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About the OECD 
 
 

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental 
organisation in which representatives of 30 industrialised countries in North America, Europe and 
the Asia and Pacific region, as well as the European Commission, meet to co-ordinate and 
harmonise policies, discuss issues of mutual concern, and work together to respond to 
international problems. Most of the OECD’s work is carried out by more than 200 specialised 
committees and working groups composed of member country delegates. Observers from several 
countries with special status at the OECD, and from interested international organisations, attend 
many of the OECD’s workshops and other meetings. Committees and working groups are served 
by the OECD Secretariat, located in Paris, France, which is organised into directorates and 
divisions. 
 
The Environment, Health and Safety Division publishes free-of-charge documents in ten different 
series: Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; 
Pesticides and Biocides; Risk Management; Harmonisation of Regulatory Oversight in 
Biotechnology; Safety of Novel Foods and Feeds; Chemical Accidents; Pollutant Release and 
Transfer Registers; Emission Scenario Documents; and the Safety of Manufactured 
Nanomaterials. More information about the Environment, Health and Safety Programme and 
EHS publications is available on the OECD’s World Wide Web site (http://www.oecd.org/ehs/). 
 
 
This publication was produced within the framework of the Inter-Organisation Programme for 
the Sound Management of Chemicals (IOMC). 
 
 

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was 
established in 1995 following recommendations made by the 1992 UN Conference on 
Environment and Development to strengthen co-operation and increase international co-
ordination in the field of chemical safety.  The participating organisations are FAO, ILO, 
OECD, UNEP, UNIDO, UNITAR and WHO.  The World Bank and UNDP are observers.  The 
purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the 
Participating Organisations, jointly or separately, to achieve the sound management of 
chemicals in relation to human health and the environment. 
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FOREWORD 

 The introduction of a new technology into formal decision-making processes involving chemicals 
requires a solid scientific foundation and technical guidance on useful approaches for implementation.  
(Quantitative) Structure-Activity Relationship [(Q)SAR] technology is not really a new technology and it 
has enjoyed more than 20 years of use in some regulatory applications.  However, advances in computers 
and the Internet together with the growing gap between the need for empirical data and the availability of 
testing resources seem to be ushering in a new international emphasis on (Q)SAR-based technologies for 
initial risk assessments.   

 The solid scientific foundation for (Q)SAR technology is the underlying premise in chemistry 
that similar chemical structures are expected to exhibit similar chemical behaviour.  This simple premise 
becomes especially important whenever there are not enough empirical data for hazard identification and 
risk assessment purposes.  With tens of thousands of chemical structures to assess and many different 
empirical tests needed to understand chemical behaviour, the concept of grouping similar chemicals 
together and extending  existing data through models for similar chemical structures which have not been 
tested seems to be a prudent approach. 

 The scientific underpinning of (Q)SAR technology is made complex, however, because of the 
complexity of methods to measure similarity and the number of forms chemical behaviour can take in 
toxicology.  To keep (Q)SAR applications on a solid scientific foundation, an international effort to 
articulate principles for (Q)SAR technology and to develop a guidance document for use of (Q)SAR in 
regulatory applications.  This document presents those principles and helpful guides for validating (Q)SAR 
technology for a variety of applications. The reader will find that transparency in the validation process and 
objective determination of the reliability of (Q)SAR models are crucial to extending the regulatory 
acceptance of (Q)SAR models.   

 The first draft of this document was produced by the Joint Research Centre (JRC) of the 
European Commission. The draft was developed by the OECD Steering Group for (Q)SARs and overseen 
by the OECD Ad Hoc Group on (Q)SARs. The second draft was circulated to the members of the Ad Hoc 
Group for their input in March 2006. Comments were received from Germany, Italy, Japan and the United 
States and discussed at the meeting of the Ad Hoc Group in June 2006, and the revised draft was be 
circulated to the Ad Hoc Group on (Q)SARs for final review in August 2006 and endorsed in November 
2006.  

 This document is published on the responsibility of the Joint Meeting of the Chemicals 
Committee and the Working Party on Chemicals, Pesticides and Biotechnology of the OECD. 

 This document has been produced with the financial assistance of the European Union. The 
views expressed herein can in no way be taken to reflect the official opinion of the European Union. 



 ENV/JM/MONO(2007)2 

 11

TABLE OF CONTENTS 

FOREWORD................................................................................................................................................ 10 
CHAPTER 1.  INTRODUCTION ................................................................................................................ 13 

Purpose of this document .......................................................................................................................... 13 
Regulatory Acceptance of (Q)SAR........................................................................................................... 14 
The OECD Principles of (Q)SAR Validation ........................................................................................... 14 
Historical Background............................................................................................................................... 15 
Definition of Validation for (Q)SAR Models ........................................................................................... 17 
The (Q)SAR Validation Process ............................................................................................................... 18 
Application of the (Q)SAR Validation Principles..................................................................................... 19 
Overview of Chapters 2-6, Annex A-C and Glossary............................................................................... 19 

CHAPTER 2. GUIDANCE ON PRINCIPLE OF DEFINED ENDPOINTS ............................................... 21 
Summary of Chapter 2 .............................................................................................................................. 21 
Introduction ............................................................................................................................................... 21 
A Defined Endpoint .................................................................................................................................. 22 
Examples of Defined Endpoints for Regulatory Assessment.................................................................... 23 
Importance of Quality of Measured Endpoint Data .................................................................................. 24 
Concluding Remarks ................................................................................................................................. 26 

CHAPTER 3. GUIDANCE ON PRINCIPLE OF UNAMBIGUOUS ALGORITHMS .............................. 27 
Summary of Chapter 3 .............................................................................................................................. 27 
Introduction ............................................................................................................................................... 27 
Unambiguous Algorithms ......................................................................................................................... 27 

Univariate regression (ULR) ................................................................................................................. 28 
Multiple Linear Regression (MLR) ....................................................................................................... 29 
Principal Component Analysis (PCA) and Principal Component Regression (PCR) ........................... 29 
Partial Least Squares (PLS)................................................................................................................... 29 
Artificial Neural Nets (ANN) ................................................................................................................ 30 
Fuzzy Clustering and Regression .......................................................................................................... 30 
K-nearest Neighbour Clustering............................................................................................................ 30 
Genetic Algorithms (GA) ...................................................................................................................... 30 

Concluding Remarks ................................................................................................................................. 31 
CHAPTER 4. GUIDANCE ON PRINCIPLE OF A DEFINED DOMAIN OF APPLICABILITY ............ 32 

Summary of Chapter 4 .............................................................................................................................. 32 
Introduction ............................................................................................................................................... 32 
Basic Terms and Concepts ........................................................................................................................ 33 
Recommendations for Deriving Applicability Domains........................................................................... 33 
Comparing applicability domains with the spaces of regulatory inventories............................................ 40 
Concluding remarks .................................................................................................................................. 40 

CHAPTER 5. GUIDANCE ON THE PRINCIPLE OF MEASURES OF GOODNESS-OF- FIT, 
ROBUSTNESS AND PREDICTIVITY....................................................................................................... 42 



ENV/JM/MONO(2007)2 

 12

Summary of Chapter 5 .............................................................................................................................. 42 
Introduction ............................................................................................................................................... 42 
Basic Terms and Concepts ........................................................................................................................ 43 
Recommendations for Practitioners .......................................................................................................... 44 

Multiple Linear Regression (MLR) ....................................................................................................... 44 
Partial Least Squares regression (PLS).................................................................................................. 45 
Classification Models (CMs)................................................................................................................. 46 
Artificial Neural Networks (ANNs) ...................................................................................................... 49 
Evaluating Predicitive Capacity for Individual (Q)SAR Models .......................................................... 55 

Evaluating Reliability of Knowledge-Driven (Q)SAR Models ................................................................ 57 
Concluding remarks .................................................................................................................................. 58 

CHAPTER 6. GUIDANCE ON THE PRINCIPLE OF MECHANISTIC INTERPRETATION................. 66 
Summary of Chapter 6 .............................................................................................................................. 66 
Introduction ............................................................................................................................................... 66 
Mechanistic Interpretation......................................................................................................................... 66 
Molecular Descriptors ............................................................................................................................... 68 

Presence of Substructures ...................................................................................................................... 68 
Connectivity Indices .............................................................................................................................. 69 

Calculated Structural and Electronic Descriptors ..................................................................................... 69 
Examples of Mechanistic Interpretations .................................................................................................. 70 

Expert Systems ...................................................................................................................................... 72 
Artificial Intelligence systems ............................................................................................................... 74 

Concluding remarks .................................................................................................................................. 74 
REFERENCES ............................................................................................................................................. 78 
ANNEX A. OECD PRINCIPLES FOR THE VALIDATION, FOR REGULATORY PURPOSES, OF 
(QUANTITATIVE) STRUCTURE-ACTIVITY RELATIONSHIP MODELS........................................... 92 
ANNEX B. CHECK LIST FOR THE OECD PRINCIPLES FOR (Q)SAR VALIDATION ...................... 94 
ANNEX C. REPORTING FORMATS FOR (Q)SARS VALIDATION ..................................................... 99 
GLOSSARY ............................................................................................................................................... 135 

 



 ENV/JM/MONO(2007)2 

 13

CHAPTER 1.  INTRODUCTION 

Purpose of this document 

1. (Quantitative) Structure-Activity Relationship [(Q)SAR] represents a technology aimed at 
providing estimates of many laboratory test results before the tests are conducted.  The computer-based 
(Q)SARs give a virtual glimpse of the information a particular test might yield, and this new capability 
offers all stakeholders in the regulation of chemicals new opportunities in setting priorities for limited 
testing resources.  In some cases, as (Q)SAR performance evolves, the estimated values from (Q)SARs 
will increasingly be used to inform initial risk assessments.  Anticipating the benefits of adding the in silico 
technology of (Q)SAR to the well established in vitro and in vivo test guidelines, experts have been 
meeting to discuss the barriers to acceptance of (Q)SARs by regulatory agencies.   A critical element of 
regulatory acceptance is the creation of a flexible scientific validation process for (Q)SARs which allows 
individual regulatory agencies to establish the reliability of (Q)SAR estimates for specific authorities and 
regulatory constraints. 

2. This document provides a discussion of the “OECD Principles for the Validation, for Regulatory 
Purposes, of (Q)SAR Models” (see Annex A) and provides guidance on how individual regulatory 
agencies can evaluate specific (Q)SAR models with respect to those principles.  The purpose of this 
document is to provide detailed but non-prescriptive guidance that explains and illustrates the application 
of the validation principles to different types of (Q)SAR models. This document is needed to provide a 
harmonised framework for (Q)SAR validation studies to explain and illustrate with examples how the 
validation principles can be interpreted for different types of (Q)SAR models. 

3. While this document provides non-prescriptive guidance on the processes of validation which 
address the performance of a wide variety of (Q)SAR models, the document in not intended to establish 
specific criteria for judging the scientific validity or for regulatory acceptance of individual (Q)SAR 
models.  This document defers explicitly to the appropriate regulatory authorities in the member countries 
to establish criteria for validity and acceptance. 

4. The audiences for which this document is intended include the regulatory decision makers who 
wish to understand the usefulness and the uncertainty of (Q)SAR estimates results as well as the (Q)SAR 
specialist who participates in regulatory decisions and who is likely to carry out (Q)SAR validation 
exercises for specific regulatory applications.  Additionally, the document is intended to inform the 
registrants for chemicals who may need to prepare explanations for registration dossiers with respect to the 
specific (Q)SAR models used for individual chemicals.  All stakeholders of the (Q)SAR validation process, 
regardless of their familiarity with (Q)SAR models will benefit from the transparency and documentation 
of the process by which a particular (Q)SAR model is judged adequate for a regulatory decision and of the 
(Q)SAR estimates produced for specific chemicals being assessed.   To that end, this guidance document 
provides a historical overview and highlights key scientific issues involved in acceptance of a (Q)SAR 
model.  The audiences are encouraged to make full use of appendices and references where information on 
specific applications can be found for a variety of models.  
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Regulatory Acceptance of (Q)SAR 

5. The OECD workgroups on (Q)SAR and the Joint Meeting have concurred that the validation of 
(Q)SAR models for regulatory purposes are best carried out by the regulatory authorities of the member 
countries.  In the foreseeable future, the acceptance of (Q)SARs as a nontesting alternative source of data 
in making decisions will be based on the reliability  and transparency of a specific (Q)SAR model within a 
specific regulatory context.  Consequently, the validation principles for (Q)SAR models are intended to 
guide regulatory agencies in the evaluation of performance of (Q)SAR for specific decision processes at a 
higher level than the criteria used to judge statistical validity.  Nonetheless, transparent communication of 
the statistical performance of a (Q)SAR model is the cornerstone for reliable use in regulation and this 
document describes numerous useful approaches. As acceptance of (Q)SAR grows to fill the need for data, 
it is anticipated that statistical validity will remain crucial while mechanistic interpretation of the models 
and explanation of the (Q)SAR results will be required. 

The OECD Principles of (Q)SAR Validation 

6. In November 2004, the 37th OECD's Joint Meeting of the Chemicals Committee and the Working 
Party on Chemicals, Pesticides and Biotechnology (Joint Meeting) agreed on the OECD Principles for the 
Validation, for Regulatory Purposes, of (Q)SAR Models (see Annex A).  Flexibility will be needed in the 
interpretation and application of each OECD principle because ultimately, the proper integration of 
(Q)SARs into any type of regulatory/decision-making framework depends upon the needs and constraints 
of the specific regulatory authority.  For example, the need for such flexibility is given in a case study by 
the US EPA presented in a case studies report on the regulatory uses and applications of (Q)SAR models in 
OECD member countries (OECD, 2006).  

7. The agreed OECD principles are as follows: 

“To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be associated 
with the following information: 

1. a defined endpoint; 

2. an unambiguous algorithm; 

3. a defined domain of applicability; 

4. appropriate measures of goodness-of-fit, robustness and predictivity;   

5. a mechanistic interpretation, if possible.” 

It was also agreed that these principles should be read in conjunction with the associated explanatory notes 
for each of principles (see Annex A) and that the check list developed by the Expert Group provides useful 
guidance on the interpretation and application of principles (See Annex B). The principles for (Q)SAR 
validation and the associated check list are intended to identify the types of information that are considered 
useful for the regulatory review of (Q)SARs. Taken together, the principles and the check list constitute a 
conceptual framework to guide the validation of (Q)SARs, but they are not intended to provide criteria for 
the regulatory acceptance of (Q)SARs. The definition of acceptance criteria, where considered necessary, 
is the responsibility of individual authorities within the member countries. 

8. According to Principle 1, a (Q)SAR should be associated with a “defined endpoint”, where 
endpoint refers to any physicochemical, biological or environmental effect that can be measured and 
therefore modelled. The intent of this principle is to ensure transparency in the endpoint being predicted by 
a given model, since a given endpoint could be determined by different experimental protocols and under 
different experimental conditions. Ideally, (Q)SARs should be developed from homogeneous datasets in 
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which the experimental data have been generated by a single protocol. However, this is rarely feasible in 
practice, and data produced by different protocols are often combined.  

9. According to Principle 2, a (Q)SAR should be expressed in the form of an unambiguous 
algorithm. The intent of this principle is to ensure transparency in the description of the model algorithm. 
In the case of commercially-developed models, this information is not always made publicly available. 

10. According to Principle 3, a (Q)SAR should be associated with a “defined domain of 
applicability”. The need to define an applicability domain expresses the fact that (Q)SARs are reductionist 
models which are inevitably associated with limitations in terms of the types of chemical structures, 
physicochemical properties and mechanisms of action for which the models can generate reliable 
predictions. This principle does not imply that a given model should only be associated with a single 
applicability domain. As discussed in Chapter 4, the boundaries of the domain can vary according to the 
method used to define it and the desired trade-off between the breadth of model applicability and the 
overall reliability of predictions. 

11. According to Principle 4, a (Q)SAR should be associated with “appropriate measures of 
goodness-of–fit, robustness and predictivity.” This principle expresses the need to provide two types of 
information: a) the internal performance of a model (as represented by goodness-of-fit and robustness), 
determined by using a training set; and b) the predictivity of a model, determined by using an appropriate 
test set. As discussed in Chapter 5, there is no absolute measure of predictivity that is suitable for all 
purposes, since predictivity can vary according to the statistical methods and parameters used in the 
assessment. 

12. According to Principle 5, a (Q)SAR should be associated with a “mechanistic interpretation”, 
wherever such an interpretation can be made. Clearly, it is not always possible to provide a mechanistic 
interpretation of a given (Q)SAR. The intent of this principle is therefore to ensure that there is an 
assessment of the mechanistic associations between the descriptors used in a model and the endpoint being 
predicted, and that any association is documented. Where a mechanistic interpretation is possible, it can 
also form part of the defined applicability domain (Principle 3). 

Historical Background 

13. A set of principles for assessing the validity of (Q)SARs (Setubal principles) were proposed at an 
international workshop on the “Regulatory Acceptance of QSARs for Human Health and Environment 
Endpoints”, organised by the International Council of Chemical Associations (ICCA) and the European 
Chemical Industry Council (CEFIC), and held in Setubal, Portugal, on 4-6 March, 2002 (Jaworska et al., 
2003; Eriksson et al., 2003; Cronin et al., 2003a, 2003b). 

14. The regulatory use of structure-activity relationships (SARs) and quantitative structure-activity 
relationships (QSARs), collectively referred to as (Q)SARs, varies considerably among OECD member 
countries, and even between different agencies within the same member country. This is partly due to 
different regulatory frameworks, which impose different requirements and work under different constraints, 
but also because an internationally harmonised conceptual framework for assessing (Q)SARs has been 
lacking. The lack of such a framework led to the widespread recognition of the need for an internationally-
agreed set of principles for (Q)SAR validation. The development of a set of agreed principles was 
considered important, not only to provide regulatory bodies with a scientific basis for making decisions on 
the acceptability (or otherwise) of data generated by (Q)SARs, but also to promote the mutual acceptance 
of (Q)SAR models by improving the transparency and consistency of (Q)SAR reporting. 
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15. In November 2002, the 34th Joint Meeting agreed to start a new OECD activity aimed at 
increasing the regulatory acceptance of (Q)SARs, and to establish an Expert Group for this work. 

16. The first Meeting of the Expert Group was hosted by the European Commission’s Joint Research 
Centre (JRC), in Ispra, Italy, on 31 March − 2 April, 2003. Following the request of the 34th JM, the 
participants of the first Expert Group Meeting proposed a (two-year) work plan for the OECD work on 
(Q)SARs. The work plan included three Work Items:  

• Work Item 1: Apply the specific development/validation principles agreed at the ICCA 
Workshop on Regulatory Acceptance of (Q)SARs, and the general validation principles for new 
and updated test methods, to selected (Q)SARs in use; 

• Work Item 2: Develop guidance documents for development, validation and regulatory 
application of (Q)SARs; and, 

• Work Item 3: Identify practical approaches to enable (Q)SARs to be readily available and 
accessible, including the development of database of accepted (Q)SARs. 

The aim of Work Item 1, completed in 2004, was to apply the Setubal principles to selected (Q)SARs, in 
order to evaluate the principles, and to refine them wherever necessary. The aim of Work Item 2 was to 
develop guidance documents for the validation of (Q)SARs to assist (Q)SAR practitioners and (Q)SAR 
end-users in developing and evaluating (Q)SARs with respect to the validation principles.  The aim of 
Work Item 3 was to identify practical approaches to make (Q)SARs readily available and accessible to 
scientists in regulatory bodies, industry and universities. 

17. To manage the OECD work plan on QSARs, the first Expert Group Meeting proposed a 
subgroup, called the Coordinating Group of the Expert Group on (Q)SARs. In June 2003, the proposed 
work plan was endorsed by the 35th JM. At the same meeting, the JRC offered to take the lead in 
coordinating Work Item 1 on the evaluation of the Setubal principles, with the support of the Coordinating 
Group. The offer was welcomed and accepted by the 35th Joint Meeting. 

18. To carry out Work Item 1, a team of experts (the Work Item 1 Team) produced a total of eleven 
case studies, by applying the Setubal principles to specific (Q)SARs or software models. The models 
chosen included literature-based models for acute fish toxicity, atmospheric degradation, mutagenicity and 
carcinogenicity, and the following software models: the Multi-CASE model for in vitro chromosomal 
aberrations; Multi-CASE and MDL models for human NOEL; ECOSAR; BIOWIN; Derek; the Derek skin 
sensitisation rulebase; the Japanese METI biodegradation model; and the rat oral chronic toxicity models 
in TOPKAT. These models were considered to collectively provide a representative range of (Q)SAR 
approaches, covering a variety of physicochemical, environmental, ecological and human health endpoints.  

19. To provide guidance on the application of the proposed principles, a check list of considerations 
(questions) was developed by the Coordinating Group, and this was refined on the basis of experience 
obtained by carrying out Work Item 1). The refined check list (see Annex B) was presented to the 16th 
Meeting of the OECD Working Group of National Coordinators of the Test Guidelines Programme (WNT), 
held on 26-28 May 2004. 

20. The report on the outcome of Work Item 1 including the refined check list mentioned above was 
discussed by the second Expert Group Meeting, hold at the OECD Headquarters in Paris, on 20-21 
September 2004. The report consisted of a consolidated report by the Coordinating Group, including a 
proposal for revision of the Setubal principles, followed by a set of annexes containing the 11 case studies. 
The Expert Group refined the wording of the consolidated report, which included combining the internal 
and external validation principles into a single principle (OECD, 2004), which then represented the 
consensus view of the Expert Group. It was also agreed that the views expressed in the annexes of the 
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report should be regarded as views of the identified authors, and not necessarily the views of the Expert 
Group. 

21. The final report on the outcome of Work Item 1 (OECD, 2004) and in particular the proposed 
OECD Principles for (Q)SAR Validation (see para 6 and Annex A), were adopted by the 37th Joint Meeting 
on 17-19 November 2004. The Joint Meeting supported the Expert Group’s proposal that Work Item 1 
should be followed up with Work Item 2 in the development of this Guidance Document on the Validation 
of (Q)SAR Models, which should provide detailed and non-prescriptive guidance to explain and illustrate 
the application of the OECD Principles for (Q)SAR Validation to different types of models.  

22. The 37th Joint Meeting also agreed on some changes in the coordination of the OECD QSAR 
work programme. In particular, the (Q)SAR Group, often referred to as the “(Q)SAR Expert Group”  was 
changed to “Ad hoc Group on (Q)SARs” and the membership of the Ad hoc Group was re-established to 
include not only (Q)SAR experts but also those who use (Q)SARs for regulatory purposes. Following 
receipt of the nominations from the member countries, the 38th Joint Meeting on 8-10 June 2005 agreed to 
replace the Coordinating Group with a smaller Steering Group, consisting of those members of the Ad hoc 
Group who are most closely involved in the planning and routine management of the (Q)SAR project. 

Definition of Validation for (Q)SAR Models 

23. The guidance for (Q)SARs in the present document is consistent with the general guidance given 
in OECD Guidance Document on the Validation and International Acceptance of New or Updated Test 
Methods for Hazard Assessment (OECD, 2005). 

24. According to the OECD guidance, the term “validation” is defined as follows: 

"Validation: The process by which the reliability and relevance of a particular approach, method, 
process or assessment is established for a defined purpose." 

25. The terms “reliability” and “relevance” are defined as follows:    

"Reliability: Measures of the extent that a test method can be performed reproducibly within and 
between laboratories over time, when performed using the same protocol. It is assessed by calculating 
intra- and inter-laboratory reproducibility and intra-laboratory repeatability." 

"Relevance: Description of relationship of the test to the effect of interest and whether it is meaningful 
and useful for a particular purpose. It is the extent to which the test correctly measures or predicts the 
biological effect of interest. Relevance incorporates consideration of the accuracy (concordance) of a 
test method." 

Based on these definitions, the term “reliability” refers to the reproducibility of the method, both within 
and between laboratories, and over time. The term “relevance” refers to the scientific basis for expecting an 
experimental method to predict a response of important assessment endpoints which cannot be measured 
directly.  

26.  The conventional OECD uses of the terms “reliability” and “relevance” can be extended to the 
validation process for (Q)SAR models.  However, because (Q)SAR models are derived from experimental 
data, the concepts of reliability and relevance for test guideline purposes are necessary but not necessarily 
sufficient for validation of (Q)SAR models.  This guidance document for (Q)SAR validation expands the 
concepts of reliability in a manner that retains that from a test method as the “maximum reliability” which 
can be expected from (Q)SAR model.  Since few test methods have documented the reproducibility 
between laboratories for a single chemical, the validation of (Q)SAR models based on experimental data 
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from different laboratories incorporates this implicit, but not often documented, reproducibility of the 
experimental test methods along with other important performance elements of the (Q)SAR model. In 
particular, the assessment of (Q)SAR reliability places greater emphasis on the accuracy of the (Q)SAR 
predictions with respect to many different chemicals than on the reproducibility of the (Q)SAR within and 
between laboratories.  Moreover, reliability is more often described for an entire group of tested chemicals 
than as the reproducibility of individual endpoint estimations. 

27. Likewise, the term “relevance” must be extended for the validation of (Q)SAR models because 
biological effects (endpoints) measured by test methods may appear to be similar for different chemicals 
but result of different molecular interactions and pathways.  Consequently, even though the relevance of a 
test endpoint in regulatory assessments may be established, an additional assessment of the (Q)SAR model 
relevance must be made with respect to the expected molecular interactions and pathways by which each  
causes the biological effect.  This important distinction between experimental test methods and (Q)SAR 
models is sometimes expressed by the extent to which each can be applied to the chemicals being regulated.  
The more reliable test methods tend to be more globally applicable to measuring the same endpoint for 
many different chemicals whereas the more reliable (Q)SAR models of major toxicity pathways reflected 
in a given endpoint tend to be relevant for specific classes of chemicals.  

28. The extension of the traditional meaning of reliability and relevance for the purposes of (Q)SAR 
validation is readily captured by placing greater emphasis on the OECD Principle 3 involving the domain 
of application.  The domain of application for a (Q)SAR model describes whether the model will predict an 
endpoint for a specific chemical with a given reliability.  If the domain has well-defined mechanistic 
requirements, the model may be considered reliable, but only for a small subset of chemicals being 
regulated.  As the domain of application is expanded to include more chemicals, the (Q)SAR model mixes 
different molecular processes and pathways and the reliability for larger domains decreases.  The 
regulatory decision-maker must balance the global nature of the domain of application for a (Q)SAR model 
with the reliability needed for specific regulatory constraints and decisions.  

29. One promising approach to improve reliability and expand the domain of application for (Q)SAR 
models is to compile numerous (Q)SAR models for the same regulatory endpoint and create an expert 
knowledge base which explains which domain of application includes each specific chemical of interest. 
The expert system for domains may be a simple decision tree involving chemical substructures or a 
computerized system for molecular similarity analysis.  Regardless of the complexity of the expert system, 
this approach is capable of expanding the overall domain for a given endpoint while maintaining a higher 
reliability for individual estimates and providing greater transparency for the basis of the final estimate.  
Efforts to expand the domain of application for (Q)SAR models either by mixing mechanisms or by using 
expert systems with multiple well-defined domains has led (Q)SAR specialists to use the term  
“performance” to mean the goodness-of-fit, robustness and predictive ability of the model for a given 
endpoint.  

The (Q)SAR Validation Process 

30. For the purposes of this guidance document, a “validation process” refers to any exercise in 
which the OECD Principles for (Q)SAR validation are applied to a given model or set of models. It is not 
implied that the validation process should be carried out by any particular organisation, committee or 
formal validation body. When applying the OECD Principles, the basis for judging validity of 
a (Q)SAR includes the level of performance, the endpoint and the chemical domain required.  Statistical 
validation of a (Q)SAR for purely scientific purposes is encouraged and is often used in the validation 
process; however, such scientific assessments of (Q)SAR performance can be misleading unless the 
relevance to the particular regulatory purpose is also established in the validation process.  
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31. The outcome of a (Q)SAR validation process should be a dossier providing information on the 
model performance of a (Q)SAR. The information should be obtained by applying the (Q)SAR Validation 
Principles, and the dossier should be structured accordingly. Until the scientific community designs 
(Q)SAR models with the OECD Principles in mind, it may not be possible to fulfil all principles for all 
models of regulatory interest. Although the transparency of the predictions may be less, reliable models 
may simply have not have been reported with the details to fulfil the OECD Principles.  Therefore, the 
output of a successful validation exercise is a dossier that is as complete as possible, given the scientific 
and practical constraints. The output of a successful validation process is not intended to include a formal 
opinion on the validity of a model, but rather an objective checklist to document the performance and 
transparency of the model.  

32. It follows that each regulatory authority will need to apply flexibility when considering the 
acceptability of a given (Q)SAR, taking into account the information provided in the (Q)SAR validation 
dossier, and the needs and constraints of the its particular regulatory programme. 

Application of the (Q)SAR Validation Principles 

33. The (Q)SAR validation principles are intended to be applicable to a diverse range of models 
types including SARs, QSARs, decision trees, neural network models, and expert systems which may 
contain multiple models for a given endpoint. The guidance provided in this document is intended to 
reflect this diversity of (Q)SAR models.  In the case of these “complex models” that are actually based on 
the use of multiple models, it is important to identify the smallest component that functions independently, 
and to apply the principles to the individual component. Examples of such models include ECOSAR and 
Derek for Windows. 

34. This guidance document covers the validation of models, but not the verification of computer 
programmes. It is important to distinguish between the validation of a model, and the verification of the 
software programme that executes the prediction. A highly predictive model could be regarded as valid, 
without considering whether the model has been coded correctly in the computer programme. Conversely, 
a poorly predictive model which might not be regarded as valid could be accurately translated into a 
specific programming language for implementation in a specific software package.  

35. In principle, any model could be implemented in a variety of computer platforms, however, in 
practice, for certain types of models, it may be difficult to separate the model from the platform. This is 
particularly true of commercially available models, where certain components of the model (e.g. training 
sets, algorithms) are hidden for proprietary purposes. 

36. A separate document on the regulatory uses and applications in OECD member countries of 
(Q)SARs in the assessment of new and existing chemicals is being developed as an accompanying 
document under Work Item 2 (OECD, 2006).  

Overview of Chapters 2-6, Annex A-C and Glossary 

37. Chapter 2 provides examples how the concepts of a “defined endpoint” can be interpreted in 
relation to different types of (Q)SARs. 

38. Chapter 3 illustrates how the concept of an “unambiguous algorithm” can be interpreted in 
relation to different types of (Q)SARs.  

39. Chapter 4 describes the current state-of-the-art of statistical methods and other approaches for the 
assessment of the applicability domains of (Q)SARs. 
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40. Chapter 5 describes the current state-of-the-art of statistical methods and other approaches for 
assessing the goodness-of-fit, robustness and predictivity of (Q)SARs, and explains the concepts of internal 
and external validation. This chapter also illustrates, by means of flow charts, logical sequences of steps 
that could be taken during the validation of (Q)SARs. 

41. Chapter 6 provides examples to illustrate how the concept of “mechanistic interpretation” can be 
applied to (Q)SARs, where feasible. The mechanistic interpretation of a (Q)SAR includes  two 
considerations: a) the interpretation of the (Q)SAR descriptors and consequently their relevance for the 
prediction of the endpoint; b) the relevance of the mathematical form of the relationship between the 
descriptors and the endpoint being modelled. 

42. Annex A provides the OECD Principles for the Validation, for Regulatory Purposes, of (Q)SAR 
Models and explanatory notes for each of principles agreed at the 37th Joint Meeting in November 2004.  

43. Annex B provides a check list of considerations that can be used to summarise which validation 
principles have been applied, and which pieces of information have been obtained.   

44. Annex C provides a template for the reporting of (Q)SAR models, which could be included in 
dossiers that are submitted to regulatory authorities, or in (Q)SAR databases and decision support systems. 

45. The Glossary provides a glossary of commonly-used terms in the (Q)SAR literature. 
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CHAPTER 2. GUIDANCE ON PRINCIPLE OF DEFINED ENDPOINTS  

Summary of Chapter 2 

46. This chapter introduces the rationale behind the first OECD Validation Principle which 
emphasises that a (Q)SAR should be associated with a “defined endpoint” (Principle 1).  Guidance is 
provided on the interpretation of this principle, by describing what constitutes a defined endpoint. 
Following an introduction to the principle (paras 47-50), the concept of the defined endpoint is discussed 
(paras 51-68). It is emphasised that what constitutes a defined endpoint in the context of test guidelines 
does not necessarily constitute a defined endpoint for the purpose of (Q)SAR development. Difficulties in 
applying Principle 1 are illustrated with reference to the endpoints of acute fish toxicity, acute mammalian 
toxicity and biodegradation.  

Introduction 

47. (Q)SARs are relationships between the many different measures of chemical activity and 
measures of chemical structure. Measures of activity for chemicals made under specific conditions are 
called “endpoints”.  Because there are many different conditions under which the activity (especially 
toxicity) of chemicals can be measured, and there are different uses for endpoint data, it is important that 
the specific endpoint associated with a (Q)SAR be well described so that the user can judge whether the 
intended use is appropriate.  For many regulatory applications, the endpoints of interest  are often defined 
by a specific test guideline, and a (Q)SAR based on such endpoints would be intended to estimate the 
results of that specific test guideline.  

