Utilisation and Reliability of High Power Proton Accelerators

Workshop Proceedings, Daejeon, Republic of Korea, 16-19 May 2004

image of Utilisation and Reliability of High Power Proton Accelerators

Accelerator-driven systems (ADS) are being considered for their potential use in the transmutation of radioactive waste. The performance of such hybrid nuclear systems depends to a large extent on the specification and reliability of high power accelerators, as well as the integration of the accelerator with spallation targets and sub-critical systems. At present, much R&D work is still required in order to demonstrate the desired capability of the system as a whole.

Accelerator scientists and reactor physicists from around the world gathered at an NEA workshop to discuss issues of common interest and to present the most recent achievements in their research. Discussions focused on accelerator reliability; target, window and coolant technology; sub-critical system design and ADS simulations; safety and control of ADS; and ADS experiments and test facilities. These proceedings contain the technical papers presented at the workshop as well as summaries of the working group discussions held. They will be of particular interest to scientists working on ADS development as well as on radioactive waste management issues in general.



An Improved Superconducting ADS Driver Linac Design

Nuclear Energy Agency

In this paper we discuss recent work to further improve our superconducting (SC) ADS driver linac design. Our design assumes use of the 6.7-MeV LEDA RFQ as an injector to the SC driver linac. We have examined the feasibility of accelerating a 20-mA CW beam to 600 MeV using only 350-MHz SC multi-spoke resonator cavities operating at 4 K. Replacing the 2 K, 700-MHz SC elliptical cavity sections with spoke resonators has several advantages, including reduced cryo-plant operating cost and an improved real-estate accelerating gradient due to the longer active lengths of the 350-MHz cavities. We discuss the details of the new design layout and beam dynamics simulations, including effects due to operational and alignment errors. Preliminary cavity modelling results for the proposed five-gap spoke resonators are also discussed. This accelerator design would be appropriate as a driver linac for applications such as waste transmutation, fusion materials testing, etc.


This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error