Box 1.2 explains how responses were scaled and combined into several indices. These questions 
are shown below.

Exposure to pure and applied mathematics

This question asks students to report on the frequency with which they have encountered specific 
applied and pure mathematics tasks during mathematics lessons. Students’ responses to the 
items a) through f) in this question were scaled to produce the index of exposure to applied 
mathematics and responses to the items g) through i) were used for the index of exposure to pure 
mathematics.

Question 1

How often have you encountered the following types of mathematics tasks during your time 
at school?
(Please tick only one box in each row.)

Frequently Sometimes Rarely Never
Applied mathematics tasks

a) Working out from a <train timetable> how 
long it would take to get from one place to 
another.

1 2 3 4

b) Calculating how much more expensive a 
computer would be after adding tax.

1 2 3 4

c) Calculating how many square metres of tiles 
you need to cover a floor.

1 2 3 4

d) Understanding scientific tables presented in 
an article.

1 2 3 4

e) Finding the actual distance between two 
places on a map with a 1:10,000 scale.

1 2 3 4

f) Calculating the power consumption of an 
electronic appliance per week.

1 2 3 4

Pure mathematics tasks

g) Solving an equation like: 6x2 + 5 = 29 1 2 3 4

h) Solving an equation like: 2(x + 3) = (x + 3)
(x - 3)

1 2 3 4

i) Solving an equation like: 3x + 5 = 17 1 2 3 4
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Familiarity with mathematics

This question evaluates students’ familiarity with different mathematical concepts covered in the 
mathematics curriculum.

Question 2

Thinking about mathematical concepts: how familiar are you with the following terms?
(Please tick only one box in each row.)

Never  
heard of it

Heard of 
it once or 

twice

Heard of 
it a few 
times

Heard of 
it often

Know it well, 
understand 
the concept

a) Exponential Function 1 2 3 4 5

b) Divisor 1 2 3 4 5

c) Quadratic Function 1 2 3 4 5

d) Linear Equation 1 2 3 4 5

e) Vectors 1 2 3 4 5

f) Complex Number 1 2 3 4 5

g) Rational Number 1 2 3 4 5

h) Radicals 1 2 3 4 5

i) Polygon 1 2 3 4 5

j) Congruent Figure 1 2 3 4 5

k) Cosine 1 2 3 4 5

l) Arithmetic Mean 1 2 3 4 5

m) Probability 1 2 3 4 5

Students’ exposure to different kinds of mathematics problems

The following four questions explore students’ experience with different types of mathematics 
problems at school. They include a brief description of the type of problem and two examples 
of mathematics problems for each type. The students had to read each problem but did not have 
to solve it.

Question 3a: Algebraic word problems

The box is a series of problems. Each requires you to understand a problem written in text and 
perform the appropriate calculations. Usually the problem talks about practical situations, but 
the numbers and people and places mentioned are made up. All the information you need is 
given. Here are two examples:

1. <Ann> is two years older than <Betty> and <Betty> is four times as old as <Sam>. 
When <Betty> is 30, how old is <Sam>?

2. Mr <Smith> bought a television and a bed. The television cost <$625> but he got 
a 10% discount. The bed cost <$200>. He paid <$20> for delivery. How much money 
did Mr <Smith> spend?
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We want to know about your experience with these types of word problems at school. Do 
not solve them!
(Please tick only one box in each row.)

Frequently Sometimes Rarely Never 
a) How often have you encountered these types 

of problems in your mathematics lessons? 1 2 3 4

b) How often have you encountered these 
types of problems in the tests you have 
taken at school?

1 2 3 4

Question 3b: Procedural mathematics problems

Below are examples of another set of mathematical skills.

1) Solve 2x + 3 = 7.  

2) Find the volume of a box with sides 3m, 4m and 5m.

We want to know about your experience with these types of problems at school. Do not 
solve them!
(Please tick only one box in each row.)

Frequently Sometimes Rarely Never 
a) How often have you encountered these types 

of problems in your mathematics lessons? 1 2 3 4

b) How often have you encountered these 
types of problems in the tests you have taken 
at school?

1 2 3 4

Question 3c: Pure mathematics problems

In the next type of problem, you have to use mathematical knowledge and draw conclusions. 
There is no practical application provided. Here are two examples.

1) Here you need to use geometrical theorems:

12 cm

C

A

S

D

B

12 cm

12 cm

Determine the height of the pyramid.

2) Here you have to know what a prime number is:

If n is any number: can (n+1)² be a prime number?
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We want to know about your experience with these types of problems at school. Do not 
solve them!
(Please tick only one box in each row.)

Frequently Sometimes Rarely Never 
a) How often have you encountered these types 

of problems in your mathematics lessons?
1 2 3 4

b) How often have you encountered these 
types of problems in the tests you have 
taken at school?

1 2 3 4

Question 3d: Contextualised mathematics problems 

In this type of problem, you have to apply suitable mathematical knowledge to find a useful 
answer to a problem that arises in everyday life or work. The data and information are about 
real situations. Here are two examples.

Example 1 
A TV reporter says “This graph shows that there is a huge increase in the number of robberies 
from 1998 to 1999.”

Year 1998

520

515

510

505

Number 
of robberies

per year

Year 1999

Do you consider the reporter’s statement to be a reasonable interpretation of 
the graph?

Give an explanation to support your answer.

Example 2 
For years the relationship between a person’s recommended maximum heart rate and the 
person’s age was described by the following formula:

Recommended maximum heart rate = 220 – age

Recent research showed that this formula should be modified slightly. The new formula is 
as follows:

Recommended maximum heart rate = 208 – (0.7 × age)

From which age onwards does the recommended maximum heart rate increase as a result 
of the introduction of the new formula? Show your work.
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We want to know about your experience with these types of problems at school. Do not 
solve them!
(Please check only one box in each row.)

Frequently Sometimes Rarely Never 
a) How often have you encountered these types 

of problems in your mathematics lessons? 1 2 3 4

b) How often have you encountered these 
types of problems in the tests you have 
taken at school?

1 2 3 4
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Note

1. The OECD Survey of Adult Skills defines numeracy as the ability to access, use, interpret and communicate 
mathematical information and ideas, in order to engage in and manage the mathematical demands of a range 
of situations in adult life (OECD, 2012).
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