48. OECD Principle 1 encourages (Q)SARs to be associated with a “defined endpoint”, where 
endpoint refers to any physicochemical property, biological effect or environmental parameter related to 
chemical structure that can be measured and modelled. The intent of this OECD Validation Principle is to 
ensure transparency in the endpoint being predicted by a given model, since a given endpoint could be 
determined by different experimental protocols and under different experimental conditions. When 
comparing (Q)SAR predictions with experimental data, it is important to know that the model was 
developed and is intended to generate estimates of endpoints which are the same as the experimental data.  

49. It should be noted that the definition of the term 'endpoint' might vary depending on the scientific 
or regulatory context and also on the user’s professional focus. In fact, the term 'endpoint' may be used to 
designate information requirements on very different levels of specificity: 

• A toxicologist will most likely define 'endpoint' as a specific biological effect which is precisely 
defined in terms of biological target structure and associated changes in tissue structure(s) and/or 
other parameters, e.g. induction of certain cytochromes, hypertrophy of hepatocytes, increased 
serum levels of aminotransferases, increased relative kidney weight etc.  

• However, when toxicological data are generated for regulatory purposes, standardised and 
harmonised toxicological test protocols (such as those laid down in the OECD Test Guidelines) 
are used which generally cover a range of toxicological endpoints, which, in the case of e.g. 
repeat-dose experiments, may range from observations such as clinical signs, body weight or 
food consumption changes, to clinical chemistry and haematology parameters and macro- and 



ENV/JM/MONO(2007)2 

 22

microscopical pathology findings. In this context, the term 'endpoint' has also been used for 'test 
protocol endpoints', such as 'skin irritation/corrosion' or 'acute oral toxicity in rats'. 

• On a yet higher organisational level of regulatory work, especially in the context of classification 
and labelling, the results of several tests performed according to different protocols (or by similar 
protocols in different species/organisms) are often grouped into one 'regulatory endpoint', e.g. 
when a battery of different in vitro and in vivo test protocols are used to determine a chemical's 
potential with regard to the 'regulatory endpoint' genotoxicity, or when a relevant No-Observed-
Adverse-Effect-Level (NOAEL) for 'repeat-dose toxicity' might be determined from a variety of 
studies in dogs, rats, or mice which are performed for periods from three weeks up to a year or 
longer, and using different modes of substance administration (feed/gavage/capsules). 

50. The central issue addressed by OECD Principle 1 is that the 'endpoint' which a (Q)SAR model 
was built to  predict might in fact be any one of the types of endpoints of different specificity contained in 
the above listing.  

A Defined Endpoint 

51. In the original liner notes to the OECD Validation Principles (cf. Annex A to this document), it 
was therefore stated that 'the intent of Principle 1 was to ensure clarity in the endpoint being predicted by a 
given model'. This transparency is indeed an essential requirement for regulators in order to assess the 
validity of a given QSAR prediction for application to a particular regulatory problem. Generally, the more 
congruent the endpoint predicted by a (Q)SAR model is with the regulatory endpoint under question, the 
more reliable will the prediction for a particular chemical by that particular model be for this regulatory 
purpose. E.g., a (Q)SAR model built from a training set of Salmonella mutagenicity data, all obtained in 
accordance with OECD Test Guideline 471 (OECD, 1997), will probably provide useful predictions for the 
endpoint 'Salmonella mutagenicity'. On the other end of the scale, global prediction of a 'repeat dose 
LOAEL' from a training set of LOAEL data based on a variety of mechanisms/mode of actions and 
obtained in different species by different test protocols will hardly be seen as equally reliable. Of course, 
the question of the reliability of a particular (Q)SAR prediction in the context of a given regulatory 
problem will have to be answered on a case-by-case basis, however the essence of OECD Principle 1 is 
that detailed information is required as a sound scientific basis for that decision. The most important 
components of the information needed are described in more detail in the subsequent paragraphs. 

52. It is also important to know whether the experimental data used to develop the model were 
generated according to a single experimental protocol, or whether data representing different protocols 
were merged in the training set. Consideration of the experimental protocol includes the design and 
conduct of the laboratory test and the methods employed for assay acceptance and assay evaluation criteria.  
Among the details of the experimental protocol which might influence the variability of the original 
training set data and the quality of the (Q)SAR model itself.  Ideally, all (Q)SARs should be developed by 
using data generated by a single protocol, but this is not feasible unless the databases were designed as part 
of the (Q)SAR modelling process. Moreover, in many proprietary and regulatory models, information on 
the variation of protocols in the training sets is not always made publicly available. 

53. In some instances, a single (Q)SAR model derived from a training set may not accommodate 
those Agencies which employ individualized  regulatory paradigms. For example, Agencies often employ 
different procedures to evaluate and to regulate carcinogens: (1) pathology data (benign verses malignant), 
(2) statistical methods (trends verses pair wise comparisons), (3) regulatory philosophy (weight of 
evidence verses any evidence), and/or (4) analyses of historical tumour background frequencies verses 
concomitant experiment controls. For these complex endpoints it may be necessary to adjust the scoring 
and weighting of the endpoint data to develop more specialized QSAR models to meet each Agency’s 
regulatory needs. 



 ENV/JM/MONO(2007)2 

 23

Examples of Defined Endpoints for Regulatory Assessment  

54. In the context of this guidance document, the discussion is focused on those endpoints needed for 
the regulatory assessment of chemicals in OECD member countries (e.g. under REACH, in SIDS dossiers 
and in the GHS classification scheme). To be helpful in a regulatory context, (Q)SARs models are often 
grouped according to the defined endpoints, or the same toxicity effect, associated with OECD Test 
Guidelines.  For example, the OECD Screening Information Data Set (SIDS) used in assessing existing 
chemicals includes endpoints from a wide variety of OECD Test Guidelines (Table 2.1).  Some well-
established endpoints might be estimated from dozens of QSAR models, some common toxicity effects are 
estimated using general (Q)SARs based upon non-congeneric training data sets, whereas other still 
evolving endpoints may have fewer or no (Q)SAR models yet capable of predicting the endpoint.  

 Table 2.1   Most Common Regulatory Endpoints associated with OECD Test Guidelines 

Physicochemical Properties 
 

Melting Point  
Boiling Point   
Vapour Pressure  
K octanol/water  
K organic C/water* 
Water Solubility 

Environmental Fate 
 

Biodegradation 
Hydrolysis 
Atmospheric Oxidation 
Bioaccumulation* 

Ecological Effects     
 

Acute Fish Toxicity     
Acute Daphnid Toxicity     
Alga Toxicity       
Long-term Aquatic Toxicity 
Terrestrial Effects 

Human Health Effects 
 

Acute Oral  Toxicity 
Acute Inhalation  Toxicity  
Acute Dermal  Toxicity       
Skin Irritation /Corrosion* 
Eye Irritation/Corrosion * 
Skin Sensitisation * 
Repeated Dose 
Genotoxicity (in vitro) 
Genotoxicity (in vitro, non bacterial) 
Genotoxicity (in vivo) 
Reproductive Toxicity 
Developmental Toxicity 
Carcinogenicity* 
Organ Toxicity (e.g., hepatotoxicity, cardiotoxicity, 
nephrotoxicity, etc.) 

* non-SIDS endpoints 

55. The principle for having a defined endpoint takes on a much greater importance in the validation 
of (Q)SAR models than simply reflecting the need for reproducibility of the endpoint as is often the case in 
validation of test guidelines.  Test guidelines can often be applied to a broad array of chemicals limited 
only by physical properties, by common toxicity effects, or other factors that limit the experiment.  
Consequently, the test guidelines tend to have a global application domain wherein the test endpoint is a 
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reproducible measurement for broad classes of chemicals.   However, the observed endpoints may be the 
result of a number of different toxicity mechanisms for the different classes of chemicals, all resulting in 
the same observed toxic effect.     

56. For endpoints which can arise from numerous different chemical mechanisms, (Q)SAR models 
must either be developed for each mechanism which are applied to narrowly-specified classes of chemicals 
(see domain of application in Chapter 4), or a more general (Q)SAR relationship based upon  the same 
observed toxic effect associated with non-congeneric classes of chemicals and different toxicity 
mechanisms.  The general (Q)SAR relationship blurs the distinction of chemical classes at the expense of 
more explicit explanation of why a particular chemical produced the endpoint estimate.  Either multiple 
(Q)SAR models for the same endpoint but each for different domains of application must be combined to 
yield a global estimation capability, or a statistical method capable of more global modelling across 
multiple mechanisms simultaneously must be used to gain a more global domain of application.    

57. The OECD Principle of defined endpoint cannot be viewed in isolation from the other OECD 
Principles for (Q)SAR validation: e.g., the nature of the defined endpoints in OECD Test Guidelines, 
therefore, creates a dynamic relationship between the trade-offs in mechanistic interpretation (Chapter 6), 
domain of application (Chapter 4), the algorithm used in the (Q)SAR model (Chapter 3) and the approach 
needed to understand the validity a (Q)SAR model for specific purpose (Chapter 5).  Chemicals selected 
outside the domain of a mechanistic model do not make the (Q)SAR model invalid if the prediction does 
not agree with the measurement.  The validation of a (Q)SAR model does not imply that a test guideline 
can be reliably estimated for all chemicals considered within the regulatory context. 

58. For each defined endpoint used in a regulatory application, the domain of application of the 
available (Q)SAR models can be compared to the domain of chemicals being regulated to identify gaps.  
Multiple (Q)SAR models, or a general (Q)SAR model, may be required to predict a single endpoint for a 
heterogeneous list of non-congeneric chemicals. Families of (Q)SARs for a defined endpoint, each with a 
different applicability domain, can be integrated into a more global model if the domains of application are 
appropriately defined.  Alternatively, if the regulatory context permits latitude in terms of the precision of 
the estimates, a general (Q)SAR model with a larger domain of application may be found reliable for the 
specific regulatory application.  

Importance of Quality of Measured Endpoint Data 

59. In addition to multiple underlying mechanisms by which chemical activity is observed, the 
endpoints in OECD Test Guidelines vary considerably in terms of their ability to measure the variation of 
test responses which can be related to intrinsic variation in chemical structure in a training set.   
Comparison of (Q)SAR models to predict the acute lethality to aquatic organisms  and mammals is an 
example.   Acute tests with fish are exposures directly across the respiratory surface wherein a steady-state 
between blood and external exposure concentration is quickly attained.  A steady-state blood concentration 
yields a highly reproducible incipient lethal threshold which is linked directly to the exposure 
concentration. The steady-state conditions hold over 6-7 orders of magnitude in water solubility, so the 
variation in 96-hour LC50 endpoints is comparable for a wide variety of chemicals 

60. Oral exposures with mammals are defined endpoints in the test guidelines but the measurement 
of the effects of the chemical on the animal is much more influenced by kinetic factors than intrinsic 
thermodymnamic variations in chemical structure.  As chemical structure varies, the exposure itself is no 
longer comparable from one chemical to another. The shifting exposure regime with different chemicals 
will mean that, for some chemicals, a response near the true lethal potency of the chemical is measured 
whereas for another chemical only 10% of the true lethal potency is measured. In such cases, the endpoint 
is as much a measure of the toxicity of the chemical as it is an artifact of the way the chemical is tested.  
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61. Another example of an endpoint where care is needed in the development of the model and in the 
interpretation of the result is that of biodegradation. The definition of the biodegradation endpoint is very 
dependent on the experimental method used is also very variable even when the same method is used.   

62. Biodegradability can be defined as the molecular degradation of a substance, resulting from the 
complex action of micro-organisms. It is one of the most important processes determining the fate of 
organic chemicals in the environment. Hence, biodegradation rates play an important role in the estimation 
of the fate of organic chemicals in the environment.  However, as discussed below, one problem in the 
development of QSARs is that many regulatory studies are that they measure extent of biodegradation not 
rates. 

63. In general, two types of biodegradation processes can be distinguished. Primary biodegradability 
occurs when an initial small alteration is made to the molecule, changing its physicochemical properties 
and integrity. It is quantified by measuring the disappearance of the parent compound with a specific 
analytical method or by the disappearance of a physico-chemical effect. Information on kinetics of primary 
degradation is warranted for chemicals whose toxic or inhibitory effects are lost as a result of the first 
enzymatic or abiotic reaction. Although there are few QSARs based on primary biodegradation, this is 
probably not unreasonable. Thus for example, in risk assessments, the uncertainties created by the need to 
assess unknown metabolites, would certainly limit the value of a primary biodegradation prediction. 

64. Ultimate biodegradability occurs when a chemical substance is broken down and all the organic 
carbon is converted into carbon dioxide, methane and/or incorporated into biomass materials. This leads to 
a complete conversion of the organic carbon with extensive mineralisation and transient metabolites. 
Methods providing evidence of ultimate biodegradability are based on endpoints that are directly or 
indirectly related to the measurement of organic carbon oxidation. 

65. A number of different tests, associated with a variety of endpoints, attempt to measure 
biodegradation. For example, the ready biodegradability test yields a value, frequently expressed as % 
biodegradability, and a term, (not) readily biodegradable. The former indicates the extent to which the 
substance degraded, while the latter is a legal or regulatory term that indicates whether a chemical passes 
or fails the OECD ready biodegradability test. 

66. Many factors reflecting the extreme difference in biodegradation mechanisms to the very specific 
environmental conditions of each phenomenon, affect the biodegradability of a substance in the 
environment. Structural features such as molecular weight, types of bonds and substitutions affect 
biodegradation rate of organic compounds (Alexander, 1981; Kelcka, 1985). Environmental factors 
affecting biodegradability include microbial activity and growth as determined by temperature, pH, 
availability of nutrients, moisture level and residence time of the microbial population in the environmental 
compartment of interest. Processes such as microbial adaptation and co-metabolism add to the complexity 
of biodegradation. 

67. Lack of uniform endpoints, substrate to biomass ratio, and time allowed for acclimation across 
the tests are responsible for the limited size of available training sets (compared to those used in toxicology) 
for Quantitative Structure-Biodegradability Relationships (QSBRs). Within a specific test, intra-laboratory 
and inter-laboratory variability in endpoint measured add to the difficulties in selecting a training set. For a 
specific standard biodegradation test method carried out at different laboratories or within a single 
laboratory discrepancies and large variability can be observed in the results (King and Painter, 1983; 
Kitano and Takatsuki, 1988). Although biodegradation tests have been standardised by the OECD, a 
deviation of 20% is considered acceptable when a test is repeated within the same laboratory (OECD, 
1993). This limits the development of QSARs for biodegradation and biodegradation kinetics. Therefore, 
success of future developments in the QSAR area with respect to biodegradability will be dependent on the 
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availability of high quality experimental data (Peijnenburg et al., 1995) and our ability to use these data 
and extrapolate them to the real environment.  

68. From the discussions above, it follows that a defined endpoint, or the same observed toxic effect, 
should contain a number of desirable attributes. The list below is not intended to be exhaustive, nor should 
it mean that an endpoint that lacks one or more of these elements is ambiguous. However, developers and 
users of (Q)SARs should be aware of the extent to which the endpoint being modelled can be described in 
the following terms: 

1. The endpoint should be defined by providing detailed information on the test protocols which 
were used to generate the training set data, especially with respect to factors which impact 
variability, knowledge of uncertainties, and possible deviations from standardised test 
guidelines. 

2. Differences in the protocols that experimentally measure the described endpoint should not 
lead to markedly different values of the endpoint. 

3. Differences within a protocol (e.g. media, reagents) should not lead to differences that cannot 
be rationalised (e.g. impact of hardness within a fish LC50 study). 

4. The chemical domain of the (Q)SAR should be contained within the chemical domain of the 
test protocol. 

5. The endpoint being predicted by a (Q)SAR should be the same as the endpoint measured by a 
defined test protocol that is relevant for the purposes of the chemical assessment. 

6. A well-defined endpoint should reflect differences between chemical structures. 

Concluding Remarks 

69. Data-driven (Q)SAR models can most often be developed for measures of chemical activity 
(endpoints) for which numerous chemicals have been tested using comparable protocols.  The resulting 
(Q)SAR models can only be expected to predict the specific endpoint used in the training set.  To facilitate 
the use of (Q)SAR models in regulatory decisions for  untested chemicals, many of the endpoints used in 
(Q)SAR development and validation will be identical to those already in use in the regulatory activities 
such as the OECD Test Guidelines.  At the same time, the users of (Q)SAR models are cautioned that the 
reproducibility of measured endpoint values from a standardized test protocol is a primary determinant of 
the reproducibility of a (Q)SAR model for that same endpoint.   Consequently, (Q)SAR models based on 
well defined endpoints in harmonized test protocols have the greatest potential for concordance between 
measured and estimated values.    
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CHAPTER 3. GUIDANCE ON PRINCIPLE OF UNAMBIGUOUS ALGORITHMS 

Summary of Chapter 3 

70. This chapter introduces the rationale behind the second OECD Validation Principle which 
emphasises the importance for (Q)SARs to be associated with an “unambiguous algorithm” (Principle 2).  
Guidance is provided on the interpretation of this principle by describing what constitutes an unambiguous 
algorithm. Following an introduction to the principle (paras 71-72), the concept of the defined algorithm is 
discussed (paras 73-78). The need for a defined algorithm is discussed in terms of the elements that are 
needed for an algorithm to be fully transparent, with particular emphasis on the need for information 
concerning the descriptors used to model the endpoint of interest and the mathematical methods used to 
develop an algorithm that is based on these descriptors (paras 79-90).  

Introduction  

71. (Q)SAR models are relationships between the behaviour of chemicals as defined by the model 
endpoints (Chapter 2) and different descriptors of chemical structure.   The form of the relationship 
between the descriptors of chemical structure and the “activity” endpoint in a (Q)SAR model is called the 
“algorithm” of the model which may be a mathematical model or a knowledge-based rule developed by 
one or more experts. This chapter provides guidance on the importance of using (Q)SAR models with  
unambiguous algorithms and the importance of the algorithm in the (Q)SAR validation process. 

72. According to Principle 2, a (Q)SAR model should be expressed in the form of an “unambiguous 
algorithm”. The intent of this OECD Validation Principle is to ensure transparency in the description of the 
model algorithm so that others can reproduce the model and explain how (Q)SAR estimates are derived. 
One important contributor to transparency of (Q)SAR estimates is the ability of users to explain how the 
endpoint estimates of the model were produced.  Most models have algorithms comprised of unambiguous 
statistical methods and/or process models which have been evaluated by scientific peer review.  Other 
more exploratory algorithms are not capable of explaining how the model estimate was derived, nor 
independently reproduced by others.  In many proprietary models, the algorithm may not be publicly 
available so that the results may be reproduced by others but not explained. 

Unambiguous Algorithms 

73. The algorithms used in (Q)SAR modelling should be described thoroughly so that the user will 
understand exactly how the estimated value was produced and can reproduce the calculations, if desired. 
Important regulatory endpoints are estimated for chemicals by selecting the proper (Q)SAR for the specific 
class of chemical (see domain of application in Chapter 4), or a proper general (Q)SAR model(s) based 
upon a common toxic effect, computing the chemical-specific molecular descriptors required by the 
(Q)SAR model, and using those molecular descriptors in a mathematical algorithm to create an estimate of 
the endpoint for the chemical. The ability to reproducibly complete all three steps producing an estimate is 
an important part of the acceptance of (Q)SAR models. All three steps in producing estimated values may 
involve individual algorithms as is the case of mechanistic estimates of dose-response endpoints. For many 
binary endpoints where the (Q)SAR model is primarily a classification model, the algorithms may be an 
association with the presence or absence of important chemical substructures.  
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74. OECD Principle 2 simply states that (Q)SAR should be comprised of unambiguous algorithms.  
Because there may be multiple steps in the estimate of an endpoint for a chemical, the unambiguous nature 
of all algorithms used is important. In practice, the algorithms for chemical classification, molecular 
description and computing endpoint estimates may involve expert knowledge of statistics, physical 
chemistry and toxicology.  OECD Principle 2 is not intended to suggest that the application of algorithms 
in (Q)SAR modelling requires expertise in these fields of science.  In many cases, it is possible to offer 
transparent description of algorithms without necessarily delving into the mathematical or statistical 
methods used to develop the algorithm. For example, a regression-based QSAR can be defined explicitly 
without any particular discussion of the regression approach. An expert rule can be stated explicitly 
without the need re-derive the consensus of a panel of experts.  

75. Some exploratory algorithms used to understand variation in data sets are inherently ambiguous 
and are not recommended for regulatory applications.  In cases where the definition of the algorithm is 
more closely associated with the way in which it was derived (e.g. a neural network model which includes 
both a learning process and a prediction process), users must relay on the validation process to determine if 
an ambiguous algorithm can produce reliable results for a regulatory application.  In all cases, it is 
recommended that (Q)SAR validation exercises should seek as much information as possible on both the 
method used to develop the algorithm, and the algorithm itself. 

76. It is important to distinguish between the transparency of the algorithm and the ability to  
interpret the algorithm as a cause-effect relationship. For example, a statistically-based QSAR can be 
transparent in terms of its predictor variables and coefficients, but the descriptor variables themselves may 
not have an obvious physicochemical meaning or plausible causal link with the endpoint being modelled. 
Only where a mechanism is known or assumed will the relationship expressed by the QSAR be based on 
(possible) causality rather than correlation. In such cases any conclusions based on the model are related to 
and defined by the original dataset used to develop the model. This is especially true for small datasets 
where there are a limited number of chemicals and a large variability in the data. Thus mechanistic 
interpretation becomes an additional issue to address when considering the algorithm (see Chapter 6). 

77. The following elements should therefore be considered when assessing the algorithm: 

1. The dataset of chemicals, end-point values and descriptor values. 

2. A clear description of the derivation of the descriptors and how they were measured. 

3. A clear description of the test and training sets and, if outliers were removed a clear 
justification for this. 

4. The mathematical model(s) used to explore the descriptor and end-point relationship needs 
describing. 

5. Statistical parameters describing how the model performs (see Chapter 5). 

6. The parameters and their values which constitute the (Q)SAR. 

78. A brief overview of algorithms commonly used in (Q)SAR are presented in this guidance to 
distinguish methods which generally fulfill OECD Principle 2 and those where special precautions are 
needed in the validation process.   

Univariate regression (ULR) 

79. Univariate regression involves only one dependent response variable (y) and one independent 
variable (x) which model a simple relationship between a molecular descriptor and an endpoint. Univariate 
linear regression (ULR) assumes that the relationship being modelled is a straight line. The normal method 
of determining the regression coefficients is minimising the sum of the squares of the residuals using the 
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least squares method.   Non-linear univariate regression such as the use of exponential functions are less 
frequently used due, in part, to the fact that the non-linear model is less constrained than the corresponding 
linear model. It is vital when assessing a non-linear model to examine the residuals across the full extent of 
the model to ensure that it has not been overfitted (Draper and Smith, 1991).  It should be noted that the 
linear model is generally considered as unambiguous algorithm. 

Multiple Linear Regression (MLR) 

80. When the endpoint needs to be modelled using more than one descriptor (selected by different 
approaches) then multivariate techniques are applied. The technique of multiple linear regression (MLR) is 
discussed in Chapter 5 and is extensively covered in Draper and Smith (1991). MLR, in particular OLS 
(Ordinary Least Squares), is the most popular regression method, it produces a transparent and easily 
reproducible algorithm. As it can suffer of the use of correlated variables, this correlation must be carefully 
controlled by the methods discussed in Chapter 5. The problem of possible overfitting, common also to 
other modelling methods, must be also verified by statistical validations methods for predictivity (see 
Chapter 5). The selection of descriptors in MLR can be performed a priori by the model developer on 
mechanistic basis or by evolutionary techniques such as Genetic Algorithms as well as methods like 
Principal Component Analysis (PCA) or Factor Analysis (FA). In the latter approach the selected modeling 
descriptors can be mechanistically interpreted after the model development. 

81. There are many examples of the use of MLR, including the baseline toxicity model of Koneman 
(1981) and, for instance, the studies by de Bruijn and Hermens (1991) and Govers et al. (1984, 1991).  
Successful examples of more novel applications of MLR are in the papers: Netzeva et al., 2005; Ren S., 
2003; Ghafourian and Cronin, 2005. In some recent publications, particular attention is devoted to model 
validation for predictivity and chemical domain of applicability, as well as to the descriptor interpretation, 
thus to the model development according to all the OECD Principles (Gramatica et al., 2004; Gramatica 
and Papa, 2005;  Pavan et al., 2006).  

Principal Component Analysis (PCA) and Principal Component Regression (PCR) 

82. Principal Component Analysis (PCA) is a technique used for dimension reduction and is based 
on linear combinations of the variables. In Principal Component Regression (PCR), one obtains a reduced-
order model by neglecting some components of the PCA modelling of the independent variables (X-matrix) 
and relating the maintained principal components to the dependent variables (Y-variables). The neglected 
components are usually dominated by non-relevant information in the data. But it is possible that the 
neglected components contain some relevant information, this information is lost when the higher compo-
nents are neglected. It is also possible that some noise is maintained in the model. In this situation a good 
model for the training set (dataset used to construct the model) is obtained but the model has a poor ability 
to predict the test set. This effect is known as the overtraining effect.  When applying PCA it is difficult to 
identify outliers and hence the model will give undue weighting to these data points. Robust methods 
(Walczak and Massart, 1995) have been proposed in an attempt to overcome this problem (Niemi, 1990; 
Kaiser and Esterby, 1991). 

Partial Least Squares (PLS)  

83. Partial least squares (PLS) is a combination of MLR and PCR. It attempts to explain the variance 
in the independent variables and also tries to obtain a good correlation between the dependent and the 
independent variables. One major advantage of PLS is that it is very useful when co-linearity in the 
descriptors exists. To reduce the overtraining effect, a cross validation can be performed during the model 
constructing phase.  As with PCA, outlier identification are also a problem for PLS and again robust 
methods have been proposed (Wakeling and Macfie, 1992; Griep et al., 1995). The final model is affected 
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by the introduction of outliers. A better model will be obtained when the outliers are left out or become 
less important for the final model, i.e. when the model is made more robust.   

Artificial Neural Nets (ANN) 

84. Neural nets are used in many areas, such as pattern recognition, process analysis and non-linear 
modelling. An advantage of neural nets is that the neural net model is very flexible in contrast to the 
classical statistical models. A significant disadvantage is the amount of data needed and the causal 
ambiguity of the network. The neural net ‘learns’ from examples by one of two different approaches, 
supervised or unsupervised learning. During supervised learning, the system is forced to assign each object 
in the training set to a specific class, while during unsupervised learning, the clusters are formed without 
any prior information. One approach commonly used is multi-layer feed-forward (MLF) networks 
consisting of three or more layers: one input layer, one output layer and one or more intermediate (hidden) 
layer (Smiths et al., 1994; Xu et al., 1994; De Saint Laumer et al., 1991).  

Fuzzy Clustering and Regression 

85. In contrast to traditional regression/classification techniques, fuzzy clustering or regression is 
capable of dealing with probabilities of finding objects belonging to certain classes, instead of classifying 
with hard limitations (yes/no decisions) (Friederichs et al., 1996). The limiter functions (which have in 
most cases a sigmoidal shape), may hold all states or values between two extreme assertions. 

K-nearest Neighbour Clustering 

86. K-nearest neighbour (KNN) clustering determines the class of an object by assessing the class of 
a number of the closest neighbours to the object. The majority, sometimes weighted depending on distance, 
will determine the class of the object being assessed. 

Genetic Algorithms (GA) 

87. A genetic algorithm (GA) is an artificial intelligence technique based on the theory of evolution 
that through the process of natural selection, formulae evolve to solve problems or develop control 
strategies. A brief but thorough introduction to genetic algorithms is provided by Forrest (1993).  Goldberg 
(1989) provides an introductory text on genetic algorithm development, while Koza (1992) supplies a more 
advanced treatment of genetic algorithms. 

88. GA has a number of unique features. First, a GA does not search for a single solution, but in fact 
maintains a set of perhaps thousands of solutions, referred to as a population. Second, the GA attempts to 
increase the "fitness" of this population at each generation. Each solution is evaluated as to its "fitness" 
based on some domain-specific function, then kept or discarded based on that evaluation. If discarded, that 
member of the population is replaced by a new solution, which is created by a recombination of parts of 
existing good solutions.  

89. This process is repeated thousands, perhaps millions of times, combining different aspects of 
good solutions, while searching for a combination of solution features that is optimal under the evaluation 
function imposed. The GA designer provides a function to evaluate the “fitness” of each individual 
solution; this fitness function is used to propagate “good” individuals into the next generation. A set of 
these fit individuals are chosen for a crossover operation, which recombines the strings of the parents into 
new children, trying to construct fitter solutions in the process. The mutation operator randomly alters 
some element of an individual (solution) in order to further enhance the population. 
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90. Because genetic algorithms do not use statistical procedures, they are not limited by statistical 
assumptions. GA performance is, however, strongly influenced by design decisions made by the 
programmer. With a GA, the designer has more flexibility than is available with many other types of 
procedures. They can be modified to accommodate important characteristics of a system, explore alternate 
hypotheses, and elucidate underlying mechanisms simply by adding variables to the program or altering 
fitness criteria. GA methods readily lend themselves to the exploration of relationships between input and 
output data (i.e. QSAR development). 

Concluding Remarks 

91. An important premise in scientific integrity is the ability to explain scientific results thoroughly 
enough so that the scientific community can reproduce the reported results.   In QSAR development, 
providing the training set of data for a defined endpoint is a major part of describing the QSAR in a 
transparent manner.    The algorithm used to relate the endpoint data to descriptors of chemical structure is 
a second important part of explaining the (Q)SAR model to the scientific community and users.   The 
unambiguous algorithm makes it possible for the model to be tested as well as for the user to develop a 
worksheet or other explanatory summary of exactly how the (Q)SAR estimate was made.   
(Q)SAR models which are not transparent with respect to the algorithms used may be as accurate as many 
validated models, but the lack of explanation of how the estimates were made negatively influences 
regulatory acceptability.  
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CHAPTER 4. GUIDANCE ON PRINCIPLE OF A DEFINED DOMAIN OF APPLICABILITY 

Summary of Chapter 4 

92. This chapter provides guidance on how to interpret OECD Validation Principle 3 that a (Q)SAR 
should be associated with “a defined domain of applicability” (Principle 3). This principle expresses the 
need to establish the scope and limitations of a model based on the structural, physicochemical and 
response information in the model training set. The importance of the principle lies in the fact that a given 
model can only be expected to give reliable predictions for chemicals that are similar to those used to 
develop the model. Predictions that fall outside the applicability domain (AD) represent extrapolations, and 
are less likely to be reliable. When applying a (Q)SAR, it is important to know whether its AD is known, 
and whether it is being used inside or outside of this boundary. In its simplest form, the assessment of 
whether a chemical is located in the AD can be expressed categorically (i.e. yes or no). For a quantitative 
assessment, it is possible to associate a confidence interval with the AD, to determine the degree of 
similarity between the chemical of interest and the model training set. This chapter begins by explaining of 
the need for defining the AD (paras 93-95), before introducing some basic concepts and definitions (paras 
96-98). The chapter then provides a review of different methods that are currently available or under 
development for identifying and quantifying the applicability domain, with some examples to illustrate 
their applicability (paras 99-123). It is emphasised that the subject of the (Q)SAR AD is an evolving field 
of research, and some research needs are presented in the concluding remarks of the chapter (paras 125-
129).  

Introduction  

93. OECD Principle 3 states that “a (Q)SAR should be associated with a defined domain of 
applicability” and expresses the need to include supporting information with a (Q)SAR which will define 
the classes of chemicals with which the model performance will satisfy the regulatory requirements.  There 
is no absolute boundary between reliable and unreliable predictions for a given model, but rather a trade-
off between the constraints of the applicability domain (AD) and the overall reliability of prediction for 
numerous chemicals.  In general, the less constrained the AD, the more likely chemicals will be included 
for which the predictions will be less reliable. The more constrained the AD, the more chemicals will be 
encountered for which the endpoint cannot be predicted with the (Q)SAR. The balance within these trade-
offs depends on the requirements and can be determined by the user in the validation process within the 
specific regulatory context.  

94. Information on the AD helps the user of the model to judge whether the prediction for a new 
chemical is reliable or not. The definition of the AD is based on the assumption that a model is capable of 
making reliable predictions only within the structural, physicochemical and response space.  As a 
minimum, the AD can be defined by analysis of the training set as will be described in this guidance 
document.  In the more highly developed (Q)SAR models, the AD is defined by mechanistic structural 
requirements which are derived from interactive hypothesis generation and testing in the design of the 
training set.  Regardless of how explicitly the AD is defined, the model fit, robustness and predictivity 
determined by statistical methods (see Chapter 5) are meaningful only if they are used for chemicals within 
the AD. Even within the AD of a model, different degrees of confidence can be associated with different 
predictions. 
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95. The determination of whether a chemical falls within the AD of a model is based on an 
assessment of the similarity between the chemical and the training set. Since there are many different ways 
of expressing similarity (often defined in physicochemical properties), it follows that many different 
methods for defining the AD can be developed. This guidance document summarizes a variety of methods 
in the scientific literature along with their strengths and limitations  

Basic Terms and Concepts 

96. For the purposes of this guidance document, the definition of the AD is the following (Netzeva et 
al., 2005): 

“The applicability domain of a (Q)SAR model is the response and chemical structure space in which 
the model makes predictions with a given reliability.” 

97. In this definition, chemical structure can be expressed by information on physicochemical 
properties and/or structural fragments, and the response can be any physicochemical, biological or 
environmental effect that is being predicted (i.e. the defined endpoint, see Chapter 2). The relationship 
between chemical structure and the response can be expressed by a variety of SARs and QSARs.  

