1887

Utilisation and Reliability of High Power Proton Accelerators

Workshop Proceedings, Mol, Belgium, 6-9 May 2007

image of Utilisation and Reliability of High Power Proton Accelerators

Accelerator-driven systems (ADS) are being considered for their potential use in the transmutation of radioactive waste. The performance of such hybrid nuclear systems depends to a large extent on the specification and reliability of high power accelerators, as well as the integration of the accelerator with spallation targets and sub-critical systems. At present, much R&D work is still required in order to demonstrate the desired capability of the system as a whole.

Accelerator scientists and reactor physicists from around the world gathered at an NEA workshop to discuss issues of common interest and to present the most recent achievements in their research. Discussions focused on accelerator reliability; target, window and coolant technology; sub-critical system design and ADS simulations; safety and control of ADS; and ADS experiments and test facilities. These proceedings contain the technical papers presented at the workshop as well as summaries of the working group discussions held. They will be of particular interest to scientists working on ADS development as well as on radioactive waste management issues in general.

English

.

SESSION IV - Subcritical System Design and ADS Simulations

Nuclear Energy Agency

Within the EUROTRANS integrated project, the domain DESIGN has the task to provide the pre-design of a European Facility for Industrial Transmutation (EFIT) able to demonstrate the feasibility aspect of the nuclear waste transmutation/burning in an ADS at industrial scale. The helium-cooled EFIT is one of the solutions studied for this purpose. The present paper summarises the work carried out during the first two years of the project. The approach followed to design the plant is presented first. The plant characteristics (proton beam characteristics, core power, inlet/outlet temperatures, etc.) are then discussed and the He-EFIT core is described as well as the spallation module design.

English

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error