98. The AD principle should be applied in a model-specific manner. Thus, every model should be 
associated with its own AD derived not only on the chemicals in the training set but also on the descriptors 
and (statistical) approach used to develop the model. Ideally, the AD should be defined and documented by 
the model developer. This information should include: a statement of the unambiguous model algorithm 
(see Chapter 3), details of the training set (chemical identification, descriptors and endpoint values), details 
of the (statistical) method to derive the model, and structural requirements determined during model 
development.   

Recommendations for Deriving Applicability Domains 

99. Ideally, the AD should define the structural, physicochemical and response space of the model. 
This is because the best assurance that a chemical is predicted reliably is to have confirmation that the 
chemical is not an outlier in terms of its structural fragments (structural domain), its descriptor values 
(physicochemical domain) or its response values (response domain). When the AD is defined in more 
mechanistic terms, the (Q)SAR can predict reliably beyond the physicochemical and response space of the 
training set.  

100. Even though a well-defined AD helps the user of the model to assess the reliability of predictions 
made by the model, it should not automatically be assumed that all predictions within the defined AD are 
necessarily reliable. In practice, a prediction could still be unreliable even though the chemical lies within 
the established structural and physicochemical domains of the model. This could occur in cases where the 
chemical of interest acts by a different mechanism of action, not captured by the model. If more than one 
such chemical is discovered, the QSAR practitioner could either try to refine the model, to accurately 
predict the outliers, or could try to define an exclusion rule. The need to account for such outliers has also 
led to the concept of the mechanistic domain. Thus, for some models, the application of OECD Validation 
Principle 3 is linked with the application of Principle 5 on mechanistic interpretation. 

101. Historically, the first QSAR models were developed for homologous series of chemicals. 
Although these models may have limited use today, they are helpful to illustrate how the concept for the 
AD can be applied. For example, if one knows the narcotic effects of the primary alcohols ethanol, 
propanol, butanol, hexanol and heptanol, then one can predict the narcotic effect of pentanol by the linear 
relationship between the narcotic effect and molecular weight (MW). Pentanol is in the AD of this simple 
model because it is a structural homologue of the other alcohols and has a MW intermediate to two other 
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alcohols. The alcohols methanol and the n-octanol, however, would not be considered in the AD of the 
model, because while they are structural homologues of the other alcohols, they have MW values lower 
than ethanol and greater than heptanol, respectively (Figure 4.1).  
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Figure 4.1 

102. Other examples support the same reasoning. For example, Deneer et al. (1988) have shown that 
increasing the number of carbon atoms in a homologue series of aldehydes above 10 leads to a change of 
the mechanism of action. The consequence is that the relationship between the toxicity and the octanol-
water partition coefficient (log Kow), found for lower members of the series, does not hold true for the 
higher members. In another example, Schultz and Cronin (1999) showed that acrolein, the first chemical in 
the series of α,β-unsaturated aldehydes, was considerably more toxic than predicted by the relationship 
between log Kow and toxicity for the other α,β-unsaturated aldehydes. 

103. In addition to the physicochemical and structural domains, an additional useful element in the 
AD definition is an understanding of the mechanism of action (MOA) of the chemicals used to develop a 
model (i.e. the mechanistic domain). For example, the phenols and the anilines (if not complicated by more 
reactive moieties) demonstrate polar narcosis in aquatic organisms (Verhaar et al., 1995) even though they 
belong to different chemical classes. Thus, the effects of chemicals belonging to both chemical classes can 
be predicted by a single model provided the chemical does not go beyond the range of physicochemical 
parameters used to develop the model. The grouping of chemical classes into single QSARs is endpoint-
specific because the different classes might not behave in the same way for a different endpoint (e.g. 
mutagenicity). In fact, aromatic amines have considerable potential to cause mutations whereas phenols do 
not. 

104. Chemicals that contain multiple functional groups deserve special attention. Such chemicals 
might exhibit enhanced effects as a result of synergism or even exhibit a different MOA. Such chemicals 
are likely to be outliers to well established relationships. An example is provided by the α-halogenated 
esters Schultz et al. (2002), in which the presence of a halogen atom on an aliphatic hydrocarbon chain 
does not alter the narcosis MOA for aquatic toxicity. Aliphatic esters also act as narcotics in aquatic 
organisms. However, the presence of a halogen atom at the α-position to the carbonyl group of an aliphatic 
ester results in a drastic increase of toxicity due to the fact that this arrangement of atoms undergoes an 
SN2 reaction (the halogen atom being the leaving group) with macromolecules. 

105. The identification of special atom arrangements (toxicophores) that cause certain types of toxicity 
provides a way of defining mechanistic domains. Expert judgement is required since the expected 
toxicological profile could be modulated by the presence of additional functional groups (modulators), 
which may increase or decrease the toxicity.  For example, the methyl groups usually increase the toxicity 
due to increased lipophilicity without changing the MOA. Thus, the methylphenols are slightly more toxic 
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to fish than the parent phenol (Russom et al., 1997). However, methyl groups can also block completely 
the toxicophore; for example the methyl groups in the tert-butyl group decrease the toxicity of tert-butyl 
acrylate (Schultz et al., 2005). The presence of a bulky substituent next to a reactive group is one reason 
why a chemical might fall outside the expected mechanistic domain. The properties of such chemicals or 
are usually overestimated. 

106. Inaccuracy of prediction can appear also if a chemical undergoes metabolic transformation. Such 
chemicals appear outliers from many different (Q)SAR models irrespectively of whether the model was 
developed on a mechanistic basis or statistically. The reason for miss-prediction in this case is that the 
chemical that causes the effect is different from the chemical that was introduced to the biologic system 
and these out-of-the-domain chemicals are usually most difficult to identify a priori. An example could be 
given with 1,2- and 1,4-dihydroxybenzenes that exhibit enhanced toxicity because of transformation to 1,2- 
and 1,4-quinones with strong electrophilic potential, or formation of free-radical species (O'Brien, 1991). 

107. At present, the identification of mechanistic domains relies heavily on expert judgement. There 
are, however, some software tools that can assist in the identification of potential toxicophores and 
modulators. An example is the Derek software (Lhasa Ltd. (Logic and Heuristics Applied to Synthetic 
Analysis)), an expert system that applies knowledge-based rules for toxicity prediction. A similar 
functionality is available in HazardExpert (Compudrug.Inc.), which issues an alert if a toxic fragment is 
found in the query molecule. Another program for toxicity prediction, MULTICASE (Multicase Inc.), 
evaluates the structural features of molecules from non-congeneric training data sets and identifies 
substructural molecular fragments that are significantly correlated with specified toxicological activities, 
and substructural molecular fragments and molecular descriptors that modulate specified toxicological 
activities. The MDL-QSAR software (MDL Information Systems) evaluates E-state and other molecular 
descriptor features of molecules from non-congeneric training data sets and identifies descriptors that are 
significantly correlated with specified types of toxicological activities. The TOPKAT software (Accelrys 
Inc.) uses an initial classification into chemical classes before applying quantitative models for toxicity 
prediction. Various software products incorporate knowledge about metabolism and can therefore be used 
to anticipate the metabolites of the chemical of interest. These systems include CATABOL (Laboratory of 
Mathematical Chemistry, Bulgaria), META (Multicase, Inc.), MetabolExpert (CompuDrug Inc.) and 
METEOR (Lhasa Ltd.). 

108. If a (Q)SAR is based on physicochemical descriptors, the interpolation space (i.e. its coverage), 
defined by its descriptors, should be characterised. The interpolation space of a one-descriptor model is 
simply the range between the minimum and the maximum value of that descriptor, as observed in the 
training set of the model. The interpolation space of multi-descriptor models is more complex. Several 
statistical methods can be applied to characterise the interpolation space, as described below. 

109. The simplest method for describing the AD is to consider the ranges of the individual descriptors. 
This approach is based on the assumption that the descriptor values follow a normal distribution, and could 
therefore be unreliable if this assumption is violated. A limitation of this approach is that the AD may 
include internal empty spaces, i.e. interpolation regions where the relationship is not proved (Figure 4.2). 
Another possible limitation is the fact that intercorrelation between the descriptors is not taken into account, 
unless the individual descriptors are replaced by their principal components.  
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Figure 4.2 

110. A more advanced method for defining the interpolation space of a model is to define the smallest 
convex area that contains the descriptors of the training set. However, this method does not solve 
completely the problem of empty spaces between the chemicals of the training set. In addition, for models 
that contain many descriptors, the calculation of the convex area becomes a time-consuming computational 
problem (see Figure 4.3). 

 

 
 

Figure 4.3 

111. A different approach to defining the AD is based on a calculation of the distance between a query 
chemical and a defined point in the descriptor space of the model (typically, the centroid of the training set). 
A detailed review of methods is given by Jaworska et al. (2005). Different methods following this 
approach can be applied (e.g. Euclidean, Mahalanobis, Manhattan distance). The advantage of the distance 
(also called geometric) approach is that confidence levels can be associated with the AD by drawing iso-
distance contours in the interpolation space. The disadvantage is again the assumption of a normal 
distribution for the underlying data. This means that the contours are drawn solely on the basis of the 
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distance from the centroid, and the population of the regions between two iso-distance contours is not 
taken into account. 

112. A common approach to distance analysis is to use the Hotelling’s test and the associated leverage 
statistics. The leverage of a chemical provides a measure of the distance of the chemical from the centroid 
of its training set. Chemicals in the training set have leverage values between 0 and 1. A “warning 
leverage” (h*) is generally fixed at 3p/n, where n is the number of training chemicals, and p the number of 
descriptors plus one. A leverage value greater than the warning leverage is considered large. 

113. The leverage is a useful statistic in both QSAR development and application. During QSAR 
development, chemicals with high leverage unduly influence the regression parameters of the model, and 
yet do not appear as statistical outliers (the regression line is forced near the high leverage chemical). It 
may therefore be appropriate to exclude such chemicals from the training set. During the application of a 
QSAR, chemicals with high leverage are likely to be outside the descriptor space of the model, and 
therefore the predictions for such chemicals could be unreliable. The leverage approach is illustrated in 
Gramatica et al. (2004) and Pavan et al. (2005).  

114. As with all statistical methods based on physicochemical descriptors, the leverage approach 
needs to be applied with care. While the observation that a chemical has a large leverage indicates that it is 
outside the descriptor coverage of the model, a chemical with small leverage can also be outside the AD 
for other reasons (e.g. a presence of a toxicophore that is not present in the training set). The inability to 
discriminate unequivocally between chemicals that are inside and outside the AD is common to all 
statistical methods based on physicochemical descriptors, and this should be taken into account when 
applying the concept of the AD.  

115. To visualise the outliers in a model, i.e. outliers in both the descriptor space and the response 
space, a plot of standardised residuals (R) vs. leverages (or hat values, h), called the Williams graph is 
sometimes used. An illustration of the Williams plot, taken from Pavan et al. (2005), is given in Figure 
4.4a. This shows the training set of 86 chemicals for a polar narcosis model of acute toxicity to the fathead 
minnow (Verhaar et al., 1995) as well as a test set of 8 chemicals for which the model was used to make 
predictions. It can be seen that 6 chemicals in the training set have leverages greater than the warning 
leverage (0.07), as do 2 of the test chemicals. The corresponding regression line for the model is shown in 
Figure 4.4b. 

116. The most advanced statistical methods that are currently applied for identifying the (Q)SAR AD 
are probability density distribution-based methods. The probability density function of a data set can be 
estimated by parametric and non-parametric methods. The parametric methods assume a standard 
distribution (e.g. Gaussian or Poisson distribution) while the non-parametric methods (e.g. kernel density 
estimation function) make no assumptions about the data distribution. An advantage of non-parametric 
methods is the ability to identify internal empty spaces and, if necessary, to generate concave regions 
around the borders of the interpolation space to reflect the actual data distribution. It has been argued that 
the probability density approach is more robust than the range, distance and leverage approaches 
(Jaworska, 2005). However, it is also more restrictive in terms of the chemical space that falls in the AD of 
a model. 
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Figure 4.4a 
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Figure 4.4b 

117. While some of the described statistical methods are available in a standard statistical packages 
(e.g. MINITAB, STATISTICA, SYSTAT), they are not adapted to meet the needs of (Q)SAR developers 
and users. In contrast, a user-friendly software package called Ambit Disclosure being developed under the 
auspices of CEFIC LRI can be used to calculate the interpolation space by knowing the values of the 
dependent (endpoint) and independent (descriptors) variables used in a given model. The AD methods 
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incorporated in the software are independent of the modelling technique and require only transparency of 
the training set. A free download is available on the internet (Ambit Disclosure Software developed by 
Jaworska, J.S. and N. Nikolova, accessible: http://ambit.acad.bg, last accessed 6 February 2007). 

118. Ideally, the coverage of the training set should be accompanied by information on the structural 
or physicochemical similarity between the query molecule and the (Q)SAR training set. The similarity can 
be expressed in a qualitative or quantitative manner. Preferably, some mechanistic rationale should be 
given of whether the query chemical represents a mechanism common to a group of chemicals in the 
(Q)SAR training set. However, when such an assessment is not possible, a statistical expression of 
similarity can be obtained. 

119. One possible approach is to split the query molecule in molecular fragments and to check 
whether all the fragments are represented in the training set of the model. The higher the occurrence of the 
query fragments in the training set, the higher the confidence that the query chemical of interest can be 
predicted reliably. This approach is adopted in the MultiCASE software and in the Leadscope Inc. 
Prediction Model Builder software. These programs issue a warning message that a chemical is outside of 
the AD of the model if it encounters an unknown fragment. 

120. A quantitative expression of similarity can be obtained by using ISIS molecular keys and 
calculating molecular proximity parameters such as the Tanimoto coefficient, cosine coefficient, etc. The 
Tanimoto coefficient is the ratio of shared substructures to the number of all substructures that appear in 
the reference chemical in the training set. The Tanimoto coefficient varies between 0 (total lack of 
similarity) to 1 (the query chemical has an identical constitution to the reference chemical). It is important 
to remember that the Tanimoto coefficient does not provide a unique measure of similarity - its meaning is 
based on how structural fragments are defined for the purposes of the comparison. Thus, two chemicals 
that are similar with a Tanimoto coefficient of 0.8 on the basis of one set of fragments may not be similar 
when compared by using a different set of fragments. Algorithms for calculating Tanimoto similarity 
coefficients are incorporated in several software products, including Ambit disclosure software, the 
Leadscope Inc., software, and the MDL Information Systems MDL-QSAR software which has several 
measures of similarity. Another possible approach to measure the domain of applicability and statistical 
confidence in predictions is the assessment of membership in a class statistics such as that used in MDL-
QSAR nonparametric discriminant analysis. 

121. Two different approaches may be adopted when multiple (Q)SAR models are being used for the 
prediction of the same endpoint or same toxic effect (consensus and battery QSAR models). In the first 
consensus approach if a query chemical falls within the intersection of the ADs of the different models, the 
confidence of the overall prediction may be obtained by averaging (or other transformation) of the 
individual predictions. In this situation the confidence in predictions which are the same for two or more 
models should be greater than the confidence associated with the prediction of a single model.  However, it 
is expected that the common AD will be narrower for multiple models, thus restricting the number of 
potential chemicals that could be predicted. An example of the use of multiple models is provided by Tong 
et al. (2003), who used a decision forest (i.e. multiple comparable and heterogeneous decision trees).  

122. In the second battery QSAR modelling approach, the battery of predictions from multiple models 
using different logic paradigms and algorithms are added (Votano et al., 2004). This approach is used to 
expand our knowledge and give added insights into molecular properties significantly correlated with the 
same endpoint or same toxic effect (e.g., chemicals having fragment structure alerts and specific E-state 
descripters). For example, a (Q)SAR model battery could be selected that utilizes molecular fragments or 
molecular descriptors which correlate with the same endpoint. Each (Q)SAR is chosen based upon 
validation experiments in which the (Q)SAR exhibited high specificity for the endpoint. In this situation 
the collective AD could theoretically be increased because the different (Q)SAR models could have 
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different and non-overlapping ADs for heterogeneous, non-congeneric test chemicals. The confidence and 
the handling of discordant predictions by the (Q)SAR models could be addressed by the investigator’s 
application and need to achieve the highest possible sensitivity or specificity for the predictions. For 
example, the addition of results of two (Q)SARs having high specificity and low or moderate sensitivity 
would result is a high overall specificity and may also result in an increased sensitivity.   

123. Recently, a stepwise approach for determining the model AD has been proposed by Dimitrov et 
al. (2005). It consists of four stages. The first stage identifies whether a chemical falls in the range of 
variation of physicochemical properties of the model. The second step defines the structural similarity 
between the query chemical and chemicals correctly predicted by the model. The third stage comprises a 
mechanistic check by assessing whether the chemical contains the specific reactive groups hypothesised to 
cause the effect. The fourth and final stage is a metabolic check, based on an assessment of the probability 
that the chemical undergoes metabolic activation. The four stages are applied in a sequential manner. The 
advantage of processing query chemicals through all four stages is the increased reliability of prediction for 
those chemicals that satisfy to all four conditions for inclusion in the AD. The cost of applying this 
rigorous, multiple AD approach is that the number of chemicals for which reliable predictions are 
eventually made is reduced compared to the use of a single AD method.  

Comparing applicability domains with the spaces of regulatory inventories 

124. Defining the AD of a model not only provides a means of increasing the confidence associated 
with predictions inside the domain, but also of assessing the applicability of the model to a given 
regulatory inventory of chemicals. A model that gives highly accurate predictions for narrow chemical 
classes that are not covered by the regulatory inventory of interest would be of questionable value. A 
number of investigations have addressed the need to screen and prioritise chemical inventories established 
under different legislations in OECD member countries (Cunningham and Rosenkranz, 2001; Klopman et 
al., 2003; Hong et al., 2002). Among the most commonly screened regulatory inventories are those of the 
High Production Volume Chemicals, Existing Substances, and inventories of pesticides and biocides. Less 
information is publicly available regarding the inventories of New Substances, mainly because of 
confidentiality considerations. In addition, these inventories are periodically updated with new chemicals, 
which implies the need for iterative development of (Q)SAR models (Schmieder et al., 2003, Tunkle et al., 
2005) to expand their domains and adapt them to the regulatory domains of concern. An approach for 
comparing the AD with a regulatory domain is illustrated in a study (Netzeva et al., 2006) in which the AD 
of a QSAR for estrogenic potential is compared with the domain of the EINECS inventory (the list of 
Existing Substances in the EU). In this study, the physicochemical space of the EINECS inventory is 
characterised by using the descriptors in the QSAR model. 

Concluding remarks 

125. OECD Principle 3 should be considered in combination with the fourth OECD Principle on the 
need to characterise the statistical validity of a model, since an understanding of the AD can increase or 
decrease the confidence in a given (Q)SAR estimate. It should be noted, however, that the use of AD 
methods will never provide absolute certainty in the (Q)SAR estimates: a query chemical may appear to be 
within the defined AD, and yet the prediction could still be unreliable; conversely, the query chemical may 
appear to be outside the defined AD, and yet the prediction could be reliable. 

126. The model user should therefore be aware that AD methods, like other (statistical) methods 
discussed in this Guidance Document, provide a useful means of supporting decisions based on the 
additional use of expert judgement, but they cannot in themselves make the decisions. 
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127. Numerous AD methods have been proposed based on the following considerations: structural 
features, physicochemical descriptor values, response values, mechanistic understanding, and metabolism.  
On this basis, it is useful to conceptualise the AD of a model as the combination of one or more elements 
relating to the structural, physicochemical, response, mechanistic and metabolic domains. While these 
different types of domains provide useful distinctions, they should not be assumed to be mutually exclusive. 
For example, the structural fragments present in a molecule will affect its physicochemical descriptors, its 
response value, and its mechanistic behaviour.  

128. The different AD methods should not be seen as in competition with one another, since the 
combined use of multiple AD methods should give a higher assurance that query chemicals are predicted 
accurately by a (Q)SAR model. Inevitably, there is a trade-off between the breadth of applicability of a 
model and the reliability of the predictions within the domain: the broader the scope of the model, the 
lower the overall reliability of prediction. The user of a model therefore needs to strike an appropriate 
balance between the level of confidence in the predictions resulting from AD considerations and the 
number of reliable predictions that are determined. 

129. Attempts to formalise and quantify the concept of the AD are relatively recent, which means that 
it is still a difficult concept to apply in regulatory practice. Thus, a considerable amount of research and 
development is still needed to further develop AD methods, as well as an understanding of the applicability 
of these methods. For example, the following research needs can be identified: 

1. the development of confidence limits associated with the AD; 

2. the development of AD methods for structural alerts and fragment-based QSAR methods; 

3. the assessment of AD methods with a view to better understand their strengths, limitations and 
applicabilities; 

4. the development of automated tools that facilitate the application of AD methods in an integrated 
manner with traditional statistical methods. 
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CHAPTER 5. GUIDANCE ON THE PRINCIPLE OF MEASURES OF GOODNESS-OF- FIT, 
ROBUSTNESS AND PREDICTIVITY  

Summary of Chapter 5 

130. This chapter provides guidance on how to interpret OECD Validation Principle 4 that “a (Q)SAR 
should be associated with appropriate measures of goodness-of–fit, robustness and predictivity” (Principle 
4). This principle expresses the need to perform statistical validation to establish the performance of the 
model, which consists of internal model performance (goodness-of-fit and robustness) and external model 
performance (predictivity), taking into account any knowledge about the applicability domain of the model 
(Chapter 4). The chapter starts with a brief introduction to Principle 4 and statistical validation (paras 131-
134), followed by an explanation of some key terms and concepts (paras 135-141). In paras 142-212, 
commonly used techniques for model development are then described and illustrated (multiple linear 
regression, partial least squares, classification modelling, neural network modeling) along with well-
established statistical validation techniques for assessing goodness-of-fit, robustness and predictivity 
(cross-validation, bootstrapping, response randomisation test, training/test splitting, external validation). In 
the context of these different techniques, the statistics that are commonly used to describe model 
performance are explained.  

Introduction  

131. The need for information on the performance of (Q)SAR models is expressed by OECD Principle 
4 which states that models should be associated with appropriate measures of goodness-of–fit and 
robustness (internal performance) and predictivity (external performance).  The assessment of model 
performance is sometimes called statistical validation within the context of the assessment. 

132. Statistical validation techniques are used during (Q)SAR development to find a suitable balance 
between the two extremes of overfitted and underfitted models. The optimal model complexity is a trade-
off between models that are “too simple” and lacking in useful information and models that are too 
“complex” and provide modelling noise (Jouan-Rimbaud et al., 1996; Hawkins, 2004). Statistical 
validation techniques provide various “fitness” functions that can be used by the QSAR practitioner to 
compare the quality of different models, and to avoid models that are too simplistic or too complex.  

133. Statistical validation techniques also provide a means of identifying “spurious” models based on 
chance correlations, i.e. situations in which an apparent relationship is established between the predictor 
and response variables, but which is not meaningful and not predictive (Topliss and Edwards, 1979; Wold 
and Dunn, 1983; Clark and Cramer, 1993) . 

134. The statistical validation techniques described in this chapter should be considered in 
combination with any knowledge about the applicability domain (AD) of the model, since the choice of 
chemicals during model development and validation affects the assessment of performance. In particular, 
chemicals that are outside the AD during model development may unduly influence the regression 
parameters of the model, thereby affecting its robustness. Chemicals that are outside the AD during model 
validation are unlikely to be predicted with the desired level of reliability. 
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Basic Terms and Concepts  

135. This section provides an explanation of some key terms and concepts that are needed to 
understand the remainder of the chapter. These concepts are also explained in the glossary of QSAR 
terminology attached to this document. 

136. One approach to developing (Q)SAR models begins with the compilation of available endpoint 
data sets for a variety of representative chemicals likely to be encountered in regulatory programs.  If 
endpoint data are available for a sufficient number of chemicals, the data set is often divided into a training 
set, used to derive the model through the application of a statistical method, and a test set, containing 
chemicals not used in the derivation of the model but used to evaluate the model.  The variables in the 
model, referred to as predictors, are chosen to optimise model complexity.  In many (Q)SAR models, the 
predictors are (molecular) descriptors which can be chosen to test hypotheses regarding mechanisms or to 
explore date sets for models.   

137. The model derived from the training set is used to predict of the response data in both the training 
and the test sets. The accuracy of prediction for a given chemical is the closeness of an estimate/prediction 
to a reference value.  Models with greater proportions of accurate predictions are the more reliable models.  

138. Predictions for chemicals in the training set are used to assess the goodness-of-fit of the model, 
which is a measure of how well the model accounts for the variance of the response in the training set. The 
generation of predictions within the range of predictor values in the training set is called interpolation, 
whereas extrapolation is the generation of a prediction outside the range of values of the predictor in the 
sample used to generate the model. The more removed the predicted value from the range of values used to 
fit the model, the more unreliable the prediction becomes, because it is not certain whether the model 
continues to hold. 

139. The robustness of model refers to the stability of its parameters (predictor coefficients) and 
consequently the stability of its predictions when a perturbation (deletion of one or more chemicals) is 
applied to the training set, and the model is regenerated from the “perturbed” training set. 

140. Predictions for chemicals in the test set are used to assess the predictive ability of the model, 
which is a measure of how well the model can predict of new data, which not used in model development. 
In this document, predictive ability is used synonymously with predictive capacity, predictive power and 
predictivity.  

141. The data-driven approach described above is predominant when the available data sets are large 
enough and representative of the chemicals being regulated, i.e. regulatory domain.  The data-driven 
approach may not always group chemicals according to important mechanisms, which causes some groups 
in the data set to be outliers in the data-driven (Q)SAR models.  An alternative approach to developing 
(Q)SAR-based predictive capacity begins with the regulatory domain, itself, and groups the chemicals 
according to expected consistent trends for important endpoints with each group.  A variety of techniques 
are employed to extrapolate measured endpoint data to the untested chemicals in the group.  This approach, 
similar to many of the knowledge-based rules in structural alerts and SAR, is a knowledge-driven approach 
to (Q)SAR modelling in which the statistical demand for data is replaced with expert knowledge of 
chemistry and toxicology for grouping chemicals.  The determination of predictive capacity is determined 
by periodic retrospective evaluations of the predictions across all groups of chemicals in the regulatory 
domain.                 
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Recommendations for Practitioners 

142. This section offers guidance on how the robustness and predictivity of (Q)SAR models can be 
evaluated for a variety of the more common algorithms. 

Multiple Linear Regression (MLR) 

143. Multiple linear regression (MLR) is the traditional statistical approach for deriving QSAR models. 
It relates the dependent variable y (biological activity) to a number of independent (predictor) variables xi 
(molecular descriptors) by using linear equations (Eq. 1, Table 5.1). 

144. Estimating the regression coefficients. Regression coefficients bj in MLR model can be 
estimated using the least squares procedure by minimizing the sum of the squared residuals. The aim of 
this procedure is to give the smallest possible sum of squared differences between the true dependent 
variable values and the values calculated by the regression model.  

145. Assessing the relative importance of descriptors. If the variables are standardized to have 
mean of zero and standard deviation of one, then the regression coefficients in the model are called beta 
coefficients. The advantage of beta coefficients (as compared to regression coefficients that are not 
standardised) is that the magnitude of these beta coefficients allows the comparison of the relative 
contribution of each independent variable in the prediction of the dependent variable. Thus, independent 
variables with higher absolute value of their beta coefficients explain greater part from the variance of the 
dependent variable. 

146. Assessing goodness-of-fit. To assess goodness-of-fit, the coefficient of multiple determination 
(R2) is used (Eq. 2, Table 5.1). R2 estimates the proportion of the variation of y that is explained by the 
regression (Massart, 1997a). If there is no linear relationship between the dependent and the independent 
variables R2= 0; if there is a perfect fit R2= 1. R2 value higher than 0.5 means that the explained variance by 
the model is higher than the unexplained one. The end-user(s) of a QSAR model should decide what value 
of R2 is sufficient for the specific application of the model. One author has recommended that R ≥ 0.9 for in 
vitro data and R ≥ 0.8 for in vivo data can be regarded as good (Kubinyi, 1993).  

147. Avoiding overfitting. The value of R2 can generally be increased by adding additional predictor 
variables to the model, even if the added variable does not contribute to reduce the unexplained variance of 
the dependent variable. It follows that R2 should be used with caution. This could be avoided by using 
another statistical parameter – the so-called adjusted R2 (R2

adj) (Eq. 3, Table 5.1). R2
adj is interpreted 

similarly to the R2 value except it takes into consideration the number of degrees of freedom. It is adjusted 
by dividing the residual sum of squares and total sum of squares by their respective degrees of freedom. 
The value of R2

adj decreases if an added variable to the equation does not reduce the unexplained variance. 

148. From the calculated and observed dependent variable values the standard error of estimate s 
could be obtained (Eq. 4, Table 5.1). The standard error of estimate measures the dispersion of the 
observed values about the regression line. The smaller the value of s means higher reliability of the 
prediction. However it is not recommended to have standard error of estimate smaller than the 
experimental error of the biological data, because it is an indication for an overfitted model (Wold et al., 
1984). 

149. The statistical significance of the regression model can be assessed by means of F-value (Eq. 5, 
Table 5.1). The F-value is the ratio between explained and unexplained variance for a given number of 
degrees of freedom. The higher the F-value the greater the probability is that the equation is significant. 
The regression equation is considered to be statistically significant if the observed F-value is greater than a 
tabulated value for the chosen level of significance (typically, the 95% level) and the corresponding 
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degrees of freedom of F. The degrees of freedom of F-value are equal to p and n-p-1. Significance of the 
equation at the 95% level means that there is only a 5% probability that the dependence found is obtained 
due to chance correlations between the variables. 

150. The statistical significance of the regression coefficients can be obtained from a t-test (Eq. 6, 
Table 5.1). It is used to test the hypothesis that the regression coefficient is zero. If the hypothesis is true, 
than the predictor variable does not contribute to explain the dependent variable. Higher t-values of a 
regression coefficient correspond to a greater statistical significance. The statistical significance of a 
regression coefficient using its t-value is determined again from tables for a given level of significance 
(similar to the use of F-value). The degrees of freedom of t are equal to n-p-1 (corresponding to the degrees 
of freedom of the residual mean square). Statistical significance at the 95% level means there is only a 5% 
probability that the regression coefficient of a given variable is not significantly different from zero. The t-
values are used to calculate the confidence intervals for the true regression parameters. These confidence 
intervals can also be used to check the significance of the corresponding regression coefficients. In practice 
the confidential intervals should be smaller than the absolute values of the regression coefficients in order 
to have statistically significant independent variables (Wold et al., 1984).  

Partial Least Squares regression (PLS) 

151. Partial Least Squares (PLS), introduced by Wold et al. (1984, 1993), is a MLR method that 
allows relationships to be sought between an X-block of p predictors and a single y response (PLS1) or a 
Y-block of r responses (PLS2). Thus several activity variables, Y, i.e. profiles of activity, can be modelled 
simultaneously. An advantage of PLS is that it tolerates a certain amount of missing data. For instance, in 
the case of data set containing 20 compounds, 10-20% missing data can be tolerated (Wold, 1995). 

152. Information provided by PLS. The purpose of PLS is to find a small number of relevant factors 
(A) that are predictive of Y and utilize X efficiently (Massart et al., 1997b). The PLS model is expressed 
by a matrix of scores (T) that summarizes the X variables, a matrix of scores (U) that summarizes the Y 
variables, a matrix of weights (W) expressing the correlation between X and U(Y), a matrix of weights (C) 
expressing the correlation between Y and T(X), and a matrix of residuals (the part of data that are not 
explained by the model). For the interpretation of the PLS model a number of informative parameters can 
be used. The scores t and u contain information about the compounds and their similarities/dissimilarities 
with respect to the given problem. The weights w and c provide information about how the variables can 
be combined to form a quantitative relation between X and Y. Hence they are essential for understanding 
which X variables are important and which X variables provide the same information. The residuals are of 
diagnostic interest – large residuals of Y indicate that the model is poor and the outliers should be 
identified (Wold, 1995). PLS regression coefficients can be obtained after re-expression of the PLS 
solution as a regression model. When X values are scaled and centered and Y values are scaled, the 
resulting coefficients are useful for interpreting the influence of the variables X on Y (Eriksson et al., 2001; 
Netzeva et al., 2003). 

153. Assessing Goodness-of-fit.  The quantitative measure of the goodness of fit is given by the 
parameter R2 (= the explained variation) analogous to MLR. PLS model is characterized by the following 
R2 parameters: 

• R2(Y) – cumulative sum of squares of all dependent values (Y) explained by all extracted 
components 

• R2(X) – cumulative sum of squares of all descriptor values (X) explained by all extracted 
components 

• R2(Y)adj, R2(X)adj – cumulative R2(Y) and R2(X) respectively adjusted for the degrees of freedom 
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154. Avoiding overfitting. Depending on the number of components, near perfect correlations are 
often obtained in PLS analysis, due to the usually large number of included X variables. Therefore, the 
high R2(Y) is not a sufficient criterion for the validity of a PLS model. A cross-validation procedure must 
be used and Q2(Y) parameter must be calculated to select the model having the highest predictive ability 
(Kubinyi, 1993). In contrast to R2(Y), Q2(Y) does not increase after a certain degree of model complexity. 
Hence, there is a zone, where there is a balance between predictive power and reasonable fit (Massart et al., 
1997b). According to the proposed reference criteria the difference between R2(Y) and Q2(Y) should not 
exceed 0.3. A substantially larger difference is indication for an overfitted model, presence of irrelevant X-
values or outliers in the data (Eriksson et al., 2003). 

155. Identification of outliers. As a measure of the statistical fit of the PLS model also the residual 
standard deviation (RSD) can be used, which corresponds to the standard deviation in the MLR. It should 
be similar in size to the known or expected noise in the system under investigation. The RSD can be 
calculated for the responses and predictor variables. The RSD of an X variable is indication for its 
relevance to the PLS model. The RSD of a Y variable is a measure of how well this response is explained 
by the PLS model. The RSD of an observation in the X or Y space is proportional to the observation 
distance in the hyper plane of the PLS-model in the corresponding space (DModX and DModY). The last 
ones give information about the outliers in X- and Y-data (Massart et al., 1997b; Netzeva et al., 2003). 

Classification Models (CMs) 

156. Chemicals are sometimes classified into two (e.g. active/inactive) or more pre-defined categories, 
for scientific or regulatory purposes. For scientific purposes, the biological variability of certain endpoints 
is sometimes too large to enable reasonable quantitative predictions, so that the data is converted into one 
or more categories of toxic effect. Otherwise, in regulatory toxicology, binary classification systems are 
commonly used to provide a convenient means of labelling chemicals, according to their hazard.  

157. Classification-based QSARs, also referred as classification models (CMs), can be developed 
using a variety of statistical methods. Among the methods appropriate for the development of linear CMs, 
multivariate discriminant analysis (MDA), logistic regression (LR), and decision or classification trees 
(CT), among others, have been extensively described in the literature (Worth and Cronin, 2003). Also, 
rule-based models expressed in symbolic “if… then” decision rules, can be derived from the CMs. For the 
models associated with non-linear boundaries, embedded cluster modelling (ECM) (Worth and Cronin, 
2000), neural networks (NN), and k-nearest neighbour (k-NN) classifiers can be used.  

158.  Assessing Goodness-of-fit.  The goodness-of-fit of a CM can be assessed in terms of its Cooper 
statistics, which were introduced in the late seventies to describe the validity of carcinogen screening tests 
(Cooper et al., 1979). Cooper statistics, based on a Bayesian approach (Feinstein, 1975; Sullivan, 2003) 
has been extensively applied to assess the results of classification (Q)SAR models (Eriksson et al., 2003; 
McDowell and Jaworska, 2002). Bayesian-based methods can also be used to combine results from 
different cases, so that judgments are rarely based only on the results of a single study but they rather 
synthesize evidence from multiple sources. These methods can be developed in an iterative manner, so that 
they allow successive updating of battery interpretation.  

159. In a CM, the results of the classification can be arranged in the so-called confusion or 
contingency matrix (Frank and Friedman, 1989), where the rows represent the reference classes (Ag), while 
the columns represent the predicted classes assigned by the CM (Ag’). Table 5.2 illustrates the general 
form of a contingency matrix for the general case of G classes. 

160. Interpreting the contingency matrix. The main diagonal (cgg’) represents the cases where the 
true class coincides with the assigned class, that is, the number of objects correctly classified in each class, 
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while the non-diagonal cells represent the misclassifications. Overpredictions are to the right and above the 
diagonal, whereas underpredictions are to the left and below the diagonal. The right-hand column reports 
the number of objects belonging to each class (ng), whereas the bottom row reports the total number of 
objects assigned to each class according to the CM (ng'). 

161. Setting the importance of misclassifications. Depending on the intended use of the CM, some 
classification errors may be considered “worse” than others. In order to quantify such error, the loss matrix 
(L), which the same structure as the contingency matrix, can be used (Table 5.3). It can be considered as a 
matrix of weights for the different types of classification errors, where the non-diagonal elements quantify 
the type of error in the classification.  

162. According to this matrix of weights, the classification errors that for example confuse class A1 
with class A3 and class AG are more significant (loss value of 2) than the ones than confuse class A1 with 
class A2 (loss value of 1). The main diagonal corresponds to the correct classification, so that the loss value 
is set to zero. This matrix can be defined in an arbitrary way, according to the situation. If it is not explicit 
all the errors can be assigned to have the same weight of 1.  

163. The most commonly used goodness-of-fit parameters for a CM are defined in Table 5.4. When 
evaluating the results of a CM, the reference situation is generally taken to be the one in which all of the 
objects are assigned to the class that is most represented. This reference condition corresponds to the 
absence of a model, and is therefore called the No-Model. Goodness-of-fit values close to the ones of the 
No-Model condition give evidence of a poor result of the classification method. The No-Model value is 
unique and independent from the classification method adopted. Other statistics have been proposed, like 
kappa (k) statistic (Kraemer, 1982). 

164. In the particular case of a two-group CM, which evaluates the presence or absence of activity, 
Cooper statistics can be calculated from a 2x2 contingency table (see Table 5.5).  

165. The statistics in Table 5.6 collectively express the performance of a CM, provided they measure 
its ability to detect known active compounds (sensitivity), non-active compounds (specificity), and all 
chemicals in general (concordance or accuracy). The false positive and false negative rates can be 
calculated from the complement of specificity and sensitivity, respectively. The positive and negative 
“predictivities” focus on the effects of individual chemicals, since they act as conditional probabilities. 
Thus, the positive “predictivity” is the probability that a chemical classified as active is really active, while 
the negative “predictivity” gives the probability that a classified non-active chemical is really non-active.  

166. The sensitivity is the ability to detect known active compounds, that is to say the percent of the 
chemicals tested positive that are correctly identified as positive by the QSAR model. Therefore, a high 
value of sensitivity is associated with a high true positive rate. In addition, a high value of sensitivity is 
also associated with a low false negative rate. The specificity is the ability to detect known inactive 
compounds, that is to say the percent of the chemicals tested negative that are correctly identified as 
negative by the QSAR model. A high specificity is associated with a high true negative rate and a low false 
positive rate. Given a fixed sensitivity and specificity, the positive and negative predictivities vary 
according to the prevalence or proportion of active chemicals in a population, i.e. (a+b)/N. Furthermore, 
the accuracy is influenced by the performance of the most numerous class. Therefore, CMs should not be 
judged according to these statistics alone. 

167. For the assessment of the predictive performance of two-group CMs, the maximal classification 
performance achievable should be assessed on the basis of the quality of the predictor and response data 
and taking also into account the purpose of the model. Thus, for stand-alone classification models, the 
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Cooper statistics should be significantly greater than 50%, whereas for a CM that identifies active or 
inactive chemicals in a battery of models, a lower performance could still be useful.  

168. The classification ability of a CM depends on the particular data set of chemicals used. It is 
therefore useful to report some measure of the variability associated with the classifications. This indicates 
whether the classification performance of the CM would vary significantly if it had been assessed with a 
different set of chemicals. To estimate the confidence intervals (CI) for the Cooper statistics, the bootstrap 
re-sampling technique can be used (Wehrens et al., 2000; Worth and Cronin, 2001).  

169. To compare the performances of a number of classification models, the Receiver Operating 
Characteristic (ROC) curve can be used. ROC curves are so-named because they were first used for the 
detection of radio signals in the presence of noise in the 1940s (Lusted, 1971). In the ROC graph, the X-
axis is 1-specificity (false positive rate) and the Y-axis is the sensitivity (true positive rate). The best 
possible CM would yield a point located in the upper left corner of the ROC space, i.e. high true positive 
rate and low false positive rate. A CM with no discriminating power would give a straight line at an angle 
of 45 degrees from the horizontal, i.e. equal rates of true and false positives (Hanley, 1989; Provost and 
Fawcett, 2001). An index of the goodness of the CM is the area under the curve: a perfect CM has area of 
1.0, whilst a non-discriminating test (one which falls on the diagonal) has an area of 0.5. 

170. In the case of a CM based on continuous predictors, i.e. predictors expressed by continuous 
values, the ROC curve allows us to explore the relationship between the sensitivity and specificity 
resulting from different thresholds (cut points), thus allowing an optimal threshold to be determined 
(Figure 5.1). The threshold is an arbitrary cut-off value which determines when the prediction is considered 
as positive or negative. Ideally, both sensitivity and specificity would be equal to one, but changing the 
threshold to increase one statistic usually results in a decrease in the other. In Figure 5.1, points greater 
than (to the right of) the threshold are classified positive, whereas points less than (to the left of) the 
threshold are classified negative. The dark blue curve represents the distribution of true negatives, and the 
dark red curve represents the distribution of true positives. If the threshold (green line) is increased 
(movement from left to right), the false positive rate (light blue area) decreases. However, as the false 
positive rate decreases, the true positive rate (red area) also decreases; this corresponds to points in the 
bottom left of the ROC curve. Otherwise, if the threshold is decreased (movement of green line from right 
to left), the proportion of true positives (Y axis) increases, rather dramatically initially, and then more 
gradually; this corresponds to points in the top right of the ROC curve. 

 

 
Figure 5.1. ROC curve for a model that produces a continuous output, as a function of the classification 

threshold marked with a green line 

Image taken from http://www.anaesthetist.com/mnm/stats/roc/ (last accessed 6 February 2007). The coordinates are 
indicative of the performance of the models corresponding to: (0,0) high threshold, (1,1) low threshold, (0,1) perfect 
classification, y=x, model with no discriminatory power.  
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171. Setting the importance of misclassifications. The assessment of classification accuracy often 
assumes equal costs of false positives and false negative errors. However, in real applications, the 
minimisation of costs should be considered alongside the maximization of accuracy. The problems of 
unequal error costs and uneven class distributions are related, so that high-cost cases can be compensated 
by modifying their prevalence in the set (Breiman et al., 1984).  

172. The robustness of a CM can be evaluated by the total number of misclassifications, estimated 
with the leave-one-out method (Hand, 1981). Alternatively, the above-mentioned set of optimal loss 
factors (i.e. weights for different kinds of misclassifications that are minimised in the process of fitting a 
model) can be defined to reflect that some classification errors are more detrimental than others. The loss 
function represents a selected measure of the discrepancy between the observed data and data predicted by 
the fitted function. It can be empirically estimated and employed in a minimum risk decision rule rather 
than a minimum error probability rule. Also, by combining different predictions, the resulting models are 
more robust and accurate than single model solutions. 

Artificial Neural Networks (ANNs) 

173. An Artificial Neural Network (ANN) is a mathematical model that “learns” from data in a 
manner that emulates the learning pattern in the human brain. The calculations in a neural network model 
occurs as a result of the “activation” of a series of neurons, which are situated in different layers, from the 
input layer through one or more hidden layers to the output layer. The neural network learns by repeatedly 
passing through the data and adjusting its connection weights to minimise the error.  

174. There are two main groups of ANN, which differ in architecture and in learning strategy: (i) 
unsupervised and supervised self organizing maps; and (ii) supervised back-propagation ANN (Lek and 
Guegan, 1999). The terms “unsupervised” and “supervised” indicate whether only descriptors (input 
variables), or both descriptors and biological activities (output variables), participate in the training of 
ANN. 

175. ANNs are especially suitable for modelling non-linear relationships and trends and have been 
used to tackle a variety of mathematical problems, including data exploration, pattern recognition, the 
modelling of continuous and categorized responses, and the modelling of multiple responses (Anzali et al., 
1998; Zupan and Gasteiger, 1999), the classification of objects toxicological classes or modes of toxic 
action (Spycher et al., 2005), selection of relevant descriptors, and division of the original data set into 
clusters (Vracko, 2005). 

176.  Assessing Goodness-of-fit.  Several tests for assessing the goodness-of-fit of NN models (based 
on the training set) are recommended. In the recall ability test (Guha and Jurs, 2005; Mazzatorta et al., 
2003; Vracko and Gasteiger, 2002; Devillers and Domine, 1999), the activity values are calculated for the 
objects of training set, to provide an indication of how well the model recognises the objects of training set. 
The test results are usually reported as the standard deviation and the parameters of the regression line 
between reference values and predicted values. Since the recall ability test is a test for goodness-of-fit only, 
it is recommended additional tests are also used, such as leave-one-out, leave-many-out, Y-Scrambling, 
and assessment with independent test set. 

177. Measures of robustness.  The aim of validation techniques is thus to find a model which 
represents the best trade-off between the model simplicity and its variability, in order to minimize the 
Mean Squared Error (MSE) (Table 5.7), minimising the bias as well as the unexplained variance. 

178. A necessary condition for the validity of a regression model is that the multiple correlation 
coefficient R2 is as close as possible to one and the standard error of the estimate s small. However, this 



ENV/JM/MONO(2007)2 

 50

condition (fitting ability), which measures how well the model is able to mathematically reproduce the end 
point data of the training set, is an insufficient condition for model validity. In fact, models that give a high 
fit (smaller s and larger R2) tend to have a large number of predictor variables (Eriksson et al., 2003). 
These parameters are measures of the quality of the fit between predicted and experimental values, and do 
not express the ability of the model to make reliable predictions on new data.  

179. It is well known that increasing the model complexity always increases the multiple correlation 
coefficient (R2), i.e. the explained variance in fitting, but if model complexity is not well supervised then 
the predictive power of the model, i.e. the explained variance in prediction (Q2) decreases. The differing 
trends of R2 and Q2 with an increasing number of predictor variables is illustrated in Figure 5.2.  

 
Figure 5.2. Comparison of the explained variance in fitting with the explained variance in prediction 

180. In Figure 5.2, it can be seen that increasing the number of predictors improves the explained 
variance in fitting (R2). On the other hand, the explained variance in prediction (Q2) only up to 5 predictors 
(which represents the maximum predictive power in this case) but adding further statistically insignificant 
predictors decreases the model performance in prediction. 

181. The first condition for model validity deals with the ratio of the number of objects (i.e. chemicals) 
over the number of selected variables. This is called the Topliss ratio. As a rule-of-thumb, it is 
recommended that the Topliss ratio should have a value of at least 5. 

182. The quality of multivariate regression models is usually evaluated by different fitness functions 
(e.g. adjusted R2, Q2) (Table 5.7) able to find the optimal model complexity and useful to compare the 
quality of different QSAR models.  

183. For this reason, the structure of a QSAR model (number of predictors, number of PCs, number of 
classes) should always be inspected by validation techniques, able to detect overfitting due to variable 
multicollinearity, noise, sample specificity, and unjustified model complexity. 

184. Model validation can be performed by internal validation techniques and external validation 
techniques. As illustrated in Figure 5.3, in case of internal validation a number of modified data sets are 

Number of predictors vs. R2 and Q2

Number of predictors

20 

30 

40 

50 

60 

70 

80 

90 

100 

1 2 3 4 5 6 7 8 9 10 

R2

Q2



 ENV/JM/MONO(2007)2 

 51

created by deleting, in each case, one or a small group of objects and each reduced data set is used to 
estimate the predictive capability of the final model built by using the whole data set. This means that the 
model predictivity is estimated by compounds (the test set) which took part in the model development, thus 
the information of these compounds is included in the final model. On the other hand a more demanding 
evaluation is the one provided by an external validation where the model predictivity is estimated by new 
experimentally tested compounds (external test set) which did not take part in the model development. 

Internal validation

External validation

data

training set test set

final model

partial models

Robustness
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data
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Internal validation

External validation

data
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Figure 5.3. Internal and external validation. 

185. A number of internal validation techniques can be used to simulate the predictive ability of a 
model (Diaconis and Efron, 1983; Cramer et al., 1988). The most popular validation ones are listed below: 

•  Cross validation (leave-one-out (LOO) and leave-many-out (LMO)). 

•  Bootstrapping 

•  Y-scrambling or response permutation testing 

•  Training/test set splitting 

186. Cross validation is the most common validation technique where a number of modified data sets 
are created by deleting, in each case, one or a small group of compounds from the data in such a way that 
each object is removed away once and only once. From the original data set, a reduced data set (training set) 
is used to develop a partial model, while the remaining data (test set) are used to evaluate the model 
predictivity (Efron, 1983; Osten, 1988). For each reduced data set, the model is calculated and responses 
for the deleted compounds are predicted from the model. The squared differences between the true 
response and the predicted response for each compound left out are added to the predictive residual sum of 
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squares (PRESS). From the final predictive residual sum of squares, the Q2 (or R2
CV) and SDEP (standard 

deviation error of prediction) values are calculated (Cruciani et al., 1992) (Table 5.7). 

187. The simplest cross validation procedure is the leave-one-out (LOO) technique, where each 
compound is removed, one at a time. In this case, given n compounds, n reduced models are calculated, 
each of these models is developed with the remaining n-1 compounds and used to predict the response of 
the deleted compound. The model predictive power is then calculated as the sum of squared differences 
between the observed and estimated response. This technique is particularly important as this deletion 
scheme is unique and the predictive ability of the different models can be compared accurately. However, 
the predictive ability obtained is often too optimistic, particularly with larger datasets compounds, because 
the perturbation in the dataset is small and often insignificant when only one compound is omitted. 

188. To obtain more realistic estimates of the predictive ability, it is often necessary to remove more 
than one compound at each step. In the leave-many-out (LMO) cross-validation procedure, the data set is 
divided into a number of blocks (cancellation groups) defined by the user. At each step, all the compounds 
belonging to a block are left out from the derivation of the model. The cancellation groups G range from 2 
to n. For example, given 120 compounds (n = 120), for 2, 3, 5, 10 cancellation groups G, at each time m (= 
n/G) objects are left in the test sets, i.e. 60, 40, 24, and 12 compounds, respectively. Rules for selecting the 
group of compounds for the test set at each step must be adopted in order to leave out each compound only 
one time. The LOO method is equivalent to a LMO method with G = n, i.e. with a number of cancellation 
groups equal to the number of compounds. By introducing a larger perturbation in the data set, the 
predictive ability estimated by LMO is more realistic than the one by LOO.  

189. Bootstrap resampling is another technique to perform internal validation (Wehrens et al., 2000). 
The basic premise of bootstrap resampling is that the data set should be representative of the population 
from which it was drawn. Since there is only one data set, bootstrapping simulates what would happen if 
the samples were selected randomly. In a typical bootstrap validation, K groups of size n are generated by a 
repeated random selection of n compounds from the original data set. Some of these compounds can be 
included in the same random sample several times, while other compounds will never be selected. In this 
validation technique, the original size of the data set (n) is preserved by the selection of n compounds with 
repetition. In this way, the training set usually consists of repeated compounds and the test set of the 
compounds left out (Efron and Tibshirani, 1993). The model is derived by using the training set and 
responses are predicted by using the test set. All the squared differences between the true response and the 
predicted response of the compounds of the test set are expressed in the PRESS statistic. This procedure of 
building training sets and test sets is repeated thousands of times. As with the LMO technique, a high 
average Q2 in bootstrap validation is indicative of model robustness and what is sometimes referred to as 
“internal predictivity”.  

190. Y-scrambling or response permutation testing is another widely used technique to check the 
robustness of a QSAR model, and to identify models based on chance correlation, i.e. models where the 
independent variables are randomly correlated to the response variables. The test is performed by 
calculating the quality of the model (usually R2 or, better, Q2) randomly modifying the sequence of the 
response vector y, i.e. by assigning to each compound a response randomly selected from the true set of 
responses (Figure 5.4) (Lindgren et al., 1996). If the original model has no chance correlation, there is a 
significant difference in the quality of the original model and that associated with a model obtained with 
random responses (Figure 5.5). The procedure is repeated several hundred of times. 
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Figure 5.4. Y-scrambling by random permutations of activity values (Y); 
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Figure 5.5. Plot of predicted versus observed activity values (Y) – random scatter plot indicates that the model 

is not probably due to chance correlations. 



ENV/JM/MONO(2007)2 

 54

191. Models based on chance correlation can be detected by using the QUIK rule. Proposed in 1998 
(Todeschini et al., 1999), the QUIK rule is a simple criterion that allows the rejection of models with high 
predictor collinearity, which can lead to chance correlation (Todeschini et al., 2004). The QUIK rule is 
based on the K multivariate correlation index (Table 5.7) that measures the total correlation of a set of 
variables. The rule is derived from the evident assumption that the total correlation in the set given by the 
model predictors X plus the response Y (KXY) should always be greater than that measured only in the set of 
predictors (KX). Therefore, according to the QUIK rule only models with the KXY correlation among the [X 
+ Y] variables greater than the KX correlation among the [X] variables can be accepted. The QUIK rule has 
been demonstrated to be very effective in avoiding models with multi-collinearity without prediction 
power.  

192. An example of the application of the QUIK rule in QSAR studies is provided (Todeschini et al., 
1999) by a series of 11 3-quinuclidinyl benzylates represented by three physicochemical descriptors: 
Norrington’s lipophilic substituent constant πN (x1), its squared values π2

N (x2), and the Taft steric constant 
Es (x3). The y response was the apparent equilibrium constant Kapp. This data set has been extensively 
discussed by Stone and Jonathan (1993) and by Mager (1995), who concluded that the model has 
multicollinearity without prediction power. The regression model obtained by Ordinary Least Squares 
regression (OLS) was: 

y = -8.40 + 8.35 x1 -1.70 x2 +1.43 x3       (Eq 1) 

with the following statistics:  

R2 = 91.8     Q2
LOO = 81.5    Q2

LMO = 67.0 

where R2, Q2
LOO and Q2

LMO are the explained variances in fitting, by leave-one-out cross validation and by 
leave-many-out cross validation (two objects left out at each step), respectively. The large decrease in the 
predictive performance of the model was already suspect. The same conclusions were reached applying the 
QUIK rule. In fact, for the proposed model, the K values were:  

Kxy = 47.91  <  Kx = 54.87 

According to the QUIK rule, the model would be rejected, the X correlation being greater than the X+Y- 
correlation. 

193. Another method to check chance correlation is to add a percentage of artificial noisy variables to 
the set of available variables. This approach allows the detection of optimal model size, i.e. the size for 
which no noisy variable is present in models of this size and an example of its capability tested on a 
spectral matrix was extensively illustrated in Jouan-Rimbaud et al. (1996). In fact, when simulated noisy 
variables start to appear in the evolving model population it means that the allowed maximum model size 
can no longer be increased since optimal complexity has been reached. However, this approach does not 
account for the likely correlation between a generated noisy variable and the Y response. In fact, there is a 
high probability that on generating a number of noisy predictors some will be significantly correlated with 
the y response. While chance correlation is considered explicitly in the Y scrambling procedure, by 
response randomisation, a noisy predictor could play an important role in modelling in the latter approach, 
contributing in the same way as a true predictor with a small, but significant, correlation with response. For 
this reason, noisy variables should only be used if a check on their correlation with the y response is 
performed first, excluding all the noisy variables with correlation greater than a fixed threshold value 
(Todeschini et al., 2004). An optimal value of this threshold can be chosen only if the experimental error of 
the response is known a priori. 
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194. The training/test set splitting is a validation technique based on the splitting of the data set into a 
training set and a test set. The model is derived from the training set and the predictive power is estimated 
by applying the model to the test set. The splitting is performed by randomly selecting the objects 
belonging to the two sets. As the results are strongly dependent on the splitting of the data, this technique is 
better used by repeating the splitting several hundred of times and averaging the predictive capabilities, i.e. 
using the repeated test set technique (Boggia et al., 1997).  

Evaluating Predicitive Capacity for Individual (Q)SAR Models 

195. One of the most important characteristics of a (Q)SAR model is its predictive power, i.e. the 
ability of a model to predict accurately the (biological) activity of compounds that were not used for model 
development. While the internal validation techniques described above can be used to establish model 
robustness, they do not directly assess model predictivity.  

196. In principle, external validation is the only way to “determine” the true predictive power of a 
QSAR model. This type of assessment requires the use of an external test set, i.e. compounds not used for 
the model development. It is generally considered the most rigorous validation procedure, because the 
compounds in the external test set do not affect the model development. In fact, the test set is often 
constituted of new experimentally tested compounds used to check the predictive power of the model. 

197. External validation should be regarded as a supplementary procedure to internal validation, rather 
than as a (superior) alternative. This is because a model that is externally predictive should also be robust, 
although a robust model is not necessarily predictive (of independent data). Indeed, a high value of the 
leave-one-out cross-validated correlation coefficient, Q2, can be regarded as a necessary, but insufficient, 
condition for a model to have a high predictive power (Golbraikh and Tropsha, 2002a; Gramatica et al., 
2004; Gramatica and Papa, 2005; Papa, et al., 2005). 

198. The predictivity of a regression model is estimated by comparing the predicted and observed 
values of a sufficiently large and representative external test set of compounds that were not used in the 
model development. By using the selected model, the values of the response for the test objects are 
calculated and the quality of these predictions is defined in terms of external explained variance Q2ext 
(Table 5.7). Unlike the cross-validated correlation coefficient, Q2, in the external explained variance Q2ext 
the sum of the predictive residual sum of squares on the numerator runs over the external test chemicals 
and the reference total sum of squares on the denominator is calculated comparing the predicted response 
of the external test chemicals with the average response of the training set.  

199. Analogously, the predictivity of a classification model is estimated by comparing the predicted 
and observed classes of a sufficiently large and representative test set of compounds that were not used in 
the model development. The parameters described in Table 5.4, but derived by using the external test set, 
are used to quantify the CM predictivity. 

200. In practice, for reasons of cost, time and animal welfare, it is often difficult or impossible to 
obtain new experimentally tested compounds to check model predictivity, and for this reason a common 
practice is to split the available dataset into training set, used to develop the (Q)SAR model and an external 
test set, containing compounds not present in the training set and used to assess the predictive capability of 
a (Q)SAR model. This technique can be used reliably only if the splitting is performed by partitioning the 
compounds according to a pre-defined and suitable criterion, such as a criterion based on experimental 
design or cluster analysis.  

201. When performing statistically designed external validation, the goal is to ensure that: a) the 
training and test sets separately span the whole descriptor space occupied by the entire data set; and b) the 
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structural domains in the two sets are not too dissimilar. It is important that the training set contains 
compounds that are informative and good representatives of many other similar compounds. Thus, the 
following criteria were recently proposed for training and test selection (Golbraikh and Tropsha, 2002b; 
Gramatica et al., 2004; Gramatica and Papa, 2005; Papa et al., 2005): a) representative points of the test set 
must be close to points in of the training set; b) representative points of the training set must be close to 
points in the test set; and c) the training set must be diverse. These criteria were proposed to ensure that the 
similarity principle can be adopted when predicting the test set. 

202. To accomplish a well-planned selection, some approach to statistical experimental design is 
needed (Box et al., 1978). An ideal splitting leads to a test set such that each of its members is close to at 
least one member of the training set (Tropsha et al., 2003). Developing rational approaches for the 
selection of training and test sets is an active area of research. These approaches range from the 
straightforward random selection (Yasri and Hartsough, 2001) through activity sampling and various 
systematic clustering techniques (Potter and Matter, 1998; Taylor, 1995), to the methods of self-organising 
maps (Gastaiger and Zupan, 1993), Kennard and Stone (1969), formal statistical experimental design 
(factorial and D-Optimal) (Eriksson and Johansson, 1996), and recently proposed modified sphere 
exclusion algorithm (Golbraikh et al., 2003). These methods help achieve desirable statistical 
characteristics of the training and test sets. 

203. A frequently used approach is activity sampling (Kauffman and Jurs, 2001), according to which 
the choice of training and test sets is made by binning the range of experimental values and randomly 
selecting an even distribution of compounds from each bin. This guarantees that members of the test set 
span the entire range of the experimental measurements and are numerically representative of the data set. 
However, because the binning is based on the response, it does not guarantee that the training set 
represents the entire descriptor space of the original dataset and that each compound of the test set is close 
to at least one of the training set. 

204. In several applications, the training/test splitting is performed by using clustering techniques. K-
means algorithm is often used, and from each cluster one compound for the training set is randomly 
selected. Given that all compounds are represented in a multidimensional descriptor space, the clustering 
algorithm can be performed on the descriptor values (X values), on response values (Y values), or on the 
descriptor/response values (X/Y values). Clustering on X/Y values allows clustering the compounds 
according to all of the given information (Burden, 1999). An alternative clustering approach to select 
representative subset of compounds is the one based on the maximum dissimilarity method (Potter and 
Matter, 1998; Taylor, 1995). The method starts with the random selection of a seed compound, then every 
new compound is successively selected such that it is maximally dissimilar from all the other compounds 
of the dataset. The process ends either when a maximum number of compounds has been selected or when 
no other compound can be selected without being too similar to one already selected. Since this method is 
based on a random starting point, the variance of the results is normally checked by comparing various 
selections. Hierarchical clustering provides a more specific control by assigning every single compound to 
a cluster of compounds. It does not require any prior assumption about the number of clusters, and after the 
clustering process the compound closest to the centre of a cluster is selected as representative compound. 

205. Another way to perform a statistically planned training/test selection is by using the Kohonen’s 
Self-Organising Maps (Loukas, 2001). The main goal of the neural network is to map compounds from n-
dimensional into two-dimensional space. Representative compounds falling in the same areas of the map 
are randomly selected for the training and test sets. This approach preserves the closeness between 
compounds: compounds which are similar in the original multidimensional space are close to each other on 
the map. 
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206. Similarly to the maximum dissimilarity method, the Kennard Stone algorithm can be used to 
perform data splitting (Bourguignon et al., 1994). It is sequential and consists in maximizing the Euclidean 
distances between the newly selected compounds and the ones already selected. An additional compound is 
selected by calculating for each compound, which is not selected, the distance to each selected compound 
and by maximizing the distance to the closest compound already selected. Both the maximum dissimilarity 
and the Kennard Stone methods guarantee that the training set compounds are distributed more or less 
evenly within the whole area of the representative points, and the condition of closeness of the test set to 
the training set is satisfied. 

207. Another data splitting strategy makes use of fractional factorial design (FFD) and D-Optimal 
design (factorial and D-Optimal) (Kennard and Stone, 1969). A common practice is to process the original 
data using principal component analysis (PCA) and subsequently to use the principal components (PCs) as 
design variables in a design selecting a small number of informative and representative training data. These 
principal components are suitable for experimental design purposes since they are orthogonal and limited 
in number, reducing the extent of collinearity in the training set. In fractional factorial design all the 
principal components are explored at two, three or five levels. The training set includes one representative 
for each combination of components. The drawback of this approach is that it does not guarantee the 
closeness of the test set to the training set in the descriptor space. D-Optimal design is often performed 
whenever the classical symmetrical design cannot be applied, because the experimental region is not 
regular in shape or the number of compounds is selected by a classical design is too large. The basic 
principle of this method is to select compounds to maximize the determinant of the information (variance-
covariance) matrix │X’X│ of independent variables. The determinant of this matrix is maximal when the 
selected compounds span the space of the whole data, i.e. when the most influential compounds (maximal 
spread) are selected. (Gramatica et al., 2004; Gramatica and Papa, 2005; Papa et al., 2005) 

208. Sphere Exclusion is a dissimilarity-based compound selection method first described by Hudson 
et al. (1996) and then later adapted by various groups (Golbraikh et al., 2003; Snarey et al., 1997; 
Nilakatan et al., 1997). The algorithm consists in selecting molecules, whose similarities with each of the 
other selected molecules are not higher than the defined threshold (Gobbi and Lee, 2003). Therefore, each 
selected molecule creates a (hyper) sphere around itself, so that any candidate molecules inside the sphere 
are excluded from the selection. The radius of the sphere is an adjustable parameter, determining the 
number of compounds selected and the diversity between them. The original method starts with the “most 
descriptive compound” and in each cycle identifies the compound most similar to the centroid of the 
already selected compounds. This was considered to be very computer intensive, so variations from the 
original algorithm have been implemented to reduce the computer time required by selecting the next 
compound quicker. 

Evaluating Reliability of Knowledge-Driven (Q)SAR Models 

209. Knowledge-driven (Q)SAR models are distinguished from data-driven (Q)SAR models by the 
initial importance given to assigning chemicals to classes or groups before attempting to predict the 
specific endpoint values.  Because these (Q)SAR models are limited to specific classes, the overall domain 
of this approach is determined not by a single (Q)SAR model, but rather by combining (Q)SAR models for 
the classes of chemicals  within  the purview of the regulatory program.   The advantages of this approach 
are twofold.  First, the delineation of chemical classes offers a transparent method of incorporating expert 
knowledge on the chemical and toxicological properties of chemicals within classes so that (Q)SAR 
predictions can be more explainable and reliable.  Second, because the universe of chemicals under 
regulatory purview is partitioned into classes, the domain of application for the combined classes can be 
broader and more closely aligned to the regulatory domain than individual data-driven (Q)SAR models, 
usually with the trade-off of having fewer measured data for each class of chemicals.  
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210. For example, the ECOSAR system used by the U.S. EPA has grouped chemicals into more than 
100 classes of chemicals and corresponding (Q)SAR models based on a mixture of public and proprietary 
data (Zeeman et al., 1995).  The scientific challenge is to assess the predictive capacity of knowledge-
based systems is to weigh the significance of information on mechanism on a comparable basis with 
conventional statistical methods outlined previously.  If a chemical is in a class of chemicals for which the 
toxicity mechanism is known, that information is extremely influential on the ultimate prediction of toxic 
effects and, if accurate, may often provide a reliable estimate of toxicity within the class.  Although there 
may be exceptions, perhaps the best way to assess the performance of a knowledge-based (Q)SAR 
modelling system is to conduct periodic retrospective evaluations of the entire system within the regulatory 
constraints.   

211. Moreover, regulatory/decision making bodies may use a set of preliminary classification criteria 
to make decisions regarding the potential fate and effects of chemicals and may not actually require the use 
of the discrete experimental or estimated values themselves.  These classification schemes typically define 
ranges to allow the assessors to make more qualitative judgements regarding the chemical of interest.  
(Q)SARs and classification schemes are used in screening and priority setting to identify potentially 
hazardous chemicals of concern from the universe of industrial chemicals 

212. The results of retrospective evaluations for ECOSAR indicated that the (Q)SAR system could 
perform with acceptable reliability even though the program was not accompanied by full disclosure of the 
internal performance parameters (Hulzebos and Postumus, 2003).  In other words, regulatory acceptance 
had been accomplished by years of experience with the (Q)SAR models even though full transparency of 
the confidential data could not be provided to the scientific community.  The study was designed to 
determine if all (Q)SARs within ECOSAR conformed to the recommended acceptability criteria for 
(Q)SAR application within Dutch risk assessment.   Even though 96 of the 123 (Q)SAR models were 
found lacking in regard to the OECD Validation Principles, the results indicated that ECOSAR was 
capable of making accurate and useful predictions.  

Concluding remarks  

213. Ideally, QSAR modelling should lead to statistically robust models capable of making reliable 
predictions for new compounds. In this guidance document, reference is made to the reliability, rather than 
the correctness, of model predictions. This is because from a philosophical viewpoint, it is questionable 
whether a prediction can ever be correct, or whether a model can ever truly represent reality. As famously 
quoted by the chemist and statistician, George Box, “all models are wrong, but some are useful” (Box et al., 
1978).  

214. In order for a statistical model to be useful for predictive purposes, it should be built on a 
sufficiently large and representative amount of information regarding the modelled activity and should 
contain only relevant variables. As discussed in this chapter, a variety of statistical methods are available 
for assessing the goodness-of-fit, robustness and predictive ability of QSAR models, and a variety of 
statistics are routinely used to express these aspects of model performance. Modern statistical software 
packages provide convenient and automated means of applying these methods and generating a plethora of 
statistics. The users of (Q)SAR models, such as regulators, need a sufficient understanding of these 
statistics and the underlying methods in order to interpret the statistics according to their own purposes.  

215. The model user should be aware that the performance of a model, while being expressed in 
quantitative terms and on the basis of well-established techniques, is dependent on the choices by the 
(Q)SAR modeller. Different types of statistics are generated by different methods, and different values of 
the same statistics can be generated by altering the compositions of the training and test sets, or by altering 
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the resampling routine in a cross-validation procedure. This is why transparency in the statistical validation 
process is needed to form the basis of sound decision-making. 

216. Internal validation refers to the assessment of goodness-of-fit and robustness. The goodness-of-fit 
of a model to its training set can be regarded as the absolute minimum of information needed to assess 
model performance. It expresses the extent to which the model descriptors “account for” the variation in 
the training set, and most importantly whether the model is statistically significant. If the model is not 
statistically significant, or if it is significant but of poor fit, it cannot be expected to be useful for predictive 
purposes.  

217. The robustness of the model provides an indication of how sensitive the model parameters (and 
therefore predictions) are to changes in the training set. If the model is not robust to small perturbations in 
the training set, it is unlikely to be useful for predictive purposes. In practice, robustness can be a difficult 
concept to apply, because there are numerous ways of resampling the data, which affect the statistics 
generated. 

218. The distinction between internal and external validation has important practical implications. 
Models that are too complex (i.e. overfitted) are unlikely to predict independent data as reliably as their 
internal validation statistics may imply. This problem is increasingly relevant as modern QSAR methods 
become more powerful and capable of handling large amounts of correlated information and a large 
number of noisy variables.  

219. Predictivity is perhaps the most difficult concept to apply. From a philosophical standpoint, it can 
be argued that it is impossible to determine an absolute measure of predictivity, since it is highly dependent 
on the choice of statistical method and test set. Nevertheless, external validation, when performed 
judiciously, is generally regarded as the most rigorous assessment of predictivity, since predictions are 
made for chemicals not used in the model development. 

220. External validation should be seen as a useful supplement to internal validation, rather than as a 
substitute. External validation can be difficult to apply in a meaningful when data of sufficient quality are 
scarce. The model user should therefore be aware that the statistics derived by external validation could be 
less meaningful than those provided by internal validation, if the external test set is not carefully designed.  

221. It is not the aim of this document to define acceptability criteria for the regulatory use of QSAR 
models, since the use of data in decision-making is highly context-dependent. However, it is possible to 
identify features of models that are likely to contribute to a high or low performance. 

222. A model with high statistical performance is likely to have one or more of the following 
characteristics: 

1. the highest possible prediction power is achieved with the minimum number of variables; 

2. there is a low correlation between the predictor variables. 

223. A model with low statistical performance is likely to have one or more of the following 
characteristics: 

1. it is lacking one or more relevant variables, i.e. has insufficient fitting capability; 

2. there is a marked difference between goodness-of-fit and prediction power; 

3. one or more (noisy) variables are correlated with the response by chance; 

4. there is a high correlation between the predictor variables (multi-collinearity) resulting in 
redundancy in descriptor information. 
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Table 5.1. Basic equations and parameters of goodness of fit in MLR 

N. Definition Equation and terms 
1 MLR equation 
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Table 5.2. Confusion or contingency matrix {cGG} for a general case with G classes 

 
  Assigned class 

  A1’ A2’ A3’ Ag’ Marginal 
totals 

A1 c11’ c12’ c13’ c1g’ n1 
A2 c21’ c22’ c23’ c2g’ n2 
A3 c31’ c32’ c33’ c3g’ n3 

True class 

Ag cG1’ cG2’ ck3’ Cgg’ ng 

 Marginal 
totals n1’ n2’ n3’ ng’  

 
 

 
 
 
 
Table 5.3. Example of loss matrix {lGG’} where the loss function has been arbitrarily defined in an integer scale 

 
  Assigned class 
  A1’ A2’ A3’ Ag’ 

A1 0 1 2 2 
A2 1 0 1 1  
A3 2 1 0 2 True class 

Ag 2 1 2 0 
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Table 5.4. Definitions of the goodness-of-fit parameters 

Statistic Formula Definition 

Concordance or  
Accuracy  
(Non-error Rate) 

100
'
×

∑
n

c
g gg

 

total fraction of objects correctly 
classified. 
 
cgg’ = number of objects correctly 
classified to each class 
n = total number of objects 

Error Rate n

cn
g gg∑− '

 

1-concordance 

total fraction of objects misclassified 
 
cgg’ = number of objects correctly 
classified to each class 
n = total number of objects 

NO-Model Error Rate, 
NOMER%) NOMER n n

n
M% =

−
×100

Error provided in absence of model 
 
nM  = number of objects of the most 
represented class 
n = total number of objects 

Prior probability of a 
class  G

Pg
1

=  

probability that an object belongs to a class 
supposing that every class has the same 
probability (independently of the number 
of objects of the class). 
 
G = number of classes 

Prior proportional 
probability of a class  n

n
P g

g =  

probability that an object belongs to a class 
taking into account the number of objects 
of the class  
 
ng = total number of objects belonging to 
class g 
n = total number of objects 

Sensitivity of a class 100×
A

A

n
C

 

percentage of active compounds correctly 
classified as active compounds.  
 
CA = number of correctly classified active 
compounds 
nA = total number of active compounds  

Specificity of a class 100×
NA

NA

n
C

 

percentage of non active compounds 
correctly classified as non active 
compounds.  
 
CNA = number of correctly classified non 
active compounds 
nNA = total number of non active 
compounds. 

Misclassification risk 
( )

100' ×∑
∑ ′′

g
g

gg gggg

n

Pcl
 

risk of incorrect classification (takes into 
account the number of missclassifications, 
and their importance) 
 
lgg’ = diagonal element of the loss matrix 
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cgg’ = number of objects correctly 
classified to each class 
ng = total number of objects belonging to 
class g 
Pg = prior probability class 

     Footnote:  g=1,…, G (G = number of classes) 

 
 

Table 5.5. 22× contingency table 

  Assigned class  
  Toxic Non-toxic Marginal totals 

Active a b a+b Observed (in vivo) class Non-active c d c+d 
 Marginal totals a+c b+d a+b+c+d 

 
 

Table 5.6. Definitions of the Cooper statistics 

Statistic Formula Definition 
Sensitivity  
(True Positive rate) a/(a+b) fraction of active chemicals correctly assigned 

Specificity 
(True Negative rate) d/(c+d) fraction of non-active chemicals correctly 

assigned 
Concordance or  
Accuracy 

( )
( )dcba

da
+++

+
fraction of chemicals correctly assigned 

Positive Predictivity a/(a+c) fraction of chemicals correctly assigned as 
active out of the active assigned chemicals  

Negative Predictivty d/(b+d) 
fraction of chemicals correctly assigned as 
non-active out of the non-active assigned 
chemicals 

False Positive 
(over-classification) rate 

c/(c+d) 
1-specificity 

fraction of non-active chemicals that are 
falsely assigned to be active  

False Negative 
(under-classification) rate 

b/(a+b) 
1-sensitivity 

fraction of active chemicals that are falsely 
assigned to be non-active  
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Table 5.7. Definitions of the robustness and predictive parameters 

Statistic Definition Formula 

MSE Mean Squared 
Error 
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iy  = observed response for the i-th object 

iiy /ˆ  = response of the i-th object estimated by using a model obtained 
without using the i-th object 
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iy  = observed response for the i-th object 

iiy /ˆ  = response of the i-th object estimated by using a model obtained 
without using the i-th object 
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TSS = total sum of squares 

iy  = observed response for the i-th object 

iiy /ˆ  = response of the i-th object estimated by using a model obtained 
without using the i-th object 
y  = average response value of the training set 
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Standard 
Deviation Error 
of Prediction 
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iy  = observed response for the i-th object 

iiy /ˆ  = response of the i-th object estimated by using a model obtained 
without using the i-th object 
n = the number of training objects 
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λm =  eigenvalues obtained from the correlation matrix of the data set X(n, 
p), 
n =  number of objects  
p = number of variables. 
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iy  = observed response for the i-th object 

iŷ  = predicted response for the i-th object 
y  = average response value of the training set  
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CHAPTER 6. GUIDANCE ON THE PRINCIPLE OF MECHANISTIC INTERPRETATION 

Summary of Chapter 6 

224. This chapter provides guidance on the application of the Principle, “a (Q)SAR should be 
associated with a mechanistic interpretation, if possible” (Principle 5). The chapter begins with a historical 
perspective citing several early examples of congeneric (Q)SAR models where the notion of mechanistic 
interpretation first began. It then goes on to describe examples of more recent (Q)SARs where mechanistic 
interpretations have been provided. The difference between what is meant by a mechanistic basis and a 
mechanistic interpretation is clarified through the use of these examples. The chapter also makes raises 
several discussion points and proposes potential areas for further research.  

Introduction 

225. OECD Principle 5 for validation of (Q)SARs calls for “a mechanistic interpretation, if possible”.  
Statistical methods used to describe relationships between chemical structure and activity are not intended 
to replace other knowledge from chemistry and toxicology if such knowledge exists.  Any effort in the 
validation process to show that the (Q)SAR model is consistent with other knowledge of fundamental 
processes in chemistry and toxicology adds to credibility and acceptance of the predictions from the model.  
The interpretation of a (Q)SAR model in the context of the molecular descriptors and the endpoint data, 
both included in and excluded from the training set, is the basis for discovery of underlying causal 
relationships. When the interpretation of a (Q)SAR model is consistent with existing theories and 
knowledge of mechanisms, the ability to explain how and why an estimated value from the model was 
produced increases.  Adding that transparency to model performance is the goal of including a mechanistic 
interpretation of the model. 

226. The clause, “if possible,” is added to OECD Principle 5 for a very special reason.  The evolution 
of a (Q)SAR model is an iterative process involving the statistical exploration of data, hypothesis 
generation, and hypothesis testing.  The iterative process generally leads to a series of refinements to the 
training set, both in terms of chemicals included and molecular descriptors for those chemicals.  The record 
of the sequence of hypotheses tested and the mechanistic purpose for refining the training set are not often 
captured by data mining activities even if they are reported in the literature.  Consequently, a useful 
(Q)SAR model may lack mechanistic interpretation because the model is in the early stages of evolution, 
or because the mechanistic elements of the application domain have not been compiled from the literature.  
OECD Principle 5 encourages the validation process to find mechanistic interpretations which can add to 
the understanding of the statistical validity and the domain of application.       

Mechanistic Interpretation 

227. Mechanistic interpretations of (Q)SARs begin with the number and the nature of the molecular 
descriptors used in the model.  A molecular descriptor can be any parameter which is a formal 
mathematical representation of structural attributes of chemicals.  The number of molecular descriptors 
used to quantify structure has proliferated with high speed computing to include many hundreds of 
parameters, many of which have not been causally linked to intrinsic chemical interactions.  The variation 
in endpoints with the variation in chemical structure is generally attributed to changes in the hydrophobic, 
electronic and steric attributes of different chemicals.  Unless the molecular descriptors can be associated 
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with these three inherent attributes, or if dozens of molecular descriptors are needed to produce a single 
(Q)SAR prediction, the likelihood that the models is in the early stages of evolution and of there being a 
mechanistic basis for the model is small.    

228. The basis for mechanistic interpretation is the underlying principle of (Q)SARs which states that 
the properties and biological interactions of a chemical are inherent to its molecular structure.  For example, 
Hammett (1937) reasoned that similar changes in structure for different chemicals produced similar 
changes in relative reactivity.  He postulated that the effect of substituents on the structure of benzoic acids 
could be used as a model system to estimate the electronic effects of substituents on similar molecules. The 
more electron attracting the substituent, the more rapid the reaction. Hammett defined a parameter, σ. 
Positive values of σ represented electron withdrawal by the substituent from the aromatic ring and negative 
values indicated electron release. 

229. Although the Hammett equation has been modified and extended, σ constants still remain the 
most general means for estimating the electronic effects of substituents on reaction centres. The power of 
these simple σ values is that they often take into account solution effects on substituents such as hydrogen 
bonding, dipole interactions and so on that are still difficult to calculate. 

230. Hammett’s reasoning was subsequently extended to the development of steric and hydrophobic 
parameters. These extensions have enabled all kinds of structure-activity relationships of chemical 
reactions to be tackled.  

231. Fifty years ago, Hansch proposed a mathematical model which correlated biological activity such 
as plant growth regulatory activity of phenoxyacetic acids to Hammett constants and partition coefficients 
(Hansch et al., 1962). In 1964, Hansch and Fujita (1964) showed that the biological activity could be 
correlated linearly by free-energy related parameters. This approach became known as a Linear Free 
Energy Relationship (LFER) and expressed in the following equation: 

log 1/C = aπ+ bσ+ cES +..........+ constant       (Eq 1) 

when C is the molar concentration of the compound to produce a defined biological response, π is the 
hydrophobic contribution of the substituent and represented by logPX/PH, σ is the Hammett electronic 
descriptor of the substituents (Hammett, 1970), represented by log KX/KH, ES is Taft’s steric parameter 
(Taft, 1956a) and a, b and c are the appropriate coefficients. In these expressions PX and PH are the 
octanol/water partition coefficients of the substituted and unsubstituted compounds, respectively, and KX 
and KH are the ionization constants of the meta- or para-substituted and unsubstituted benzoic acids at 25 
ºC, respectively. 

232.  The work of Hansch provided perhaps the first example of how a (Q)SAR could give 
information concerning mechanism. He and his workers (Hansch et al., 1977) demonstrated the following 
relationship for a set of esters binding to the enzyme papain. 

Log 1/Km = 1.03π3’ + 0.57σ + 0.61MR4 + 3.8    (Eq 2)   
N = 25, r = 0.907, s = 0.208 

Mechanistic interpretation included the observation that the positive sigma term implied that electron 
withdrawing substituents favoured formation of the enzyme substrate complex. This made biological sense 
since the binding to papain involves the electron rich thiol group of a cysteine residue. The positive molar 
refractivity term suggested that bulkier substituents in the 4 position favoured binding. The two parameters 
π4 and MR4 are orthogonal to each other in the dataset implying that a bulk effect rather than a 
hydrophobic effect was important at position 4. The prime sign associated with the π parameter for position 
3 indicated that in cases where there were two meta substituents, the π value of more hydrophobic 
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substituent was used, the other π 3 value being ignored. The rationale for this was that binding of one meta 
substituent to the enzyme placed the other into an aqueous region and therefore outside the enzyme binding 
site (Livingstone, 1995). 

233. Hansch’s early work demonstrated how attempts to rationalize the statistical importance of 
molecular descriptors could be used to generate and test many hypotheses about the mechanisms. The 
Hansch approach to interpreting mechanisms became one of the early methods of describing the active 
sites on proteins by using chemicals as probes into the hydrophobic, electronic, steric nature of receptor 
sites.  Whilst the Hansch approach is mechanistically simple, it is somewhat limited in its breadth of 
application. Typically, Hansch-type QSARs are limited to biological activity involving molecular initiating 
events and causal chain in the toxicity pathway. 

234. The drive to expand the applicability domain of an individual (Q)SAR to be more responsive to 
the number and diversity of chemicals being assessed will generally trade greater coverage of the model at 
the expense of mechanistic relevance.  (Q)SAR experts in regulatory agencies are in the best position to 
balance the uncertainty of models and the need to explain the predictions.  Combining families of 
individual (Q)SAR models using expert systems is a long-term solution to improving the overall 
performance of (Q)SAR predictions; however, before discussion of expert systems, a general explanation 
of the common molecular descriptors is needed. 

Molecular Descriptors 

235. There are two types of parameters used in (Q)SAR models summarized in Table 6.1. Firstly, 
there are those that are derived from a measurable property of the molecule, e.g. the octanol-water partition 
coefficient, vapour pressure, dissociation constants. The experimental methods and data obtained should be 
made available for users. Secondly, there are those parameters used to quantify important attributes of 
chemical structure, or molecular descriptors. In general, each of the molecular descriptors will be 
computed for a given chemicals structure using a formal computational method. Since the molecular 
descriptors make up the important starting point in (Q)SAR predictions, it is essential that the method of 
calculating the molecular descriptors is available to the user and that it can be uniformly applied to the 
chemical structures without ambiguity. It is important that when selecting descriptors upon which to base a 
QSAR, the role that these descriptors play, either in the way the chemical behaves or the way the endpoint 
is expressed, should be known. This is increasingly important now that complex descriptors, based on 
molecular, electronic or quantum mechanical properties of a molecule are becoming easily available. 

236. Descriptors based on measured properties have historically been the most favoured approach 
when generating QSARs. A number of reviews are available which describe many of these approaches 
including those by Verhaar et al. (1995) and by Clements et al. (1993). 

237. The most frequently used parameter, especially in effect QSARs, is log Kow. This is probably 
because log Kow (a measure of hydrophobicity) is considered to reflect the ability of organic substances to 
partition and accumulate in organisms. However, the use of log Kow assumes that the behaviour of 
chemicals under consideration is properly modelled by this parameter. Hence if they partition in some 
other manner rather than passive diffusion or there is significant metabolism or the chemical has a specific 
mode of action, then log Kow is not a reasonable descriptor. 

Presence of Substructures 

238. Early attempts to assess the environmental impact of chemicals by SARs used a limited approach 
based on analogues and chemical class similarities. More recently, QSARs based on the presence of 
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substructures that indicate the potential for biological activity or for expressing a physicochemical property 
have been developed. 

239.  Parameters may be calculated for whole molecules or for well-defined substructures, which 
may be either functional units, e.g. a hydroxyl group, or a clearly defined part of the molecular structure. 

240.  This method has the distinct advantage that very large databases containing structures, are 
available allowing for the assessment of an extensive number of substructures and may also reduce the 
error of predictions based on one result per chemical. However, there are problems that the approach has 
difficulty in handling. For example, electronic interactions between substructures may vary and cannot 
always be anticipated. It follows that substructures which were not present in the original database may not 
be properly assessed. Therefore the approach is best applicable to chemicals containing substructures that 
have previously been evaluated. 

Connectivity Indices 

241. The use of molecular connectivity indices (MCI) is extensively discussed (Kier and Hall, 1986) 
as these are the most successful of all such approaches based on topological information. They can be 
summarised as follows: 

• Path MCI: These are calculated from the non-hydrogen part of a molecule, and can be further 
divided into zero, first, second and higher order MCIs.  The first group are assumed to relate to 
the bulk properties of a chemical, e.g. molecular volume and surface area. Thus Protic and 
Sabljic (1989) described a zero order valence MCI, 0χv, which was used in the development of a 
QSAR for estimating the toxicity of some chemicals to fathead minnows and which they 
suggested was a good approximation for molecular volume.  This is also supported by Govers et 
al. (1984), who found excellent correlation with molecular weight for a series of PAHs. The 
higher order MCIs tend to become more related to local structural features and are then normally 
best used in combination with other parameters (Sabljic, 1991). 

• Cluster and path/cluster MCIs: These are strongly associated with branching in a molecule and 
may have some potential for QSARs requiring steric hindrance descriptors.  This was noted by 
Kuenemann et al. (1990) in the assessment of QSARs for biodegradation. 

• Chain MCIs: These are associated with rings and their substituents. However, although 
potentially useful for describing local properties and effects there have been few attempts to date, 
to use these in QSARs for ecotoxicity. 

242. The principal advantages of MCIs are that they are relatively easy to obtain and can be calculated 
quickly, being based on structure. They are also very flexible, since there are several MCIs available, 
capable of combining and thus incorporating local, as well as bulk properties of a chemical. However, it is 
this very flexibility that also tends to be used as a criticism of QSARs based on MCIs. It is often difficult to 
know what property or feature a particular MCI actually corresponds to in a chemical. Hence it is difficult 
to propose a relationship based on possible behaviour and then relate that to a certain MCI or group of 
MCIs. 

Calculated Structural and Electronic Descriptors 

243. As the speed and availability of computers and software have increased, so has the use of 
calculated electronic descriptors. There are semi-empirical models now available that can calculate many 
electronic descriptors in minutes and even the more powerful and precise ab initio programs take only 
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hours now instead of months for modest sized chemicals. These models calculate the electronic nature of 
chemicals and descriptors that can be measured and some that cannot be directly measured. The following 
is a partial list of descriptors that can be calculated: LUMO (lowest unoccupied molecular orbital) energy, 
HOMO (highest occupied molecular orbital) energy, dipole moment, molecular polarisability, solvent 
accessible surface area, atomic charge on an atom, nucleophilic and electrophilic superdelocalisabilities of 
bonds, atoms and molecules, heat of formation, and the change in free energy of reactions. Many of these 
descriptors are useful in predicting reactivity and since some chemicals are toxic because they react with 
cellular biochemicals to denature them, the descriptors can be used to predict toxicity (Verhaar et al., 1996; 
Purdy, 1991; Lewis, 1992). These descriptors have recently started to be commonly used and so there are 
not yet many QSARs based on them, but the descriptors appear to provide tools to lump chemicals into 
larger classes than the traditional classes based on substructures. It is possible to use electronic descriptors 
to classify chemicals as to the mechanism by which they are toxic and in so doing allow the elimination of 
some testing. An advantage of this type of QSAR for chemicals with previously untested substructures is 
that the electronic or structural descriptors for those substructures can be obtained. However, when using a 
QSAR in this way it is important to remember that this is extrapolating the QSAR and may give rise to 
unreliable values due to unexpected interactions. 

Examples of Mechanistic Interpretations 

244. Benigni et al. (1994) aimed to study some molecular determinants to discriminate between 
mutagenic and inactive compounds for aromatic and heteroaromatic amines and nitroarenes. Using a 
selection of data from the literature (both Ames and SOS repair), he investigated the feasibility of 
developing (Q)SARs. He found a dramatic difference between those (Q)SARs derived for estimating 
potency and those derived for predicting the absence or presence of activity. Hydrophobicity was found to 
play a major role in determining the potency of the active compounds whereas mainly electronic factors 
differentiated the actives from the inactives. The electronic factors were those expected on the basis of 
hypothesised metabolic pathways of the chemicals. Electronic factors together with size/shape appeared to 
determine the minimum requirement for the chemicals to be metabolised whereas hydrophobicity 
determined the extent of activity.  

245. Debnath et al. (1992a) modelled mutagenic potency in the TA98 strain of Salmonella 
typhimurium (+ S9 activation system) and derived the following equation for a set of aminoarenes: 

log TA98 = 1.08 log P + 1.28 HOMO – 0.73 LUMO + 1.46 IL + 7.20  (Eq 3) 
n = 88, r = 0.898 (r2 = 0.806), s = 0.860, F 1,83 = 12.6 

The mutagenic potency (log TA98) was expressed as log (revertants/nmol). IL in the equation was an 
indicator variable that assumed a value of 1 for compounds with three or more fused rings. Overall, the 
principal factor affecting the relative mutagenicity of the aminoarenes was their hydrophobicity (logP). 
Mutagenicity increased with increasing HOMO values; this positive correlation seemed reasonable since 
compounds with higher HOMO values are easier to oxidize and should be readily bioactivated. For the 
negative correlation with LUMO, no simple explanation could be offered. 

246. Barratt (1995) proposed a mechanism-based model for predicting the eye irritation potential of 
neural organic chemicals, as measured in the rabbit draize eye test. A substance which is classified as 
irritating to eyes according to EC criteria is one which causes a defined degree of trauma in the Draize 
rabbit eye test following the instillation of 0.1ml (or equivalent weight) as defined in the EC Annex V 
method (EEC, 1984) and the OECD Test Guideline 405 (OECD, 2002). Neutral organics were described as 
uncharged, carbon-based chemicals which did not possess the potential to react covalently with or to ionize 
under the conditions prevalent in biological systems. Common chemical classes covered by this definition 
were hydrocarbons, alcohols, ethers, esters, ketones, amides, unreactive halogenated compounds, 
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unreactive aromatic compounds and aprotic polar chemicals. Data on 38 neutral organics taken from the 
reference databank of eye irritation data published by ECETOC (European Centre for Ecotoxicology and 
Toxicology) (Bagley et al., 1992) together with 8 chemicals drawn from work by Jacob and Martens (1989) 
was analysed using principal components analysis (PCA). The mechanistic hypothesis underlying this 
(Q)SAR was summarized as follows. Neutral organic chemicals were irritant as a result of the perturbation 
of ion transport across cell membranes. These perturbations arise from changes in the electrical properties 
of the membrane and are related to dipole moments of the perturbing chemicals. In order to affect these 
electrical properties, a chemical must be able to partition into the membrane and hence possess the 
appropriate hydrophobic/hydrophilic properties. An appropriately small cross sectional area allowing it to 
fit easily between lipid components of the membrane was also a requirement. Log P was used as a measure 
of hydrophobicity. The minor principal inertial axes Ry and Rz were used to represent the cross-sectional 
area and the dipole moment was used to model the reactivity. Plots of the first two principal components of 
these parameters showed that PCA was able to discriminate well between the irritant and non-irritant 
chemicals in the dataset. 

247. Abraham and his workers followed a similar mechanistic based approach. In this example a 
collection of data on the Draize rabbit eye test was analyzed (Abraham et al., 1998) using the set of 
Abraham descriptors (Abraham, 1994). These descriptors included R2, excess molar refraction, π2

H 
polarisability/dipolarity, ∑α2

H and ∑β2
H effective hydrogen bond acidity and basicity and Log L16 a 

descriptor where L16 is the vapour-hexadecane solubility at 25°C. A possible model process would be that 
of transfer of a pure organic liquid to a dilute solution in an organic solvent phase. The equilibrium 
constant governing such a model process is known as the activity coefficient, γ°, which may be defined for 
a sparingly soluble liquid as the reciprocal of the solubility of the liquid in the organic solvent phase. 
Abraham defined the solubility of a vapour into a solvent phase as L, where L = (1/γ°)/P°. If the Draize eye 
score (DES) were related to a transport driven mechanism, the transfer process would be from the pure 
organic liquid into an initial biophase that will be the tear film and cell membranes on the surface of the 
eye. The more soluble the organic liquid in the initial phase, the larger the DES and hence greater irritation. 
Thus DES values would be proportional to 1/γ°°, the physicochemical solubility and hence Log(DES/P°) = 
Log L where P° is the saturated vapour pressure in ppm at 25°C. A general equation for the correlation and 
prediction of a series of Log L values for solutes into a given condensed phases had already been 
established.  

Log SP = c + r R2, + sπ2
H +a ∑α2

H +b ∑β2
H + 1. Log L16    (Eq 4) 

Application of Eq 4 to Log(DES) values yielded an extremely poor correlation but when Log(DES/P°) was 
used as the dependent variable, a strong relationship (Eq 5) was found. 

Log(DES/P°) = - 6.955 + 0.1046π2
H + 4.437 ∑α2

H + 1.350 ∑β2
H + 0.754 Log L16   (Eq 5) 

n = 37, r2 = 0.951, SD = 0.32, F = 155.9  

On transforming the calculated Log(DES/P°) values back to calculated DES values, there was good 
agreement with the original DES values (Eq 6).  

Log(DES)obs = 0.022 + 0.979 Log(DES)calc     (Eq 6) 
n = 37, r2 = 0.771, SD = 0.3, F = 117.6 

It was suggested that the DES/ P° values referred to the transfer of the irritants from the vapour phase to 
the biophase and hence that a major factor in the Draize eye test was simply the transfer of the liquid (or 
the vapour) to the biological system.  
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248.  Models for skin sensitisation have varied from those based on an a priori approach to those 
interpreted a posteriori. An example of both is described here. The first physicochemical mathematical 
model for skin sensitisation was the RAI (Relative Alkylation Index) model (Roberts and Williams, 1982). 
This index quantifies the relative extent of sensitiser binding to the skin protein as a function of the dose 
given, the chemical reactivity (which could be expressed in the terms of the measured rate constants for 
reaction with a model nucleophile, in terms of Taft or Hammett substituent constants or in terms of 
computed molecular orbital indices) and hydrophobicity expressed as the octanol/water partition 
coefficient. The general form of the RAI expression is: 

RAI = Log D + a Log k + b Log P        (Eq 7) 

where D is dose, k is the relative rate constant and P is the octanol/water partition coefficient. Log P here 
models both penetration and lipid/polar fluid partitioning. 

249. Topological indices are often thought of as being different to interpret. In this example a model 
for skin sensitisation was developed relating the potency of a set of 93 diverse chemicals to a range of 
topological indices (Estrada et al., 2003). The indices used in the final model accounted for hydrophobicity 
(H), polar surface area (PS), molar refractivity (MR), polarisability (PSR), charges (GM), van der Waals 
radii (VDW). Such parameters can be assigned as relevant in the context of skin sensitisation in that 
partition could be modelled by hydrophobicity, polar surface area, molar refractivity, van der Waals radii 
as bulk parameters and the reactivity accounted for by polarisability and charges. The Topological Sub-
Structural Molecular Design (TOPS-MODE) approach used in this example is based on the method of 
moments (Estrada, 1996, 1997, 1998). The approach consists of using the topological bond matrix (edge 
adjacency matrix) of the molecular graph. Bond weights in the main diagonal entries of the bond matrix 
are used to account for effects that could be involved in biological processes. An advantage with this 
approach is that a structural interpretation of TOPS-MODE results can be carried out by using the bond 
contributions to skin sensitization. These are calculated on the basis of the local moments which are 
defined as the diagonal entries of the different powers of the weighted bond matrix. This provides a 
mechanistic interpretation at a bond level and enables the generation of new hypotheses such as structural 
alerts. 

250. The following (Q)SAR, taken from the European Technical Guidance Document for chemical 
risk assessment (European Commission, 1996), predicts the acute toxicity of organic chemicals to the 
fathead minnow (Pimephales promelas). The equation developed was: 

Log (LC50) = -0.846 log Kow - 1.39        (Eq 8) 

where LC50 is the concentration (in moles per litre) causing 50% lethality in Pimephales promelas, after an 
exposure of 96 hours; and Kow is the octanol-water partition coefficient.  

251. The (Q)SAR was developed for chemicals considered to act by a single mechanism of toxic 
action, non-polar narcosis, as defined by Verhaar et al. (1992), and therefore has a clear mechanistic basis. 
In fact, non-polar narcosis is one of the most established mechanisms of toxic action. Non-polar narcosis 
has been established experimentally by using the Fish Acute Toxicity Syndrome methodology (McKim et 
al., 1987). The (Q)SAR is based on a descriptor for hydrophobicity (log Kow), which is relevant to the 
mechanism of action, i.e. toxicity results from the accumulation of molecules in biological membranes.  

Expert Systems 

252. An expert system for predicting toxicity is considered to be any formalised system not 
necessarily computer based, which enables a user to obtain rational predictions about the toxicity of 
chemicals. All expert systems for the prediction of chemical toxicity are built upon experimental data 
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representing one or more manifestations of chemicals in biological systems (the database) and/or rules 
derived from such data (the rulebase). Individual rules within the rulebase are generally of two main types. 
Some rules are based on mathematical induction whereas other rules are based on existing knowledge and 
expert judgement. Typically induced rules are QSARs whereas expert rules are often based on knowledge 
about reactive chemistry. Expert systems are sometimes characterized according to the nature of the rules 
in their rulebase. An expert system based primarily on statistically induced rules is sometimes called an 
“automated rule-induction system”, whereas a system based primarily on expert rules is referred to as a 
“knowledge based system” (Dearden et al., 1997). The following two examples, referring to ECOSAR and 
Derek for Windows, outline the mechanistic interpretation for these two types of expert system. 

253. As part of the work by the OECD (Q)SAR Group, the ECOSAR tool was evaluated with respect 
to the OECD Principles (OECD, 2004; ECOSAR, 1996, 1998, 2000, 2005) predicts defined endpoints as 
required by the US EPA regulatory framework, such as acute L(E)C50 and long-term NOECs for fish, 
daphnids and algae. The (Q)SAR equations are based on linear regression analysis, using log Kow as the 
sole descriptor for predicting the L(E)C50 values (except for the class of surfactants). There is no explicit 
description of the chemical classes or the exclusion rules. The (Q)SAR for neutral organics is based on the 
assumption that all chemicals have a minimal toxicity based on the interference of the chemical with 
biological membranes, which can be modelled by the octanol-water partition coefficient (Kow). All other 
chemical classes show excess toxicity compared to the neutral organics.  

254. Derek for Windows is a knowledge-based expert system created with knowledge of structure-
toxicity relationships and an emphasis on the need to understand mechanisms of action and metabolism. 
The Derek knowledge base covers a broad range of toxicological endpoints, including mutagenicity, 
carcinogenicity and skin sensitisation. 

255. The expert knowledge incorporated into the Derek for Windows system originated from 
Sanderson and Earnshaw (Sanderson et al., 1991). These workers identified a series of ‘structural alerts’ 
associated with certain types of toxic activity. The Derek knowledge base was written, developed and 
continues to be enhanced by Lhasa Ltd and its members at the School of Chemistry, University of Leeds, 
UK. Lhasa Ltd is a non-profit making collaboration consisting of the University of Leeds and various other 
educational and commercial institutions (including agrochemical, pharmaceutical and regulatory 
organizations) created to oversee the development of the Derek for Windows system and the evolution of 
its toxicity knowledge base. 

256. Derek for Windows provides an explicit description of the substructure and substituents. When a 
query structure is processed, the alerts that match are displayed in a hierarchy called the prediction tree and 
are highlighted in bold in the query structure. The prediction tree includes the endpoint, the species and 
reasoning outcome, the number and name of the alert, and the example from the knowledge base if it 
exactly matches the query structure. The alert description provides a description depicting the structural 
requirement for the toxicophore detected and a reference to show the bibliographic references used. Some 
rules are extremely general with substructures only taking into account the immediate environment of a 
functional group. This means that remote fragments that may modulate a toxicity are not always taken into 
consideration. In other cases, the descriptions are much more specific.  

257. All the rules in Derek are based on either hypotheses relating to mechanisms of action of a 
chemical class or observed empirical relationships, the ideas for which come from a variety of sources, 
including published data or suggestions from the Derek collaborative group. This group consists of 
toxicologists who represent Lhasa Ltd and customers who meet at regular intervals to give advice and 
guidance on the development of the databases and rulebases. The hypotheses underpinning each alert are 
documented in the alert descriptions as comments. These comments often include descriptions of features 
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acting as electrophiles or nucleophiles. However, the detail depends on the specific alert. Some alerts 
contain no comments, apart from the modulating factors of skin penetration. 

Artificial Intelligence systems 

258. Many of the models so far discussed involve the use of transparent algorithms, typically 
regression equations where the mechanistic interpretation is achieved by interpreting the descriptors, the 
size of their coefficients, and perhaps the mathematical form of the equation. In contrast, AI-based models 
are sometimes considered to be non-transparent, since the algorithms are deeply embedded.  

259. For example, Kohonen networks are specific types of networks that can provide mechanistic 
insights. Graphical representations of individual layers may indicate the roles of individual descriptors in 
the model. When a new compound is presented to the model it will be located on a defined position in the 
Kohonen network. Its mechanism of activity may be deduced from the mechanisms of neighbouring 
compounds. 

Concluding remarks 

260. There are many types of different types of modelling approaches. In this chapter, guidance is 
presented through the use of examples, to illustrate how to consider mechanism in the context of different 
types of model. 

261. The mechanistic rationale of a (Q)SAR can be established a priori, in which case the descriptors 
are selected before modelling on the basis of their known or anticipated role in driving the response, or a 
posteriori, in which case the descriptors are selected on the basis of statistical fit alone, with their 
mechanistic rationale being rationalised after modelling. Models can also be developed by a combination 
of these two approaches. 

262. In the case of a QSAR with continuous descriptors, a mechanistic interpretation can be based on 
the physicochemical interpretation of each descriptor and its association with a mode or mechanism of 
action. The magnitudes of the model coefficients and model structure might also be taken into 
consideration. 

263. In the case of a SAR, a mechanistic interpretation can be based on the chemical reactivity or 
molecular interaction of the substructure.  

264. In the case of expert systems, it is not possible to generalise how a mechanistic interpretation 
could be assigned, due to the variety of such systems. Some systems are based primarily on expert 
knowledge, whereas others are based primarily on learned rules. For example, Derek for Windows is based 
on the use of multiple structural alerts, each of which has its own scientific supporting evidence; whereas 
METEOR and CATABOL incorporate a significant amount of information on known metabolic pathways.  

265. The architecture of neural network models does not generally correspond in any obvious way 
with underlying mechanisms of action. 
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Table 6.1. Commonly used molecular descriptors in QSAR studies 

 Molecular descriptor Physicochemical interpretation Examples of QSAR 
applications  

Logarithm of the Partition 
coefficient: 
log P = log (Corg /Cwater) 
Corg = concentration of the 
non-ionised solute in the 
organic phase 
Cwater = concentration of the 
non-ionised solute in the 
water phase 

Describes the distribution of a 
compound between organic (usually 
n-octanol) and water phase 
logP>0 – greater solubility in the 
organic phase; 
logP<0 – greater solubility in the 
aqueous phase. 
Measure of hydrophobicity / 
lipophilicity 

Many applications in QSAR 
analysis of toxicological data 
sets (Cronin et al., 2002) 

Hydrophobic substituent   
constant (π) : 
πX = logPR-X – logPR-H 
logPR-H = logP of the parent 
compound 
logPR-X = logP of X 
substituted derivative  

Describes the contribution of a 
substituent to the lipophilicity of a 
compound. 

QSAR for mutagenicitiy of 
substituted N-nitroso-N-
benzylmethylamines (Singer et 
al., 1986; Benigni, 2005) 

Hammett electronic 
substituent constant (σ ): 
log(Kax/KaH) = ρσ 
KaH = acid dissociation 
constant of benzoic acid 
Kax = acid dissociation 
constant of X substituted 
derivative of benzoic acid 
ρ = a series constant 

Describes the electron-donating or -
accepting properties of an aromatic 
substituent, in the ortho, meta and 
para positions. 

QSARs of the relative toxicities 
of monoalkylated or 
monohalogenated benzyl 
alcohols (Schultz et al., 1988) 

Taft steric parameter (ES) : 

SEkk δσρ ++= **
0loglog  

σ* = polar substituent 
constant 
ρ = constant 

Steric substituent constant. 
Describes the intramolecular steric 
effects on the rate of a reaction. 

Original reference of the 
formulation of Taft steric 
parameter (Taft, 1956b) 

Aqueous solubility (Saq) : 
The maximum concentration 
of the compound that will 
dissolve in pure water at a 
certain temperature, at 
equilibrium 

Measures the hydrophilicity of a 
compound  

QSARs for fish bioconcentration 
factor (Dearden and Shinnawei, 
2004) 

Molecular refractivity 
(MR): 
MR = [(n2–1)/(n2+ 2)]*M/ρ 
n = refractive index 
M = relative molecular mass 
ρ = density 

Describes the size and polarizability 
of a fragment or molecule. It could 
be considered as both an electronic 
and a steric parameter. 

QSARs for binding of 
tetrahydroisoquinoline 
derivatives with dstrogen 
receptors (Hansch et al., 2003) 

Dissociation Constant (pKa) Describes extent of ionization of a 
compound. 
Reflects electron-directing effects of 
substitutents. 

QSARs for relative toxicity of 
monosubstituted phenols 
(Schultz et al., 1992) 
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Table 6.1. Commonly used molecular descriptors in QSAR studies (cont.) 

Dipole moment 
Determined via experimental 
measurement of dielectric 
constant, refractive index and 
density, or calculated using 
molecular orbital theory 

Describes separation of charge 
(polarity) in a molecule, and also 
considered as measure of 
hydrophilicity. Hypothesised to 
reflect the influence of electrostatic 
interactions with biological 
macromolecules (Dearden, 1990) 

QSARs for eye irritation of 
neutral organic chemicals 
(Barratt, 1995) 

Atomic charge 
Calculated by different 
molecular orbital methods 

Descriptor that determines the 
electrostatic potential around a 
molecule, thus influencing 
intermolecular interactions with 
electrostatic nature. 

QSARs for mutagenicity of 
quinolines (Debnath et al., 
1992b) 

HOMO (Highest Occupied 
Molecular Orbital) and 
LUMO (Lowest Unoccupied 
Molecular Orbital) reactivity 
indices. 
Calculated using molecular 
orbital theory. 

Descriptors of molecular orbital 
energies. The HOMO energy 
describes the nucleophilicity of a 
molecule, whereas the LUMO 
energy describes electrophilicity. 

 
 

Mutagenicity of aromatic and 
heteroaromatic amines (Debnath 
et al., l992a) 
 

Hydrogen bonding 
Various measures have been 
proposed. 

Descriptors of chemical reactivity 
(electrostatic interactions between 
molecules). Hydrogen-bond donors 
are proton donors (electronegative 
atoms or groups) and hydrogen-
bond acceptors are groups with the 
capacity to donate a lone electron 
pair. 

Modelling of aquatic toxicity of 
environmental pollutants 
(Raevsky and Dearden, 2004) 

Molecular weight (MW) 
and Molecular volume 
(MV): 
MV = MW/ρ 
ρ - density 
 

Simple molecular size descriptors. QSPR models for in vivo blood-
brain partitioning of diverse 
organic compounds (Hou and 
Xu, 2003) 
QSARs of a series of xanthates 
as inhibitors and inactivators of 
cytochrome P450 2B1 
(Lesigiarska et al., 2002) 

Molecular surface area 
(MSA) 
 

Size descriptor defined on the basis 
of the van der Waals surface of an 
energy minimised molecule by 
excluding gaps and crevices 

Prediction of blood-brain 
partitioning  for structurally 
diverse molecules (Kaznessis et 
al., 2001) 
 

Topological Descriptors 
Numerous types have been 
proposed, e.g. Wiener, 
Randić, Zagreb, Hosoya, 
Balaban, Kier and Hall 
molecular connectivity 
indices, kappa indices 
 

Descriptors based on chemical 
graph theory, calculated from the 
connectivity tables of molecules. 
 
Used to express different aspects of 
the shape and size of molecules, 
including degree of branching, and 
flexibility. 

Modelling structural 
determinants of skin sensitisation 
(Estrada, et al., 2003) 
QSAR of Phenol Toxicity (Hall 
and Vaugh, 1997) 
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Table 6.1. Commonly used molecular descriptors in QSAR studies(cont.) 

Electrotopological 
descriptors 

Atom-based topological descriptors 
that encode information about the 
topological environment and 
electronic interactions of the atom. 

QSAR Models for Antileukemic 
Potency of Carboquinones 
(Gough and Hall ,1999) 

Electronic Density Function 
(ρ)  
 
Obtained from Quantum 
Chemical Calculations. 

Descriptors of molecular similarity, 
based on electrostatic and steric 
interactions of the molecule 

QSAR of antimycobacterial 
benzoxazines (Gallegos et al., 
2004) 
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ANNEX A. OECD PRINCIPLES FOR THE VALIDATION, FOR REGULATORY PURPOSES, 
OF (QUANTITATIVE) STRUCTURE-ACTIVITY RELATIONSHIP MODELS 

These principles were agreed by OECD member countries at the 37thJoint Meeting of the Chemicals 
Committee and Working Party on Chemicals, Pesticides and Biotechnology in November 2004. The 
principles are intended to be read in conjunction with the associated explanatory notes which were also 
agreed at the 37thJoint Meeting. 

 

To facilitate the consideration of a (Q)SAR model for regulatory purposes, it should be associated with the 
following information: 

1) a defined endpoint1 

2) an unambiguous algorithm2 

3) a defined domain of applicability3 

4) appropriate measures of goodness-of–fit, robustness and predictivity4 

5) a mechanistic interpretation, if possible5 

Notes 

1. The intent of Principle 1 (defined endpoint) is to ensure clarity in the endpoint being predicted by a 
given model, since a given endpoint could be determined by different experimental protocols and 
under different experimental conditions. It is therefore important to identify the experimental 
system that is being modeled by the (Q)SAR. Further guidance is being developed regarding the 
interpretation of “defined endpoint”. For example, a no-observed-effect level might be considered 
to be a defined endpoint in the sense that it is a defined information requirement of a given 
regulatory guideline, but cannot be regarded as a defined endpoint in the scientific sense of 
referring to a specific effect within a specific tissue/organ under specified conditions. 

2. The intent of Principle 2 (unambiguous algorithm) is to ensure transparency in the model algorithm 
that generates predictions of an endpoint from information on chemical structure and/or 
physicochemical properties. It is recognized that, in the case of commercially-developed models, 
this information is not always made publicly available. However, without this information, the 
performance of a model cannot be independently established, which is likely to represent a barrier 
for regulatory acceptance. The issue of reproducibility of the predictions is covered by this 
Principle, and will be explained further in the guidance material. 

3. The need to define an applicability domain (Principle 3) expresses the fact that (Q)SARs are 
reductionist models which are inevitably associated with limitations in terms of the types of 
chemical structures, physicochemical properties and mechanisms of action for which the models 
can generate reliable predictions. Further work is recommended to define what types of 
information are needed to define (Q)SAR applicability domains, and to develop appropriate 
methods for obtaining this information. 
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4. The revised Principle 4 (appropriate measures of goodness-of–fit, robustness and predictivity) 
includes the intent of the original Setubal Principles 5 and 6. The wording of the principle is 
intended to simplify the overall set of principles, but not to lose the distinction between the internal 
performance of a model (as represented by goodness-of-fit and robustness) and the predictivity of a 
model (as determined by external validation). It is recommended that detailed guidance be 
developed on the approaches that could be used to provide appropriate measures of internal 
performance and predictivity. Further work is recommended to determine what constitutes external 
validation of (Q)SAR models. 

5. It is recognised that it is not always possible, from a scientific viewpoint, to provide a mechanistic 
interpretation of a given (Q)SAR (Principle 5), or that there even be multiple mechanistic 
interpretations of a given model. The absence of a mechanistic interpretation for a model does not 
mean that a model is not potentially useful in the regulatory context. The intent of Principle 5 is not 
to reject models that have no apparent mechanistic basis, but to ensure that some consideration is 
given to the possibility of a mechanistic association between the descriptors used in a model and 
the endpoint being predicted, and to ensure that this association is documented. 
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ANNEX B. CHECK LIST FOR THE OECD PRINCIPLES FOR (Q)SAR VALIDATION 

The OECD Principles for (Q)SAR validation encourage (Q)SARs to be associated with the following 
information: 

1. a defined endpoint 

2. an unambiguous algorithm 

3. a defined domain applicability 

4. appropriate measures of goodness-of-fit, robustness and predictivity 

5. a mechanistic interpretation, if possible 

This annex provides a series of questions associated with each principle, intended to provide an 
overview of the main considerations associated with the application of each principle. The questions are 
neither intended to be definitive, nor equally relevant for a given type of model. 
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CHECK LIST FOR PROVIDING GUIDANCE ON THE INTERPRETATION OF 
THE OECD PRINCIPLES FOR (Q)SAR VALIDATION 

 
 
 
PRINCIPLE CONSIDERATIONS  

  Is the following information available for the model? 
 
Yes/No/NA 

1) Defined endpoint 

1.1 A clear definition of the scientific purpose of the model (i.e. does it make 
predictions of a clearly defined physicochemical, biological or 
environmental endpoint)? 

 

1.2 The potential of the model to address (or partially address) a clearly 
defined regulatory need (i.e. does it make predictions of a specific 
endpoint associated with a specific test method or test guideline)? 

 

1.3 Important experimental conditions that affect the measurement and 
therefore the prediction (e.g. sex, species, temperature, exposure period, 
protocol)? 

 

1.4 The units of measurement of the endpoint?  

2) Defined algorithm 

2.1 In the case of a SAR, an explicit description of the substructure, 
including an explicit identification of its substituents? 

 

2.2 In the case of a QSAR, an explicit definition of the equation, including 
definitions of all descriptors? 

 

3) Defined domain of applicability 

3.1 In the case of a SAR, a description of any limits on its applicability (e.g. 
inclusion and/or exclusion rules regarding the chemical classes to which 
the substructure is applicable)?  

 

3.2 In the case of a SAR, rules describing the modulatory effects of the 
substructure’s molecular environment? 

 

3.3 In the case of a QSAR, inclusion and/or exclusion rules that define the 
following variable ranges for which the QSAR is applicable (i.e. makes 
reliable estimates): 

a) descriptor variables? 

b) response variables? 

 

3.4 A (graphical) expression of how the descriptor values of the chemicals in 
the training set are distributed in relation to the endpoint values predicted 
by the model? 
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4A) Internal performance  

4.1 Full details of the training set given, including details of: 

a) number of training structures 

b) chemical names 

c) structural formulae 

d) CAS numbers  

e) data for all descriptor variables 

f) data for all response variables  

g) an indication of the quality of the training data? 

 

4.2 a) An indication whether the data used to the develop the model 
were based upon the processing of raw data (e.g. the averaging of 
replicate values) 

b) If yes to a), are the raw data provided? 

c) If yes to a), is the data processing method described? 

 

4.3 An explanation of the approach used to select the descriptors, including: 

a) the approach used to select the initial set of descriptors 

b) the initial number of descriptors considered  

c) the approach used to select a smaller, final set of descriptors 
from a larger, initial set  

d) the final number of descriptors included in the model ? 

 

4.4 a) A specification of the statistical method(s) used to develop the 
model (including details of any software packages used)  

b) If yes to a), an indication whether the model has been 
independently confirmed (i.e. that the independent application of the 
described statistical method to the training set results in the same 
model)? 

 

4.5 Basic statistics for the goodness-of-fit of the model to its training set (e.g. 
r2 values and standard error of the estimate in the case of regression 
models)? 

 

4.6 a) An indication whether cross-validation or resampling was 
performed  

b) If yes to a), are cross-validated statistics provided, and by which 
method? 

c) If yes to a), is the resampling method described? 

 

4.7 An assessment of the internal performance of the model in relation to the 
quality of the training set, and/or the known variability in the response? 
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4B) Predictivity 

4.8 An indication whether the model has been validated by using a test set 
that is independent of the training set? 

 

4.9 If an external validation has been performed (yes to 4.8), full details of 
the test set, including details of: 

a) number of test structures 

b) chemical names 

c) structural formulae 

d) CAS numbers  

e) data for all descriptor variables 

f) data for all response variables 

g) an indication of the quality of the test data? 

 

4.10 If an external validation has been performed (yes to 4.8): 

a) an explanation of the approach used to select the test structures, 
including a specification of how the applicability domain of the 
model is represented by the test set ? 

b) was the external set sufficiently large and representative of the 
training data set?  

c) a specification of the statistical method(s) used to assess the 
predictive performance of the model (including details of any 
software packages used) 

d) a statistical analysis of the predictive performance of the model 
(e.g. including sensitivity, specificity, and positive and negative 
predictivities for classification models)  

e) an evaluation of the predictive performance of the model that 
takes into account the quality of the training and test sets, and/or 
the known variability in the response 

f) a comparison of the predictive performance of the model against 
previously-defined quantitative performance criteria? 

 

5) Mechanistic interpretation 

5.1 In the case of a SAR, a description of the molecular events that underlie 
the properties of molecules containing the substructure (e.g. a description 
of how substructural features could act as nucleophiles or electrophiles, 
or form part or all of a receptor-binding region)? 

 

5.2 In the case of a QSAR, a physicochemical interpretation of the 
descriptors that is consistent with a known mechanism of (biological) 
action? 
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5.3 Literature references that support the (purported) mechanistic basis?  

5.4 An indication whether the mechanistic basis of the model was 
determined a priori (i.e. before modelling, by ensuring that the initial set 
of training structures and/or descriptors were selected to fit a pre-defined 
mechanism of action) or a posteriori (i.e. after the modelling, by 
interpretation of the final set of training structures and/or descriptors) ? 
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ANNEX C. REPORTING FORMATS FOR (Q)SARS VALIDATION  

Introduction 

A (Q)SAR Model Reporting Format (QMRF) is a framework for structuring and summarising key 
information about a model, to provide the end-user with details on: a) the source of the model (including 
the developer, where known); b) model type; c) model definition; d) the development of model; e) the 
validation of the model; and f) possible applications of the model.  

The QMRF should be regarded as a communication tool. It draws on some of the information 
provided by applying the OECD Principles for QSAR validation, but it is not intended in itself to be a 
complete characterisation of the model.  

The QMRF should involve an input from the developer(s) and/or proponent of the model, as well as 
information from any evaluation studies performed with the model. 

QMRFs will need to include specific information associated with particular kinds of models. It 
therefore needs to be investigated, depending on the level of resolution desired in the format, whether a 
single format can be applied to all models, or whether certain kinds of models (e.g. MultiCase models) will 
need additional fields to capture model-specific information. 

The QMRF should not be confused with the reporting formats used to provide QSAR estimates for 
chemicals that are registered/notified within a given regulatory programme, even though such formats are 
likely contain similar information fields. 

Case Studies 

In this Annex, case studies for reporting QSAR validation using the QMRF are given for the 
following models: 

1. Derek for Windows Model for Skin Sensitisation 

2. MULTICASE Model for In Vitro Chromosomal Aberrations in Mammalian Cells  

3. Fish Acute Neutral Organics 96-hour (Q)SAR, a constituent of  ECOSAR 

4. CATABOL for Biodegradation 

5. BIOWIN for Biodegradation  

QPRF and TERF 

The (Q)SAR Prediction Reporting Format (QPRF) will explain how an estimate has been derived by 
applying a specific model or method to a specific substance. This should include information on the model 
prediction(s), including the endpoint, a precise identification of the substance modelled, the relationship 
between the modelled substance and the defined applicability domain, and the identities of close analogues. 
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In the overall assessment of a given chemical, it will often be necessary to integrate the QSAR 
estimates with other sources of information (e.g. in vitro and in vivo test data). This data integration should 
be based on “weight-of-evidence” considerations, which could be perhaps better thought of as “totality-of-
evidence” considerations, because it is not necessarily the case that weights will be attached to individual 
pieces of information. It is proposed that this level of integration should be documented in detail in a 
Totality of Evidence Reporting Format (TERF). The reasoning and assessments for a given substance and 
given endpoint included in the QMRF and QPRF (or multiple QMRFs and QPRFs) could be carried over 
to (or referenced in) the TERF. Collectively, these three levels of reporting formats would provide an 
comprehensive description of the use of the (Q)SAR and other approaches applied during the risk 
assessment of a given substance for a specific endpoint.  

No definitive formats for QPRF and TERF are proposed in this document. These types of formats are 
likely to evolve over time. Draft versions have been developed by the European Chemicals Bureau. Details 
and developments could be found on the website of the European Chemicals Bureau's QSAR Action 
[http://ecb.jrc.it/QSAR/, accessed 7 February 2007]. 
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CASE STUDY 1: Derek for Windows Model for Skin Sensitisation 

 

1. QSAR identifier 

Derek for Windows skin sensitisation rulebase. Version No 9 

Note: Version 9 is the latest version. The reporting format is written largely independent of the version 
in the case of Derek. 

2. Source 

2.1 Reference(s) to scientific papers and/or software package:  

• Barratt, M.D., et al. (1994), "An Expert System Rulebase for Identifying Contact Allergens", 
Toxicology in Vitro, 8, 1053-1060. 

• Barratt, M.D. and J.J. Langowski (1999), "Validation and Subsequent Development of the Derek 
Skin Sensitisation Rulebase by Analysis of the BgVV List of Contact Allergens", Journal of 
Chemical Information and Computer Science, 39, 294-298. 

• Greene, N. (2002), "Computer Systems for the Prediction of Toxicity: an Update", Advanced 
Drug Delivery Reviews, 54, 417-431. 

• Greene, N., et al. (1999), "Knowledge-based Expert Systems for Toxicity and Metabolism 
Prediction: DEREKfW, StAR and METEOR", SAR and QSAR in Environmental Research, 10, 
299-314. 

• Sanderson, D.M. and C.G. Earnshaw (1991), "Computer Prediction of Possible Toxic Action 
from Chemical Structure; The DEREK System", Human and Experimental Toxicology, 10, 261-
273. 

• Zinke, S., I. Gerner and E. Schlede (2002), "Evaluation of a Rule Base for Identifying Contact 
Allergens by Using a Regulatory Database: Comparison of Data on Chemicals Notified in the 
European Union with ‘Structural Alerts’ Used in the DEREKfw Expert System", ATLA 30, 285-
298. 

2.2 Date of publication:  

A number of publications though key dates are notably 1986 when the first Derek system was 
created at Schering Agrochemicals in the UK and 1989 when Lhasa Ltd. adopted the Derek system 
and began coordinating the main development of the structure-toxicity knowledge base.  

2.3 Identification of the model developer(s)/authors:  

              Lhasa Limited 
              LHASA is the acronym for Logic and Heuristics Applied to Synthetic Analysis. 
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2.4 Contact details of the model developer(s)/authors: 

22-23 Blenheim Terrace,  
Woodhouse Lane,  
Leeds LS2 9HD  
UK 
 
Tel: +44 (0)113 394 6020  
Fax: +44 (0)113 394 6099  
Email: info@lhasalimited.org  
Web: www.lhasalimited.org  

2.5          Indication of whether the model is proprietary or non-proprietary:  

 Model is proprietary, the datasets within are taken from both public and proprietary sources.  

3. Type of model 

3.1  2D SAR  
3.2  3D SAR (e.g. pharmacophore) 
3.3  Regression-based QSAR 
3.4  3D QSAR 
3.5  Battery of (Q)SARs 

(overall prediction depends on application of multiple models/rules) 
3.6  Expert system 

(overall prediction depends on application of multiple models/rules and use of data in a 
knowledge base) 

3.7  Neural network 
3.8  Other 

4. Definition of the model 

4.1 Dependent variable: 

4.1.1 Species 

The relevant test guideline determines which species underpins the toxicity information used. In the 
case of skin sensitisation, this will be predominantly the guinea pig and the mouse from Guinea Pig 
Maximisation Tests (GPMT)/Buehler and Local Lymph Node Assay (LLNA) tests. More detailed 
information on these test protocols can be found in OECD Guidelines 406 and 429 respectively. In addition 
there will be some rules that are based on human data (e.g. from the Human Repeat Insult Test (HRIPT) or 
maximisation test). 

4.1.2 Endpoint (including exposure time) 

The endpoint modelled is the overall endpoint without specific reference to a given test guideline. 
Derek makes qualitative predictions of skin sensitisation using a range of different and available data 
principally that from the public domain but additionally proprietary data from its members where feasible. 
The data might be categorical in nature in providing a yes/no answer of whether a compound is a sensitiser 
e.g. a R43 classification or it might be quantitative providing a measure of relative potency e.g. an EC3 
from the LLNA. In all cases, Derek provides an estimate of the presence of a potential skin sensitisation 
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hazard in the form of structural alerts and related supporting information. It does not provide information 
on the relative potency of a skin sensitiser i.e. a compound might be identified as a sensitiser but Derek 
will not discriminate between a weak, extreme or moderate sensitiser. 

4.1.3 Units of measurement 

Qualitative predictions are made which do not incorporate any specific unit of measurement. 

4.1.4 Reference to specific experimental protocol(s) 

The skin sensitisation data encoded within Derek includes both public and proprietary data generated 
through a number of different test methods including GPMT, Buehler, LLNA, Mouse Ear Swelling test, 
human maximisation test as well as the HRIPT. The earlier alerts were based on GPMT, more recent alerts 
have been based on LLNA data. Information about the experimental conditions is only provided in the 
references associated with a given alert. Since only a subset of these is fully referenced, the quality of the 
data used in the derivation of an alert can not be fully verified. However where possible and practically 
feasible - the data is evaluated by Lhasa Ltd for its quality, robustness and suitability of use within an alert. 

4.2 Number of descriptors used as independent variables:  

There are no independent variables, and no mathematical equation as this is a SAR model. Some of 
the structural alerts are published (see Barratt et al. (1994, 1999) of Section 2.1 for examples). 

4.3 Identification of descriptors (names, symbols):  

Not applicable 

4.4 Explicit algorithm for generating predictions from the descriptors: 

Derek provides an explicit description of the substructure and substituents. When a query structure is 
processed, the alerts that match are displayed in a hierarchy called the prediction tree and are highlighted in 
bold in the query structure. The prediction tree includes the endpoint, the species and reasoning outcome, 
the number and name of the alert, and the example from the knowledge base if it exactly matches the query 
structure. The alert description provides a description depicting the structural requirement for the 
toxicophore detected and a reference to show the bibliographic references used. Some rules are extremely 
general with substructures only taking into account the immediate environment of a functional group. In 
other cases, the descriptions are much more specific. This means that remote fragments that may modulate 
sensitisation are not always taken into consideration in the assessment. 

4.5 Goodness-of-fit statistics 

Derek does not provide the full details of the training data used to develop an alert. Only a subset of 
the references and example chemicals used to develop the alert are provided for illustrative purposes.  

4.6 Information on the applicability domain of the model  

Derek includes some inclusion/exclusion rules associated with an alert. These are documented in the 
alert description as particular substituents. For some sensitisation rules there are very clear descriptions of 
what is covered by a specific substructure, in other cases the rules are extremely general, e.g. alpha,beta-
unsaturated carbonyls vs. alkyl halides. Physicochemical parameters namely Log Kow and Molecular 
Weight are used to limit the domain by accounting for skin penetration. Whilst the domain has not been 
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defined as such, Derek is able to make reasonable estimates for many organic compounds and metals. It 
can not make predictions for polymers. There are no negative alerts for skin sensitisation. 

4.7 Information on the mechanistic basis/interpretation of the model  

All the rules in Derek are based on either hypotheses relating to mechanisms of action of a chemical 
class or observed empirical relationships, the ideas for which come from a variety of sources, including 
published data or suggestions from the Derek collaborative group. This group consists of toxicologists who 
represent Lhasa Ltd. and members who meet at regular intervals to give advice and guidance on the rule 
development work and predictions made by the program. The hypotheses underpinning each alert are 
documented in the alert descriptions as comments. These comments often include descriptions of features 
acting as electrophiles or nucleophiles. However, the detail depends on the specific alert. Some alerts 
contain no comments, aside from the modulating factors of skin penetration. 

5. Development of the model 

5.1 Explanation of the method (approach) used to generate each descriptor 

Any information would be found in the comments section of the alert but this is not systemically 
provided. 

5.2 Selection of descriptors 

5.2.1 Indication of initial number of descriptors screened 

Not applicable 

5.2.2       Explanation of the method (approach) used to select the descriptors and develop the model 
from them 

Not applicable. 

5.2.3 Indication of final number of descriptors included in the model:  

Not applicable 

5.3 Information on experimental design for data splitting into training and validation sets. 

Not applicable 

5.4 Availability of the training set 

5.4.1  Chemical names (common names and/or IUPAC names) 
5.4.2  CAS numbers 
5.4.3  1D representation of chemical structure (e.g. SMILES) 
5.4.4  2D representation of chemical structure (e.g. ISIS sketch file) 
5.4.5  3D representation of chemical structure (e.g. MOL file) 
5.4.6  Data for each descriptor variable 
5.4.7  Data for the dependent variable 

 
Derek rules describe generalised structure-activity relationships and do not record internally the 

specific chemical structures on which they are based. Derek is a knowledge base as opposed to a database. 
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This means it is possible to use data from confidential sources as a basis for new rules without revealing 
exact chemicals to end-users. This provides a means by which proprietary data can be used without 
revealing potentially sensitive information. This is a clear advantage for the purposes of securing business 
confidentially, but reduces the transparency of the system.  

The training set information visible to the enduser is limited to a few key example compounds that 
illustrate the scope of the alert. The number of examples is dependent on the sensitisation alert, some alerts 
may have no examples. Where examples are provided, the CAS#, name, test result (summary data), 
bibliographic reference and 2D structural representation are provided. 

6. Validation of the model 

6.1   Statistics obtained by leave-one-out cross-validation 

None 

6.2 Statistics obtained by leave-many-out cross-validation 

None 

6.3 Statistics obtained by Y-scrambling 

None 

6.4 Statistics obtained by external validation 

Some "external" validation studies have been performed to evaluate the performance of Derek. 
"External", as in most cases the aim has been to take a dataset of chemicals of interest to a 
company/organisation etc and evaluate how well Derek performs for those specific chemicals.  In this way, 
the evaluation has not been designed to consider the real applicability domain of Derek i.e. the scope of the 
training sets within Derek. Some recent exercises are described below. In some of these exercises, part or 
all the testset used is provided.  

Validation by Zinke et al.(2002)  

An external validation for skin sensitisation, using the BgVV database, was performed by Zinke et al. 
(2002). The BgVV database includes 1039 chemicals that have reliable data for the assessment of skin 
sensitising potential. The results indicated a concordance of 67%, a sensitivity of 37% (i.e. a false negative 
rate of 63%) and a specificity of 85% (i.e. a false positive rate of 15%). Zinke et al. gave comments on 
which structural alerts worked well, which needed to be adapted, and which might need to be left out. 

Validation by Seaman et al. (2001)  

A total of 78 chemicals which underwent testing using the LLNA to identify moderate and severe skin 
sensitisers were also evaluated with Derek by Seaman et al. (2001).They obtained a concordance of 59%, a 
sensitivity of 79% and a specificity of 47%. A total of 39 of the 49 LLNA negatives were then examined in 
the Guinea Pig maximisation test (GMPT). The LLNA missed 15 GPMT positives. By excluding the 
LLNA negatives that were Derek positive, the number of false negatives was decreased by 10 to 5/39 (15%) 
although this addition introduced 11 false positives. 



ENV/JM/MONO(2007)2 

 106

Validation using 89 chemicals from Henkel 

A total of 89 compounds (mostly aromatic amines) taken from Henkel were evaluated using Derek v 
3.6.0 (Delbanco, 2002). Previously these chemicals had undergone experimental testing using the guinea 
pig maximisation test (GPMT) and/or Buehler test (BT). Overall the predictions of Derek were in 
concordance with about 42% of the sensitisers and non-sensitisers when compared to the results of both 
test types or to the results of each test system. The Derek software was over predictive for skin 
sensitisation, which was shown by many false positive predictions. 

Validation using 80 chemicals from IUCLID 

The application of Derek v 5.01 for predicting skin sensitisation potential has also been examined 
using a set of 80 substances from the IUCLID database for which guinea pig maximisation test results have 
been published (ECETOC, 2003). The results indicated a concordance of 62.5%, a sensitivity of 62.5%, 
and a specificity of 62.5%.  

6.5 Definition of the applicability domain of the model  

Approach for establishing the applicability domain of the model is yet to be defined. Some 
principles/approaches were discussed in an ECVAM workshop on applicability domains (Netzeva et al., 
2005). 

6.6 Availability of the external validation set 

6.6.1  Chemical names (common names and/or IUPAC names) 
6.6.2  CAS numbers 
6.6.3  1D representation of chemical structure (e.g. SMILES)   
6.6.4  2D representation of chemical structure (e.g. ISIS sketch file) 
6.6.5  3D representation of chemical structure (e.g. MOL file) 
6.6.6  Data for each descriptor variable 
6.6.7  Data for the dependent variable 

 
Variable access to all or part of the data in each case. 
 

7. Applications of the model 

Suggestions for possible applications for the model:  

Predicting likely skin sensitisation hazard on a case by case or HTS basis, provide mechanistic 
insights; i.e. to screen out undesirable chemicals on the basis of sensitisation and to examine potential 
mechanisms of action to explain why a given query chemical was potentially sensitising. 

8. Miscellaneous information 

• Derek is essentially a knowledge archive of structure-toxicity relationships. 

• Derek is limited in that it identifies only ‘activating’ fragments, meaning the negative prediction 
is based solely on the lack of structural alerts. Only qualitative outcomes are provided, no 
measure of potency is provided. Training sets of chemicals containing these structural alerts are 
not provided. Derek does not provide a comprehensive list of references used in the development 
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of each alert. Insufficient information is provided about the quality of the data used in the 
development of each alert. 

• No clear explanation of the domain of applicability is provided that would alert the user as to 
when a query structure was within or outside the chemical domain of Derek. 

• Some of the alerts within Derek are very general, explaining the high number of false positives in 
the external validation studies. 

• Derek covers a small subset of chemical space, a huge number of rules would need to be 
developed in order to account for each chemical class. Development of Derek is incremental, 
focusing on each chemical class in turn. Derek would improve from adding more information 
about the modulating factors in the environment of an alert such as remote groups or by 
calculation of other physiochemical descriptors. 

9. References 

Delbanco, E.H. (2002), "Use of the Prediction Software DEREK in the Hazard Assessment of Raw 
Materials", Naunyn Schmiedeberg’s Archive Pharmacology, Suppl 365, R 639. 

ECETOC (2003), QSARs: Evaluation of the Commercially Available Software for Human Health and 
Environmental Endpoints with Respect to Chemical Management Applications, ECETOC Technical 
Report No. 89. 

Netzeva, T.I., et al. (2005), "Current Status of Methods for Defining the Applicability Domain of 
(Quantitative) Structure-Activity Relationships. The Report and Recommendations of ECVAM 
Workshop 52", Alternatives To Laboratory Animals, 33, 155-173. 

Seaman, C.W., F.J. Guerriero and G.L. Sprague (2001), "The Use of DEREK (a Structure/Toxicity 
Prediction Program) in the Identification of Skin Sensitisers", Toxicologist, 60, 1452. 

Zinke, S., I. Gerner and E. Schlede (2002), "Evaluation of a Rule Base for Identifying Contact Allergens 
by Using a Regulatory Database: Comparison of Data on Chemicals Notified in the European Union 
with ‘Structural Alerts’ Used in the DEREKfW Expert System", Alternatives To Laboratory 
Animals 30, 285-298. 
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CASE STUDY 2: MULTICASE Model for In Vitro Chromosomal Aberrations in Mammalian Cells 

 

1. QSAR identifier 

MultiCASE MC4PC Release 2003 

Chromosomal Aberration Test In Vitro 

2. Source 

2.1 Reference(s) to scientific papers and/or software package:  

• Klopman, G. (1992), "Multicase, 1. A Hierarchial Computer Automated Structure Evaluation 
Program", Quant. Struct. Act. Relat., 11, 176 – 184. 

• Kusakabe, H., et al. (2002), "Relevence of Chemical Structure and Cytotoxicity to the Induction 
of Chromosome Aberrations Based on Testing of 98 High Production Volume Industrial 
Chemicals", Mutation Research, 517, 187-198. 

• Niemelä, J. and E. Wedeby (2004), "Evaluation of the Setubal Principl for Establishing the Status 
of Development and Validation of (Q)SARs, Annex 4, A “Global” MULTI-CASE Model for in 
vitro Chromosomal Aberrations in Mammalian Cells", in OECD, Report from the Expert Group 
on (Quantitative) Structure-Activity Relationships [(Q)SARs] on the Principles for the Validation 
of (Q)SARs, Series on Testing and Assessment, No. 49, OECD, Paris, pp113-133, 
http://www.oecd.org/document/30/0,2340,en_2649_34365_1916638_1_1_1_1,00.html, accessed 
6 February 2007. 

• OECD (1997), OECD Guidelines for the Testing of Chemicals, Test Guideline 473, In Vitro 
Mammalian Chromosome Aberration Test, 
http://www.oecd.org/document/40/0,2340,en_2649_34365_37051368_1_1_1_1,00.html, 
accessed 7 February 2007 

• Sofuni, T. (ed.) (1998), Data Book of Chromosomal Aberration Test In Vitro, Revised Edition. 
Life-Science Information Center, Tokyo, Japan. 

• Ishidate, M. Jr. (ed.) (1988), Data Book of Chromosomal Aberration Test In Vitro, Revised 
Edition, Elsevier, Amsterdam, New York, Oxford. 

2.2 Date of publication:  

        Publication of the model: In 2004: Niemelä, J. and Wedebye,E.    

2.3 Identification of the model developer(s)/authors:  

               Jay Niemelä, 
               Danish Institute for Food and Veterinary Research, Toxicology and Risk Assessment Division 
              
               Eva Bay Wedebye, 
               Danish Institute for Food and Veterinary Research, Toxicology and Risk Assessment Division 
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2.4 Contact details of the model developer(s)/authors: 

Mørkhøj Bygade 19,  
DK – 2860 Søborg,  
Denmark 
 
Tel: +45 (0) 72 34 75 92 , Jay Niemelä 
Email: jayni@dfvf.dk  
 
Tel: +45 (0) 72 34 76 04, Eva Bay Wedebye 
Email: ebawe@dfvf.dk  
 
Fax: +45 (0) 72 34 70 01  
Web: www.dfvf.dk  

2.5          Indication of whether the model is proprietary or non-proprietary:  

Proprietary 

3. Type of model 

3.1  2D SAR  
3.2  3D SAR (e.g. pharmacophore) 
3.3  Regression-based QSAR 
3.4  3D QSAR 
3.5  Battery of (Q)SARs 

(overall prediction depends on application of multiple models/rules) 
3.6  Expert system 

(overall prediction depends on application of multiple models/rules and use of data in a 
knowledge base) 

3.7  Neural network 
3.8  Other 

4. Definition of the model 

4.1 Dependent variable: 

4.1.1 Species 

All tests were performed using a Chinese Hamster Lung Cell (CHL) fibroblast cell line, which has 
been kept as a single cell sub-clone since 1973 (Sofuni, 1998). 

4.1.2 Endpoint (including exposure time) 

The endpoint used was Chromosomal Aberration Test In Vitro in order to identify agents that cause 
structural chromosome aberrations in cultured mammalian cells, visible in light microscopy.  The test 
system and its purpose are described in OECD Guideline for the Testing of Chemicals, No. 473. The 
current Test Guideline does not specify testing for a length of time (OECD, 1997). 
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4.1.3 Units of measurement 

In the Data Book (Ishidate, 1988; Sofuni, 1998) results in the experimental studies were indicated as 
positive (active) or negative (inactive).  

In MULTICASE during breaking down the structures of the training set all fragments “produced”    
are assigned a MULTICASE activity score according to the activity of the parent structure (Klopmann, 
1992). If the parent compound is “inactive it is assigned a score of 10, while fragments from active parents 
are given a score of 45.   

4.1.4 Reference to specific experimental protocol(s) 

• OECD Guidelines for the Testing of Chemicals, Test Guideline 473, In Vitro Mammalian 
Chromosome Aberration Test (OECD, 1997), describing guidelines for the experimental studies 

• Data Book of Chromosomal Aberration Test in Vitro (Ishidate, 1988; Sofuni, 1998), reporting the 
experimental results 

• A “global” MULTICASE model for in vitro chromosomal aberrations in mammalian cells 
(Niemelä and Wedebye, 2004), the selection of data for modelling is described 

4.2 Number of descriptors used as independent variables:  

Not applicable 

4.3 Identification of descriptors (names, symbols):  

Not applicable 

4.4 Explicit algorithm for generating predictions from the descriptors: 

MULTICASE is a fragment-based statistical model system.  The methodology involves breaking 
down the structures of the training set into all possible fragments from 2 to 10 heavy (non-hydrogen) atoms 
in length.  

Fragments from the entire training set are combined into gross activity categories.  A structural 
fragment is considered as a “biophore” if it has a statistical association with chemicals in the active 
category.  It is considered a “biophobe” if it has a statistically significant relation with the inactive category. 

4.5 Goodness-of-fit statistics 

Internal performance for predictions within the domain 

 Active Inactive Total Accuracy 
Predicted + 241 2 243 99.2% 
Predicted - 1 238 239 99.6% 
Total 242 240 482  
Percentage 99.6 

(sensitivity) 
99.2 
(specificity) 
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Results excluding the 31 inconclusive values 
 
Chi square = 470.082; Phi square = 0.975 
 
Expected Correct Predictions (ECP) = 50.00 % 
Observed Correct Predictions (OCP) = 99.38 % 

Footnote 
Phi-square is the Pearson Chi-square, divided by the number of cases. It has value 0 if there is no 

association, and a value of 1 of there is a perfect association. 

4.6 Information on the applicability domain of the model  

During the prediction process for a substance for chromosomal aberration MULTICASE provide 
warnings if the substance is outside the domain of the model. Warnings may be due to presence of 
fragments not present in the training set and not covered by the model, or the presence of inactivating 
fragments associated with an active prediction (or the opposite).  It is up to the user to take account of these 
warnings or not, we consider any MULTICASE warning to be an indication that that the molecule being 
predicted is outside of the model domain. 

4.7 Information on the mechanistic basis/interpretation of the model  

The exact mechanism of action of the chemicals causing chromosomal aberration is not known, but it 
is assumed that a covalent reaction with a biological macromolecule (e.g. DNA) may be involved. Many 
resulting predictions have mode of action that are obvious for the person with expert knowledge for the 
endpoint in question. Knowledge to mode of action is extremely desirable in the final evaluation of 
predictions. 

5. Development of the model 

5.1 Explanation of the method (approach) used to generate each descriptor 

Not appropriate. 

5.2 Selection of descriptors 

5.2.1 Indication of initial number of descriptors screened 

Not applicable 

5.2.2       Explanation of the method (approach) used to select the descriptors and develop the model 
from them 

See 4.4 

5.2.3 Indication of final number of descriptors included in the model:  

Not applicable 

5.3 Information on experimental design for data splitting into training and validation sets. 

Not applicable 
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5.4 Availability of the training set 

5.4.1    Chemical names (common names and/or IUPAC names) 
5.4.2    CAS numbers 
5.4.3  1D representation of chemical structure (e.g. SMILES) 
5.4.4  2D representation of chemical structure (e.g. ISIS sketch file) 
5.4.5  3D representation of chemical structure (e.g. MOL file) 
5.4.6  Data for each descriptor variable 
5.4.7  Data for the dependent variable 

Out of 911 substances from the Data Book (Sofuni, 1998), 513 were used to establish the model. The 
exclusion criteria used include inorganic status, inadequate smile code, etc. A decision was made to 
include chemicals as being positive if they were active in inducing either aberrations or polyploidy 
(Niemelä and Wedebye, 2004). Polyploidy is not included in the current Test Guideline (OECD, 1997). 

6. Validation of the model 

6.1   Statistics obtained by leave-one-out cross-validation 

None 

6.2 Statistics obtained by leave-many-out cross-validation 

10x10% cross-validation 

Taking account of the model’s ability to identify the domain the following results were obtained: 
Sensitivity  = (98/155) x 100 = 63.23% 
Specificity  = (155/180) x 100 = 86.11% 
Concordance = (253/335) x 100 = 75.52% 

100x50% cross-validation 

Taking the domain into account, we obtained, for 14619 predictions within the model domain as 
defined above: 

Sensitivity  = (4431/6934) x 100 = 63.90% 
Specificity = (6410/7684) x 100 = 83.42% 
Concordance  = (10841/14618) x 100 = 74.16% 

6.3 Statistics obtained by Y-scrambling 

As a further check on model performance, we randomly scrambled the toxicity scores in our training 
set of 513 chemicals, and performed 10 cross-validations, leaving out 50% of the chemicals in each cross-
validation. None of the resulting validations was statistically significant. The Chi Square value averaged 
0.7126 (probability = ca. 0.4). For chemicals, estimated as being within the domain, concordance was 
49.69%. 

6.4 Statistics obtained by external validation 

The statistical analysis for specificity, sensitivity and concordance gave results that were broadly 
similar to the cross-validations. 

The initial data (see 6.6) comprised 98 substances which was reduced to 62 due different reasons such 
as some of the chemicals were included in the training set,  some were only active at very high 
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concentrations, or chromosomal aberrations were only induced under non-physiological culture conditions 
(ex. pH<6). 

The results for the 62 chemicals within the domain are: 
Sensitivity  = (10/17) x 100 = 58.82% 
Specificity = (37/45) x 100 = 82.22% 
Concordance  = (47/62) x 100 = 75.81% 

6.5 Definition of the applicability domain of the model  

From MULTICASE warnings the domain of the model is defined; see 4.6. 

6.6 Availability of the external validation set 

6.6.1    Chemical names (common names and/or IUPAC names) 
6.6.2  CAS numbers 
6.6.3  1D representation of chemical structure (e.g. SMILES)   
6.6.4  2D representation of chemical structure (e.g. ISIS sketch file) 
6.6.5  3D representation of chemical structure (e.g. MOL file) 
6.6.6  Data for each descriptor variable 
6.6.7    Data for the dependent variable 

For external validation, we used data generated over a six-year period (1991-1996) for chromosomal 
aberration testing of high production volume (HPV) industrial chemicals that had been conducted using 
Chinese hamster lung (CHL/IU) cells according to the OECD HPV testing program and the national 
program in Japan (Kusakabe et al., 2002). 

7. Applications of the model 

Suggestions for possible applications for the model:  

Predicting for Chromosomal Aberrations in mammalian cells in vitro. 

8. Miscellaneous information 

9. References 

See 2.1  
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CASE STUDY 3: Fish Acute Neutral Organics 96-hour (Q)SAR, a constituent of ECOSAR 

 

1. QSAR identifier 

ECOlogical Structure Activity Relationships (ECOSAR) 

Acute Fish 96-hour LC50 – Neutral Organics  

MS-Windows – Version 0.99h.  

The new updated version of ECOSAR (Version 1.00) is scheduled for release in 2007. 

PLEASE NOTE:  The (Q)SAR under evaluation in this case study is only one of many available in 
the ECOSAR program.  The evaluation, statistics, and data presented are only applicable to the 
acute fish 96-hour LC50 (Q)SAR, and not other (Q)SARs available within the program. 

2. Source 

2.1 Reference(s) to scientific papers and/or software package:  

• ECOSAR Program: 

Publicly available for download at: http:www.epa.gov/opptintr/exposure/pubs/episuite.htm, 
accessed 7 February 2007. [Note: This URL is the site of EPI (Estimation Programs Interface) 
Suite Version 3.12 (released 8 December 2005) which includes ECOSAR v.0.99h. Once EPI 3.12 
is downloaded, ECOSAR v.0.99h can be run separetely.] 

• User’s Manual: 

User’s Guide for the ECOSAR Class Program (1998), Risk Assessment Division (7403), Office 
of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, 1200 Pennsylvania 
Ave., N.W., Washington, DC 20460.   
Available at: http://www.epa.gov/oppt/newchems/tools/manual.pdf (accessed 7 February 2007) 

• Technical Reference Manual: 

Estimating Toxicity of Industrial Chemicals to Aquatic Organisms Using Structure Activity 
Relationships (1996), Environmental Effects Branch, Health and Environmental Review 
Division, Office of Pollution Prevention and Toxics, U.S. Environmental Protection Agency, 
Washington, DC 20460.   
Available at: http://www.epa.gov/oppt/newchems/tools/sarman.pdf, accessed 7 February 2007 

2.2 Date of publication:  

Publication of Model:  8 December 2005 

2.3 Identification of the model developer(s)/authors:  

J. Vincent Nabholz  
U.S. Environmental Protection Agency, OPPT Risk Assessment Division 
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Gordon G. Cash 
U.S. Environmental Protection Agency, OPPT Risk Assessment Division 
 
Bill Meylan 
Syracuse Research Corporation 
 
Phil Howard 
Syracuse Research Corporation 

2.4 Contact details of the model developer(s)/authors: 

2.4.1       Technical Contacts  

J. Vincent Nabholz 
Risk Assessment Division 
U.S. Environmental Protection Agency 
Ariel Rios Building, Mail Code: 7403M 
1200 Pennsylvania Avenue, N.W. 
Washington, DC 20460 
Phone: 202 564-8909 
Email: nabholz.joe@epa.gov 
 
Gordon G. Cash 
Risk Assessment Division 
Ariel Rios Building, Mail Code: 7403M 
1200 Pennsylvania Avenue, N.W. 
Washington, DC 20460 
Phone: 202 564-8923 
Email: cash.gordon@epa.gov 

2.4.2       Model Contacts  

Bill Meylan 
Syracuse Research Corporation 
Environmental Science Center 
301 Plainfield Road, Suite 350 
Syracuse, NY 13212 
Phone: 315 452-8421 
Fax: 315 452-8440 
 
Philip H. Howard 
Syracuse Research Corporation 
Environmental Science Center 
301 Plainfield Road, Suite 350 
Syracuse, NY 13212 
Phone: 315 452-8417 
Fax: 315 452-8440 

2.5          Indication of whether the model is proprietary or non-proprietary:  

Non-proprietary 
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3. Type of model 

3.1  2D SAR  
3.2  3D SAR (e.g. pharmacophore) 
3.3  Regression-based QSAR 
3.4  3D QSAR 
3.5  Battery of (Q)SARs 

(overall prediction depends on application of multiple models/rules) 
3.6  Expert system 

(overall prediction depends on application of multiple models/rules and use of data in a 
knowledge base) 

3.7  Neural network 
3.8  Other 

4. Definition of the model 

4.1 Dependent variable: 

4.1.1 Species 

Standard test species were used when developing this model. (Q)SARs are specific for the effect 
modeled, but not specific with respect to a single species. 

4.1.2 Endpoint (including exposure time) 

Acute Fish 96-hour LC50: the aqueous concentration predicted to kill 50% of a population following a 
96-hour exposure period. 

4.1.3 Units of measurement 

LC50 values are in presented in mg/L. 

4.1.4 Reference to specific experimental protocol(s): 

OPPTS850.1075 Fish acute toxicity test, freshwater and marine 
40CFR797.1400 Fish acute toxicity test, freshwater and marine 
OECD TG 203: Fish, acute toxicity test 
These guidelines are preferred but not obligatory.   
All test data are validated prior to inclusion regardless of test protocol. 

4.2 Number of descriptors used as independent variables:  

Two independent variables, the Log of the octanol-water partition coefficient (Log Kow) and the 
molecular weight (MW) are required to predict the acute fish 96-hour LC50. The descriptors are calculated 
from the chemical structure, obtained through input of CAS RN or SMILES notation (Refer to Section 
5.1.2) entered in the initial data entry screen.  

A searchable database of CAS RNs and corresponding SMILES structures are provided within the 
ECOSAR program. CAS RNs are available for approximately 103,000 discrete organic chemicals. If a 
CAS RN is not available, a SMILES notation can be directly entered by the user. The encoding rules for 
SMILES are located in the help menu of the ECOSAR data entry page, as well as at 

http://www.syrres.com/esc/smilecas.htm (accessed 8 February 2007)  
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Additional batch mode data entry options are available as well for importing structural information. 

4.3 Identification of descriptors (names, symbols):  

• Log of Octanol/water partition coefficient, Log Kow (or Log P) 

• Molecular weight, MW  

4.4 Explicit algorithm for generating predictions from the descriptors: 

For chemicals with a Log Kow of less than 5.0: 

• Neutral Organics, Acute Fish 96-hour (Q)SAR: Log LC50 = -0.862 (Log Kow) + 1.6108 

• The LC50 predictions from this equation are presented in millimoles per liter (mM/L).  ECOSAR 
then converts the LC50 from mM/L to mg/L, by multiplying LC50 value by the molecular weight 
of the compound. 

• Neutral Organics, Acute Fish 96-hour (Q)SAR: Log (LC50/MW) = -0.862 (Log Kow) +1.6108 

For chemical with a Log Kow of greater than 5.0: 

• Neutral Organics, Acute Fish 96-hour (Q)SAR: Log LC50 = No-toxic-effect-at-saturation, or ”*” 

4.5 Goodness-of-fit statistics 

The Correlation Coefficient (r2) for the Neutral Organics Fish 96-hour (Q)SAR equals 0.886, obtained 
from standard statistical regression software. 

4.6 Information on the applicability domain of the model  

This (Q)SAR may be used to obtain quantitative acute LC50 estimates for toxicity of neutral organic 
compounds (solvents, non-reactive, non-ionizable) with log Kow values of less than 5.0.  However, the 
method may be used to estimate toxic effects equal to “no-toxic-effect-at-saturation or “*” ” for chemicals 
exceeding Log Kow values of 5.0.  Therefore, the domain of the model is much larger than the values 
covered in the regression equation and covers all Log Kow ranges. 

This model was derived from data on 337 neutral organic compounds (e.g., solvents, non-reactive, 
non-ionizable).  For chemicals with a Log Kow of less than 5.0, the 96-hour model is sufficient. Data used 
in the regression equation are for compounds with Log Kow values of 5.0 or less. Compounds with a 
molecular weight of greater than 1000 g/mol are considered too large to present any significant toxicity. 
Also, if the predicted toxicity exceeds the water solubility, no acute toxicity is expected to be observed in 
the absence of an organic carrier solvent.   

To obtain quantitative acute LC50 estimates for toxicity of neutral organic compounds with log Kow 
greater than 5.0 and less than 7.0, use the fish 14-day LC50 for neutral organics.  

4.7 Information on the mechanistic basis/interpretation of the model  

ECOSAR classes are grouped based on similar relationships between toxicity and the various types of 
pharmacologic properties. Neutral organic compounds have a narcotic effect on aquatic organisms, which 
is a reversible state of arrested activity of protoplasmic structures. (Veith et al., 1983) 
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5. Development of the model 

5.1 Explanation of the method (approach) used to generate each descriptor 

5.1.1      Calculation of Log Kow 

To estimate Log Kow, ECOSAR uses the method KOWWIN, developed by Syracuse Research 
Corporation.  KOWWIN uses a "fragment constant" methodology to predict Log Kow and the equation is 
as follows:  

Log Kow = Sum (fini) + Sum (cjnj) + 0.229, where Sum (fini) is the summation of fi (the coefficient 
for each atom/fragment) times ni (the number of times the atom/fragment occurs in the structure), and (cjnj) 
is the summation of cj (the coefficient for each correction factor) times nj (the number of times the 
correction factor occurs (or is applied) in the molecule). 

5.1.2      Calculation of MW 

MW is determined through summation of atomic weights of each atom in the molecule. 

5.2 Selection of descriptors 

5.2.1 Indication of initial number of descriptors screened 

Not applicable 

5.2.2       Explanation of the method (approach) used to select the descriptors and develop the model 
from them: 

Use of Kow and MW to predict acute toxicity was determined experimentally through experience in 
the U.S. EPA, OPPT New Chemical Program and a need to derive the simplest approach for calculating 
acute toxicity to fish. 

5.2.3 Indication of final number of descriptors included in the model:  

Two:  Log Kow and MW 

5.3 Information on experimental design for data splitting into training and validation sets. 

Not applicable 

5.4 Availability of the training set 

5.4.1  Chemical names (common names and/or IUPAC names) 
5.4.2  CAS numbers 
5.4.3  1D representation of chemical structure (e.g. SMILES) 
5.4.4  2D representation of chemical structure (e.g. ISIS sketch file) 
5.4.5  3D representation of chemical structure (e.g. MOL file) 
5.4.6  Data for each descriptor variable 
5.4.7  Data for the dependent variable 
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A list of training set chemicals for the Neutral Organic Fish 96-hour (Q)SAR will be available in 2006 
through an update to the ECOSAR Technical Reference Guide.  The previous training set for version 0.99g 
can be found in the current version listed at the beginning of the case study document. 

A total of 376 toxicity data points for various neutral organic compounds were used for the 
development of the model. Only 337 of these data points were incorporated in development of the 
regression equation, as 39 of these data points were for chemicals that exceeded cut-off criteria (i.e., water 
solubility for solids, or Log Kow for liquids) and presented no effects at saturation.  These chemicals were 
not used in development of the regression equation, but are included in the neutral organics chemical class 
to support justification of neutral organics solubility and Log Kow cut-off criteria indicating no effects at 
saturation. 

Of the 337 data points used in development of the neutral organics acute fish 96-hour regression 
equation, 21 of the chemicals (6%) represented confidential studies which U.S. EPA is restricted from 
disclosing to the public.  For the 39 chemicals that exceeded cut-off criteria, 28 of those chemicals (76%) 
were confidential studies.  For all CBI chemicals, only molecular weight and the predicted Log Kow are 
available in the reference manual. 

The measured toxicity values used to create the algorithm were the discrete (e.g., no ranges or 
inequalities) dose levels that were determined to produce 50% lethality (LC50) following a 96-hour 
exposure of the test compound. The tests were preferably conducted using flow-through systems and 
measured test concentrations rather than static or static renewal systems and nominal test concentrations. 
Preferred studies reported water hardness values less than or equal to 150 mg/L CaCO3, and TOC 
concentrations less than or equal to 2.0 mg TOC/L. Only validated data were used. Criteria for exclusion of 
study data include an inadequate test duration, inadequate endpoints, and unidentified test substance 
composition.  All endpoint values were adjusted for percent active ingredient. 

6. Validation of the model 

All available valid data were used by U.S. EPA/OPPT in development of the (Q)SARs within 
ECOSAR.  Subsequent validation studies have been completed on ECOSAR by multiple stakeholders, and 
the results of those external validation studies and/or peer reviews of ECOSAR can be found at the 
following locations: 

• Hulzebos, E.M. and R. Posthumus (2003), "(Q)SARs: Gatekeepers against Risk on Chemicals?",  
SAR and QSAR in Environmental Research, 14(4): 285-316. 

• Kaiser, K.L.E, et al. (1997), "On Simple Linear Regression, Multiple Linear Regression, and 
Elementary Probabilistic Neural Network with Gaussian Kernel’s Performance in Modeling 
Toxicity Values to Fathead Minnow Based on Microtox Data, Octanol/Water Partition 
Coefficient, and Various Structural Descriptors for a 419-Compound Dataset", in F. Chen and G 
Schuumann (eds.), Quantitative Structure-Activity Relationships in Environmental Sciences-VII, 
SETAC Press, Pensacola, FL, pp. 285-297. 

• Kaiser, K.L.E., et al. (1999), "A Note of Caution to Users of ECOSAR", Water Quality Res. J. 
Canada, 34(1): 179-182. 

• Moore, D.R.J., R.L. Breton and D.B. MacDonald (2003), "A Comparison of Model Performance 
for six QSAR Packages that Predict Acute Toxicity to Fish", Environmental Toxicology and 
Chemistry, 22(8): 1799-1809. 
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• Nabholz, J.V., et al. (1993), "Validation of Structure Activity Relationships used by the Office of 
Pollution Prevention and Toxics for the Environmental Hazard Assessment of Industrial 
Chemicals", in  W. Joseph et al. (eds), Environmental Toxicology and Risk Assessment,2nd 
Volume, ASTM STP 1216, American Society for Testing and Materials, Philadelphia, PA, pp. 
571-590. 

• OECD (1994), US EPA/EC Joint Project on the Evaluation of (Quantitative) Structure Activity 
Relationships, Environment Monographs No. 88, OECD, Paris, 366 pp. 
http://www.oecd.org/document/30/0,2340,en_2649_34365_1916638_1_1_1_1,00.html, accessed 
8 February 2007.  

• Posthumus, R. and W. Sloof (2001), "Implementation of QSARS in Ecotoxicological Risk 
Assessments", RIVM (Research for Man and Environment/National Institute of Public Health 
and the Environment), Bilthoven, The Netherlands, RIVM report 601516003, 93 pp. 

• USEPA (1994), U.S. EPA/EC Joint Project on the Evaluation of (Quantitative) Structure Activity 
Relationships, Washington, DC: U.S. EPA’s Office of Pollution Prevention & Toxics, EPA 
Report #EPA-743-R-94-001. Available from National Technical Information Service (NTIS), 
U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161, Tel: 703-
487-4650 and at http://www.epa.gov/oppt/newchems/tools/21ecosar.htm, accessed 8 February 
2007. 

6.1   Statistics obtained by leave-one-out cross-validation 

Not applicable. 

6.2 Statistics obtained by leave-many-out cross-validation 

Not applicable. 

6.3 Statistics obtained by Y-scrambling 

Not applicable. 

6.4 Statistics obtained by external validation 

Not applicable. 

6.5 Definition of the applicability domain of the model  

Not applicable. 

6.6 Availability of the external validation set 

6.6.1  Chemical names (common names and/or IUPAC names) 
6.6.2  CAS numbers 
6.6.3  1D representation of chemical structure (e.g. SMILES)   
6.6.4  2D representation of chemical structure (e.g. ISIS sketch file) 
6.6.5  3D representation of chemical structure (e.g. MOL file) 
6.6.6  Data for each descriptor variable 
6.6.7  Data for the dependent variable 



 ENV/JM/MONO(2007)2 

 121

7. Applications of the model 

The fish acute toxicity (Q)SAR for neutral organic chemicals has been used to predict the fish 96-h 
LC50 for industrial chemicals under the Toxic Substance Control Act (TSCA).  This SAR has also been 
used to predict the toxicity of some pesticide active ingredient and pesticide inert ingredients, chemicals 
found in hazardous waste, chemicals found in water, and chemicals found in air.  The Office of Pollution 
Prevention and Toxics (OPPT) has used this SAR to assist in the validation of measured toxicity test data 
for fish 96-h LC50 values.  This SAR has been used by testing laboratories to select test concentrations in 
lieu of doing a range-finding test.  This SAR has been used to predict the toxicity of some pharmaceuticals 
(Sanderson et al., 2003, 2004).  For organic chemicals which have a more specific mode to toxic action, 
this SAR will only predict baseline toxicity or the toxicity just associated with narcosis.  

8. Miscellaneous information 

The ECOSAR Class Program is a computerized version of the methods employed by the OPPT to 
assess the environmental toxicity of new chemicals under TSCA. It has been developed within the 
regulatory constraints of the TSCA and is a pragmatic approach to (Q)SAR, initiated and refined based on 
experience with chemical under TSCA.   

The QSARs presented in this program are used to predict the aquatic toxicity of chemicals based upon 
their similarity of structure to chemicals for which the aquatic toxicity has been previously measured.  
Most (Q)SAR calculations in the ECOSAR Class Program are based upon the octanol/water partition 
coefficient (Kow).  Various surfactant (Q)SAR calculations are based upon the average length of carbon 
chains or the number of ethoxylate units (User’s Guide for the ECOSAR Class Program; Meylan, W.M 
and P.H. Howard, 1998). 

Additional information on the ECOSAR program can be found at the following references: 

• Auer, C.M., J.V. Nabholz and K.P. Baetcke (1990), "Mode of Action and the Assessment of 
Chemical Hazards in the Presence of Limited Data: Use of Structure-Activity Relationships 
(SAR) under TSCA, Section 5", Environ. Health Perspect, 87: 183-197.  

• Meylan, W.M. and P.H. Howard (1998), User’s Guide for the ECOSAR Class Program. MS-
Windows Version 0.99d, Prepared for the U.S. EPA, OPPT, Risk Assessment Division (RAD).  
26 pp, http://www.epa.gov/oppt/newchems/tools/manual.pdf (accessed 7 February 2007) 

• Wagner, P.M., J.V. Nabholz and R.J. Kent (1995), "The New Chemicals Process at the 
Environmental Protection Agency (EPA): Structure-Activity Relationships for Hazard 
Identification and Risk Assessment", Toxicology Letters, 79: 67-73. 

Additional information via the internet can be found at the follow sites: 

• ECOSAR (Ecological Structure Activity Relationships), 
http://www.epa.gov/oppt/newchems/tools/21ecosar.htm, accessed 7 February 2007. 
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CASE STUDY 4: CATABOL for Biodegradation 

 

1. QSAR identifier 

CATABOL M v5.082 

2. Source 

2.1 Reference(s) to scientific papers and/or software package:  

• Dimitrov, S., et al. (2002), "Quantitative Prediction of Biodegradability, Metabolite Distribution 
and Toxicity of Stable Metabolites", SAR and QSAR in Environmental Research, 13, 445-455. 

• Dimitrov S., et al. (2004), "Predicting the Biodegradation Products of Perfluorinated Chemicals 
using CATABOL", SAR and QSAR in Environmental Research, 15, 69-82. 

• Dimitrov, S., et al. (2005), "A Stepwise Approach for Defining the Applicability Domain of SAR 
and QSAR Models", Journal of Chemical Information and Modelling, 45, 839-849. 

• Jaworska, J. S., et al. (2002), "Probabilistic Assessment of Biodegradability Based on Metabolic 
Pathways: CATABOL System", SAR and QSAR in Environmental Research, 13, 307-323. 

2.2 Date of publication:  

In 1996, a pilot version of metabolism simulator (METABOL) was created. In 1998, METABOL was 
adapted for prediction of biodegradation. In 1999, prototype CATABOL with MITI data as a training set 
was developed.  This version (v5.082) was released in 2005. 

2.3 Identification of the model developer(s)/authors:  

        Laboratory of Mathematical Chemistry, Bourgas Prof. Assen Zlatarov University 

2.4 Contact details of the model developer(s)/authors: 

Prof. Ovanes Mekenyan 
Laboratory of Mathematical Chemistry, Head 
Bourgas "Prof. As. Zlatarov" University,  
"Yakimov" St. #1,  
8010 Bourgas,  
Bulgaria 
 
Tel: +359 56 858 343  
Fax: +359 56 880249  
Email: omekenya@btu.bg  
Web: http://www.oasis-lmc.org/  

2.5 Indication of whether the model is proprietary or non-proprietary:  

  Proprietary 
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3. Type of model 

3.1  2D SAR  
3.2  3D SAR (e.g. pharmacophore) 
3.3  Regression-based QSAR 
3.4  3D QSAR 
3.5  Battery of (Q)SARs 

(overall prediction depends on application of multiple models/rules) 
3.6  Expert system 

(overall prediction depends on application of multiple models/rules and use of data in a 
knowledge base) 

3.7  Neural network 
3.8  Other 

4. Definition of the model 

4.1 Dependent variable: 

4.1.1 Species 

CATABOL predicts biodegradation endpoints of organic chemicals in the presence of mixed 
population of environmental micro-organism, which is defined in OECD 301C method. 

4.1.2 Endpoint (including exposure time) 

CATABOL predicts degradation pathways of a chemical until mineralize under OECD 301C test 
conditions and, quantitatively predicts Biochemical Oxygen Demand (BOD) degradability and the amount 
of residuals (both parent and degradants) at 28 days under OECD 301C test conditions. 

4.1.3 Units of measurement 

The unit of the predicted BOD degradability and the amount of residuals are the ratio of oxygen 
consumed in 28 days to TOD and the ratio of the amount of residuals to the amount of the parent chemical, 
respectively. 

4.1.4 Reference to specific experimental protocol(s): 

CATABOL is modelled to predict biodegradation of a chemical under OECD 301C test method. 

4.2 Number of descriptors used as independent variables:  

Not applicable 

4.3 Identification of descriptors (names, symbols):  

Not applicable 
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4.4 Explicit algorithm for generating predictions from the descriptors: 

CATABOL has a predictive engine that consists of 613 hierarchically ordered metabolic 
transformations. The biodegradation pathway of a chemical substance is generated by sequentially 
matching its substructure with transformations in the hierarchy and thus indicates the path of degradation 
to become inorganic substances. Each metabolic transformation in the hierarchy is assigned a probability. 
BOD and residual amounts are calculated using these probabilities. The transformation probabilities in 
CATABOL are defined according to the following equation: 
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where, the theoretical oxygen demand is kTOD = ∑Δki, and Pi is the probability of initiation of the i-th 
transformation. In each layer, it is defined the inhibited transformation. The chemicals possessing such 
inhibited transformation are not matched in the layer and proceed to the next layer. 

4.5 Goodness-of-fit statistics 

A data set for 745 chemicals based on OECD301C method taken from MITI biodegradation database 
is used as the training set. The structures, experimental BOD values and BOD values calculated by 
CATABOL for each chemical in the training set are shown in the software. The coefficient of correlation 
between the experimental and calculated BOD values was 0.85. The percentage of correctly classified not 
readily biodegradable (NRB) chemicals was 91% (485/532) and the percentage of correctly classified 
readily biodegradable (RB) chemicals was 86% (183/213). 

4.6 Information on the applicability domain of the model  

CATABOL has a function to evaluate whether a target chemical is in the applicability domain or not 
by comparing a target chemical and chemicals in the training set. The applicability domain is defined by 
LogP, molecular weight, water solubility and substructures. 

4.7 Information on the mechanistic basis/interpretation of the model  

The CATABOL model is based on metabolic biodegradation paths and most of the reactions are 
interpreted in the help files of this software. 

5. Development of the model 

5.1 Explanation of the method (approach) used to generate each descriptor 

In order to establish the prediction engine, the degradation paths of those 745 training set chemicals 
were defined by experts and were not disclosed. For the defined degradation path of each chemical, 
experimental BOD values were inserted into the equation (1) and the probability (P) of each reaction was 
calculated by using least square method. In this process, detailed pathways were generalized by merging 
sequences of elementary reaction steps into principal metabolic transformations. The reactions were 
categorized into 44 spontaneous reactions and 72 catabolic reactions, and all spontaneous reactions were 
ascribed the highest probability value (one). All reaction groups and their reaction probabilities are shown 
in the help file of the software. The CATABOL prediction engine based on 613 reaction schemes was 
constructed using the reaction probabilities by experts. The probabilities and their order in the prediction 
engine are further optimized by comparing calculated pathways and experimental pathways for 207 
chemicals. 
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5.2 Selection of descriptors 

5.2.1 Indication of initial number of descriptors screened 

Not applicable 

5.2.2    Explanation of the method (approach) used to select the descriptors and develop the model from 
them 

 Not applicable 

5.2.3 Indication of final number of descriptors included in the model:  

Not applicable 

5.3 Information on experimental design for data splitting into training and validation sets. 

Not applicable 

5.4 Availability of the training set 

The structures, experimental BOD values and BOD values calculated by CATABOL for each 
chemical in the training set are shown in the software. All the parameters and the rules used for making 
prediction are shown in the software. 

5.5.1  Chemical names (common names and/or IUPAC names) 
5.5.2  CAS numbers 
5.5.3  1D representation of chemical structure (e.g. SMILES) 
5.5.4  2D representation of chemical structure (e.g. ISIS sketch file) 
5.5.5  3D representation of chemical structure (e.g. MOL file) 
5.5.6  Data for each descriptor variable 
5.5.7  Data for the dependent variable 

6. Validation of the model 

6.1   Statistics obtained by leave-one-out cross-validation 

None 

6.2 Statistics obtained by leave-many-out cross-validation 

The robustness of the present version of CATABOL is not reported. The robustness of the previous 
version, which had a training set of 532 chemicals, is reported as Q2=0.88 for 4 times of Leave 25% out by 
Jaworska et al. (2002). 

6.3 Statistics obtained by Y-scrambling 

None 
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6.4 Statistics obtained by external validation 

Validation by Mcdowell et al. (2002) 

 External validations of a pervious version of CATABOL were performed using 77 chemicals from a 
P&G database. The percentage of correctly classified NRB chemicals were 90% (19/21) and the 
percentage of correctly classified RB chemicals were 92% (49/53). 

Validation by Sakuratani et al. (2005) 

External validation of the CATABOL v.4.562 was conducted using test data of 338 existing 
chemicals and 1123 new chemicals under the Japanese Chemical Substances Control Law (CSCL). The 
percentage of correctly classified NRB chemicals were 88% (925/1055) and the percentage of correctly 
classified RB chemicals were 58% (234/406). The features of chemical structures affecting CATABOL 
predictability were described. 

6.5 Definition of the applicability domain of the model  

 None 

6.6 Availability of the external validation set 

It is available the data set of existing chemicals used as external validation set. (Sakuratani et al., 
2005) 

6.6.1  Chemical names (common names and/or IUPAC names) 
6.6.2  CAS numbers 
6.6.3  1D representation of chemical structure (e.g. SMILES)   
6.6.4  2D representation of chemical structure (e.g. ISIS sketch file) 
6.6.5  3D representation of chemical structure (e.g. MOL file) 
6.6.6  Data for each descriptor variable 
6.6.7  Data for the dependent variable 

 

7. Applications of the model 

Suggestions for possible applications for the model:  

CATABOL can be used for classifying chemicals by the probability of persistent for screening 
purpose. And, CATBOL can be used as a supporting tool for risk assessor to predict stable degradants in 
environment.  

8. Miscellaneous information 

9. References 

Mcdowell, R.M., and J.S. Jaworska (2002), "Bayesian Analysis and Inference from QSAR Predictive 
Model Results", SAR and QSAR in Environmental Research, 13, 111-125. 

Sakuratani, Y., et al. (2005), "External Validation of the Biodegradability Prediction Model CATABOL 
Using Data Sets of Existing and New Chemicals under the Japanese Chemical Substances Control 
Law", SAR and QSAR in Environmental Research, 16, 403-431. 
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CASE STUDY 5: BIOWIN for Biodegradation 

 

1. QSAR identifier 

BIOWIN v4.02: containing the following six separate models. 
• BIOWIN1 (linear probability model) 
• BIOWIN2 (nonlinear probability model) 
• BIOWIN3 (expert survey ultimate biodegradation model) 
• BIOWIN4 (expert survey primary biodegradation model)   
• BIOWIN5 (Japanese MITI linear model) 
• BIOWIN6 (Japanese MITI nonlinear model) 

2. Source 

2.1 Reference(s) to scientific papers and/or software package:  

• Boethling, R.S., et al. (1994), "Group Contribution Method for Predicting Probability and Rate of 
Aerobic Biodegradation", Environmental Science and Technology, 28, 459-465. 

• Howard, P.H., A.E. Hueber and R.S. Boethling (1987), "Biodegradation Data Evaluation for 
Structure/Biodegradability Relations", Environmental. Toxicology and Chemistr. 6, 1-10. 

• Howard, P.H., et al. (1992), "Predictive Model for Aerobic Biodegradability Developed from a 
File of Evaluated Biodegradation Data", Environmental. Toxicology and Chemistry, 11, 593-603. 

• Tunkel, J., et al. (2000), "Predicting Ready Biodegradability in the MITI Test", Environmental. 
Toxicology and Chemistry, 19, 2478-2485. 

2.2 Date of publication:  

The publication dates of each model are as follows: 
• BIOWIN1, 2: 1992. 
• BIOWIN3, 4: 1994. 
• BIOWIN5, 6: 2000. 

2.3 Identification of the model developer(s)/authors:  

               U.S. Environmental Protection Agency 
 Syracuse Research Corporation 

2.4 Contact details of the model developer(s)/authors: 

Dr. Robert Boethling 
U.S. Environmental Protection Agency 
1200 Pennsylvania Ave., N.W. (Mail Code 7406M) 
Washington, DC 20460 

 Tel: +1 202 564 8533 
Email: boethling.bob@epa.gov  
Web: http://www.epa.gov/  
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Dr. Philip Howard 
Syracuse Research Corporation 
6225 running Ridge Road 
North Syracuse, NY 13212 

 Tel: +1 315 452 8417 
Email: howardp@syrres.com  
Web: http://www.syrres.com  

2.5 Indication of whether the model is proprietary or non-proprietary:  

  Non-proprietary 

3. Type of model 

3.1  2D SAR  
3.2  3D SAR (e.g. pharmacophore) 
3.3  Regression-based QSAR 
3.4  3D QSAR 
3.5  Battery of (Q)SARs 

(overall prediction depends on application of multiple models/rules) 
3.6  Expert system 

(overall prediction depends on application of multiple models/rules and use of data in a 
knowledge base) 

3.7  Neural network 
3.8  Other 

4. Definition of the model 

4.1 Dependent variable: 

4.1.1 Species 

BIOWIN models predict biodegradation endpoints of organic chemicals in the presence of mixed 
population of environmental micro-organism. 

4.1.2 Endpoint (including exposure time) 

The endpoints of each model are as follows: 
• BIOWIN1, 2: The probability that a chemical is easily biodegradable in the typical environment 

(aerobic biodegradation). 
• BIOWIN3: The time required for ultimate biodegradation, which is the transformation of a parent 

compound to carbon dioxide and water, in the typical environment (aerobic biodegradation). 
• BIOWIN4: The time required for primary biodegradation, which is the transformation of a parent 

compound to an initial metabolite, in the typical environment (aerobic biodegradation). 
• BIOWIN5, 6: The probability that a chemical is readily biodegradable in the MITI test 

(OECD301C). 

4.1.3 Units of measurement 

The units are probability of fast biodegradation for BIOWIN1, BIOWIN2, BIOWIN5 and BIOWIN6; 
and approximate total time to complete and primary degradation for BIOWIN3 and BIOWIN4 
respectively. 
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4.1.4 Reference to specific experimental protocol(s): 

 BIOWIN1, BIOWIN2, BIOWIN3 and BIOWIN4 are not based on specific experimental endpoint. 
BIOWIN1 and BIOWIN2 are based on the summary aerobic biodegradability descriptors from SRC 
Environ Fate Database “BIODEG Summary” file, which represent weight-of-evidence judgments. Any and 
all mixed-culture biodegradation data are used to make these summary judgments. For BIOWIN3 and 
BIOWIN4, the training set data are from a survey of expert judgment for 200 chemicals. 

BIOWIN5 and BIOWIN6 were developed to predict biodegradation of a chemical under the MITI test 
(OECD301C). 

4.2 Number of descriptors used as independent variables:  

BIOWIN 1-4: 36 descriptors. 
BIOWIN 5, 6: 43 descriptors. 

4.3 Identification of descriptors (names, symbols):  

BIOWIN 1-4: 35 kinds of fragment and molecular weight. 
BIOWIN 5, 6: 42 kinds of fragment and molecular weight. 
All descriptors are shown in the help file of the software. 

4.4 Explicit algorithm for generating predictions from the descriptors: 

BIOWIN1, 3, 4, 5 
The following type of linear regression equations gives predictions. 

 MWafafafaaY mnnj ++⋅⋅⋅+++= 22110   (1) 
Here, 
Yj：Probability that chemical j is easily biodegradable (BIOWIN 1), time required for ultimate 
biodegradation (BIOWIN3), the time required for primary biodegradation (BIOWIN4), probability 
that chemical j is readily biodegradable (BIOWIN5). 
fn：Number of fragment n in the chemical j 
an：Regression coefficient for fragment n 
MW：Molecular weight of the chemical j 
am：Regression coefficient for molecular weight of the chemical j 
a0：Intercept 
 
BIOWIN2, 6 

The following type of non-linear regression equations gives predictions. 

)exp(1
)exp(

22110

22110

MWafafafaa
MWafafafaaY
mnn

mnn
j ++⋅⋅⋅++++

++⋅⋅⋅+++
=

   (2)  
Here, 
Yj：Probability that chemical j is easily biodegradable (BIOWIN2), probability that chemical j is 
readily biodegradable (BIOWIN6) 
fn：Number of fragment n in the chemical j 
an：Regression coefficient for fragment n 
MW：Molecular weight of the chemical j 
am：Regression coefficient for molecular weight of the chemical j 
a0：Intercept 
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4.5 Goodness-of-fit statistics 

The training set of the BIOWIN1 and BIOWIN2 consists of 109 chemical that were critically 
evaluated as "does not biodegrade fast" and 186 chemicals that were critically evaluated as "biodegrades 
fast" by weight-of-evidence judgments. The percentage of correctly classified chemicals evaluated as "does 
not biodegrade fast" were 76% (83/109) for BIOWIN1 and 86% (94/109) for BIOWIN2; The percentage 
of correctly classified chemicals "biodegrades fast“  were 97% (181/186) for BIOWIN1 and 97% 
(181/186) for BIOWIN2. 

The 200 chemicals of the training set of BIOWIN3 and BIOWIN4 were selected from a variety of 
sources. The ultimate and primary biodegradation of the 200 chemicals were rated on a scale of 1 to 5 by 
experts. The ratings correspond to the following time units:   5 - hours; 4 - days; 3 - weeks; 2 - months; 1 - 
longer. For BIOWIN3, the coefficient of correlation between the expert rated time and calculated time 
required for ultimate biodegradation is 0.85; For BIOWIN4, the coefficient of correlation between the 
expert rated time and calculated time required for primary biodegradation is 0.84. 

Japanese MITI biodegradation data for 589 chemicals are used as the training set of BIOWIN5 and 
BIOWIN6. The percentage of correctly classified NRB chemicals are 85% (283/335) for BIOWIN5 and 
85% (283/335) for BIOWIN6; The percentage of correctly classified RB chemicals were 79% (201/254) 
for BIOWIN5 and 80% (204/254) for BIOWIN6. 

4.6 Information on the applicability domain of the model  

 All BIOWIN models target general low-molecular weight organic compounds and detail information 
on the applicability domain of the model is not given. 

4.7 Information on the mechanistic basis/interpretation of the model  

The fragments were selected based largely on known structural influences on aerobic biodegradability, 
such as the ester linkage which is hydrolyzed by microorganisms. 

5. Development of the model 

5.1 Explanation of the method (approach) used to generate each descriptor 

Fragments are used as descriptors which were selected by experts. 

5.2 Selection of descriptors 

5.2.1 Indication of initial number of descriptors screened 

The number screened equals the number selected. 

5.2.2    Explanation of the method (approach) used to select the descriptors and develop the model from 
them 

The fragments used as descriptors were selected by experts.. The fragment constants are calculated by 
regression analysis. For linear models (BIOWIN1, BIOWIN3, BIOWIN4 and BIOWIN5), the method of 
least squares was used and for nonlinear models (BIOWIN2 and BIOWIN6), the maximum likelihood 
method was used to estimate regression coefficients. 
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5.2.3 Indication of final number of descriptors included in the model:  

BIOWIN 1-4: 35 kinds of fragment and molecular weight. 
BIOWIN 5, 6: 42 kinds of fragment and molecular weight. 

5.3 Information on experimental design for data splitting into training and validation sets. 

The validation set of BIOWIN1 and BIOWIN2 (27 chemicals) were selected from a variety of sources 
using same criteria as the training set. The validation set of BIOWIN3 and BIOWIN4 (13 chemicals) were 
selected from the chemicals that had water grab sample data in the SRC Environ Fate Database “BIODEG 
Summary” file. For BIOWIN5 and BIOWIN6, the complete database of 884 chemicals was divided into 
training set (two-thirds of the full data set; 589 chemicals) and validation set (one-thirds of the full data set; 
265 chemicals). Chemicals in the training set were selected from the electronic file using a visual basic 
script based on a random number generator. 

5.4 Availability of the training set 

5.5.1  Chemical names (common names and/or IUPAC names) 
5.5.2  CAS numbers 
5.5.3  1D representation of chemical structure (e.g. SMILES) 
5.5.4  2D representation of chemical structure (e.g. ISIS sketch file) 
5.5.5  3D representation of chemical structure (e.g. MOL file) 
5.5.6  Data for each descriptor variable 
5.5.7  Data for the dependent variable 

6. Validation of the model 

6.1   Statistics obtained by leave-one-out cross-validation 

None 

6.2 Statistics obtained by leave-many-out cross-validation 

None 

6.3 Statistics obtained by Y-scrambling 

None 

6.4 Statistics obtained by external validation 

Validation by Langenberg et al. (1996) 

Previous version (v3.0) of BIOWIN1 and BIOWIN2 were evaluated using MITI data for 488 
chemicals. The percentages of correctly classified chemicals were 56% (BIOWIN1) and 63% (BIOWIN2). 

Validation by Rorije et al. (1999) 

External validation of BIOWIN1 was performed using MITI data for 733 chemicals. The percentage 
of correctly classified NRB chemicals were 56% (357/635) and the percentage of correctly classified RB 
chemicals were 68% (179/263). 
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Validation by Tunkel et al. (2000) 

External validation of BIOWIN5 and BIOWIN6 were performed using MITI data for 295 chemicals. 
The percentage of correctly classified NRB chemicals were 82% (135/164) for BIOWIN5 and 82% 
(135/164) for BIOWIN6; The percentage of correctly classified RB chemicals were 80% (105/131) for 
BIOWIN5 and 79% (103/131) for BIOWIN6. 

The performances of BIOWIN1 and BIOWIN2 were also evaluated using MITI data for 884 
chemicals. The percentages of correctly classified chemicals were 65% (BIOWIN1) and 68% (BIOWIN2). 

Validation by Boethling et al. (2003) 

The performances of five BIOWIN models were evaluated using a data set for 305 pre-manufacture 
notice (PMN) substances under the Toxic Substances Control Act (TSCA), which is containing six tests 
data (OECD301A-F). The percentages of correctly classified chemicals of each model were 54% 
(BIOWIN1), 67% (BIOWIN2), 88% (BIOWIN3), 77% (BIOWIN5) and 77% (BIOWIN6), respectively. 

Validation by Boethling et al. (2004) 

The performances of three BIOWIN models were evaluated using data sets for 374 PMN substances 
under the TSCA and 63 pharmaceuticals. For PMN substances, the percentages of correctly classified 
chemicals were 86% (BIOWIN3), 81% (BIOWIN5) and 82% (BIOWIN6). For pharmaceuticals, the 
percentages of correctly classified chemicals were 76% (BIOWIN3), 83% (BIOWIN5) and 87% 
(BIOWIN6). 

Validation by Posthums et al. (2005) 

External validations of five BIOWIN models were performed using 110 chemicals which were 
notified in The Netherlands under EU raw. The performances of each model were compared by two or 
three pass levels.  The percentages of correctly classified chemicals at the best pass level in each model 
were 64% (BIOWIN1), 70% (BIOWIN2), 88% (BIOWIN3), 77% (BIOWIN5) and 77% (BIOWIN6), 
respectively. 

6.5 Definition of the applicability domain of the model  

 The definition of the applicability domain is not shown. 

6.6 Availability of the external validation set 

Te data set used as external validation set for BIOWIN5 and BIOWIN6 is available (Tunkel et al. (2000)). 
6.6.1  Chemical names (common names and/or IUPAC names) 
6.6.2  CAS numbers 
6.6.3  1D representation of chemical structure (e.g. SMILES)   
6.6.4  2D representation of chemical structure (e.g. ISIS sketch file) 
6.6.5  3D representation of chemical structure (e.g. MOL file) 
6.6.6   Data for each descriptor variable 
6.6.7  Data for the dependent variable 
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7. Applications of the model 

Suggestions for possible applications for the model:  

BIOWIN can be used for screening readily biodegradable chemicals from wide range of organic 
compound. 

8. Miscellaneous information 

9. References 

Langenberg, J.H., et al. (1996), "On the Usefulness and Reliability of Existing QSBRs for Risk 
Assessment and Priority Setting", SAR and QSAR in Environmental Research, 5, 1-16. 

Rorije, E.H., et al. (1999), "Evaluation and Application of Models for the Prediction Ready 
Biodegradability in the MITI-test", Chemosphere, 38, 1409-1417. 

Boethling, R.S., D.G. Lynch and G.C. Thom (2003), "Predicting Ready Biodegradability of 
Premanufacture Notice Chemicals", Environmental Science and Technology, 22, 837-844. 

Boethling, R.S., et al. (2004), "Using BIOWIN, Bayes, and Batteries to Predict Ready Biodegradability", 
Environmental Science and Technology, 23, 911-920. 

Posthums, R., et al. (2005), "External Validation of EPIWIN Biodegradation Models", SAR and QSAR in 
Environmental Research, 16, 135-148. 

Tunkel, J., et al. (2000), "Predicting Ready Biodegradability in the MITI Test", Environmental. Toxicology 
and Chemistry, 19, 2478-2485. 
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GLOSSARY  

This Glossary provides additional explanation for common scientific terms which are presented in 
order to enhance communication between (Q)SAR experts and users of (Q)SAR models. 

 

Applicability Domain (AD): 

The applicability domain (AD) of a (Q)SAR model is the response and chemical structure space in 
which the model makes predictions with a given reliability. 

The AD of a (Q)SAR can be thought of as a theoretical region in multi-dimensional space in which 
the model is expected to make reliable predictions. Thus, information on the AD helps the user of the 
model to judge whether the prediction for a new chemical is reliable or not. The region depends on the 
nature of the chemicals in the training set, and the method used to develop the model.   

The development and assessment of methods for defining the domain of applicability is an important 
area of QSAR research.  

Acute toxicity: 

Acute toxicity refers to the short-term biological effects on an organism of a chemical. A common 
adverse outcome associated with acute toxicity is lethality; however other effects such as immobilisation 
(e.g. Daphnia), reduction in light emission (e.g. the Microtox test) and physiological and histological 
changes are also accepted.  Acute lethality is the concentration or dose that produces 50% mortality and is 
reported as LV50 or LD50 respectively. 

Artificial Neural network (ANN): 

Artificial neural networks (ANN) are computational models that make predictions by simulating the 
functioning of human neurons.  

The first step in the development of an ANN is to design a specific network architecture that includes 
a specific number of “layers”, each of which consists of a certain number of “neurons”. The ANN is then 
subjected to a “training” process, an iterative process in which the neurons apply an iterative process to the 
number of inputs (variables) to adjust the weights of the network in order to optimally predict the sample 
data. After the phase of learning from an existing data set, the new network can be used to generate 
predictions.  

The resulting “network” developed in the process of "learning" represents a pattern detected in the 
data, and is the functional equivalent of a model of relations between variables in the traditional model 
building approach. However, unlike in the traditional models, the relations in the “network” cannot be 
articulated in the usual terms used in statistics (e.g. “A is positively correlated with B”).  
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ANNs are useful for pattern recognition problems, and for modelling non-linear relationships. They 
can be fully transparent in terms of being associated with a description of the layers, neurons and 
connection weights. However, the network architecture is unlikely to correspond with any mechanism or 
theory underlying the observed phenomena. 

Baseline toxicity:  

The baseline toxicity is the toxicity resulting from the weakest binding forces such as van der Waal or 
hydrophobic forces between a chemical and cellular targets. The acute toxicity prior to lethality is 
reversible and is considered non-specific with respect to chemical structure.  Baseline toxicity is an 
estimate of the minimum toxicity for a chemical and can be estimated from (Q)SAR for narcotic endpoints.  
The baseline is a hypothetical reference point for the hazard identification of chemicals involving 
irreversible and/or selective binding forces with membranes, proteins or DNA. 

Bayesian statistics: 

The field of statistics is based on two main paradigms: conventional (frequentist) and Bayesian. The 
Bayesian paradigm is based on an interpretation of probability as a conditional measure of uncertainty, 
which can be modified in the light of available evidence. This means that Bayesian methods allow for the 
incorporation of existing knowledge/expectations about what the true relationship might be, before new 
data become available. This information is expressed in a prior probability distribution, which is 
subsequently modified to a posterior distribution once data have been obtained and the existing 
knowledge/expectations have been revised. 

In QSAR analyses, Bayesian statistics can be applied, for example, to a test battery, in which results 
of several QSAR models with varying sensitivities and specificities are combined, in order to increase the 
reliability of QSAR-based predictions. Bayesian statistics can also be applied in combination with neural 
networks (Bayesian Neural Networks).  

Bioaccumulation: 

Bioaccumulation is the process by which the chemical concentration in an aquatic organism exceeds 
that in the water as a result of chemical uptake through all possible routes of chemical exposure (e.g. 
dietary absorption, respiratory transport, inhalation). 

Bioaccumulation factor (BAF): 

The bioaccumulation factor (BAF) expresses the extent of chemical bioaccumulation. It is defined as 
the ratio of the chemical concentration in the organism (CB) to that in water (CW). It is a parameter most 
often defined based on partitioning between water and aquatic organisms, especially fish. 

Bioconcentration: 

Bioconcentration is the process by which the chemical concentration in an aquatic organism exceeds 
that in water as a result of exposure to waterborne chemical. Bioconcentration refers to a condition usually 
achieved under laboratory conditions, where the chemical is absorbed only from the water via the 
respiratory surface and/or skin. Bioconcentration can be considered as a transport process in the 
environment. 
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Bioconcentration factor (BCF): 

The bioconcentration factor (BCF) expresses the extent of chemical bioconcentration. It is defined as 
the ratio of the chemical concentration in an organism to the concentration in water. It is used as a 
surrogate for the bioaccumulation factor (BAF), but is generally not a good surrogate for chemicals for 
which significant accumulation occurs via dietary route of exposure. 

Biomagnification: 

Biomagnification is the process by which the chemical concentration in an organism exceeds that in 
the organism’s diet, due to dietary absorption.  

Biomagnification factor: 

The biomagnification factor (BMF) expresses the extent of chemical biomagnification. It is defined as 
the ratio of the chemical concentration in the organism to the concentration in the organism’s diet. 

Bootstrap resampling:  

Bootstrap resampling (or bootstrapping) is an approach to internal validation. The basic premise of 
bootstrap resampling is that the data set should be representative of the population from which it was 
drawn. Since there is only one data set, bootstrapping simulates what would happen if the samples were 
selected randomly.  

In a typical bootstrap validation, K groups of the size n are generated by a repeated random selection 
(typically, >1000 times) of n objects from the original data set. It is possible for some objects to be 
included in the same random sample several times, while other objects may never be selected. The model 
obtained from the data set of n randomly selected objects is used to predict the target properties for the 
excluded objects. As in the case of LMO validation, a high average q2 in the bootstrap validation is a 
demonstration of the model robustness.  

Bootstrap resampling also provides non-parametric confidence intervals for the estimated parameters. 
The resampling process generates a large number of values (>1000) for each parameter, and one then 
estimates the true values, standard deviations and confidence intervals from these values. Similar methods 
are sometimes called resampling or jackknife methods. 

Chronic toxicity: 

Chronic toxicity refers to the long-term biological effects on an organism exposed to a toxicant. The 
measured endpoints may vary from lethality (LD50) to many sublethal effect concentrations (EC50) and to 
no observable effect concentrations (NOELs).    

Classification: 

Classification is the assignment of objects (e.g. chemicals) to one of several existing classes based on 
a classification rule. Classification is also called supervised pattern recognition, as opposed to 
unsupervised pattern recognition. 

A class or category is a distinct subspace of the whole measurement space. The classes are defined a 
priori by groups of objects in the training set. The objects of a class have one or more characteristics in 
common, indicated by the same value of a categorical variable (e.g., biodegradable/not biodegradable). 
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The goal of a classification method is to develop a classification rule (by selection of the predictor 
variables) based on a training set of objects with known classes so that the rule can be applied to a test set 
of objects with unknown classes. There is a wide range of classification methods, including: discriminant 
analysis (DA), linear DA (LDA), quadratic DA, regularised DA, SIMCA (Soft Independent Modeling of 
Class Analogy), KNN (K Nearest Neighbours) and CART (Classification And Regression Tree) etc.  

The outputs of a classification model are the class assignments and the misclassification matrix, 
which shows how well the classes are separated. The predictive performances of classification models can 
be verified by comparing the cross-validated error rate or risk with the No-Model error rate or risk. 

Cluster analysis: 

Cluster analysis is the grouping, or clustering, of large data sets on the basis of similarity criteria for 
appropriately scaled variables that represent the data of interest.  Similarity criteria (distance based, 
associative, correlative, probabilistic) among the several clusters facilitate the recognition of patterns and 
reveal otherwise hidden structures in the data. Different types of cluster analysis have been developed, 
referred to as hierarchical or non-hierarchical methods. 

In hierarchical cluster analysis (or tree clustering), objects (e.g. chemicals) are organised by similarity 
into a tree, called a dendrogram, similar to the trees seen in phylogenetics. Two objects are next to each 
other if they are very similar, and increasingly far apart as they become more divergent. The procedure can 
work bottom up or top down. The bottom-up method starts by joining the two closest objects to form a 
cluster, then joins the next two closest items (which may be two objects or a object and the newly formed 
cluster), and continues by joining the two closest items at each step (which may be objects or clusters) until 
done. The top-down method does the opposite: it starts with all units in one giant cluster, divides the 
cluster in two, and continues dividing clusters until all objects are separated out. 

There are several types of non-hierarchical clustering. An example is k-means clustering, in which the 
researcher defines a priori the number of clusters the objects should be arranged. The k-means clustering 
algorithm then produces k different clusters, and places the objects in clusters with the goal to minimise the 
variability within clusters, and to maximise the variability between them. 

Coefficient of determination (r2): 

The total variation of any data set is made up of two parts, the part that can be explained by the 
regression equation and the part that cannot be explained by the regression equation. The coefficient of 
determination is the percent of the variation that can be explained by the regression equation. It represents 
the explained variance of the model, and is used as a measure of the goodness-of-fit of the model. 

The coefficient of determination equals the square of the correlation coefficient r between the 
experimental response (the dependent variable y) and the predictors (the independent variables x), 
multiplied by 100.  It can also be calculated by the formula: 

r2 = ESS/TSS = 1-(RSS/TSS)  

where ESS is the Explained Sum of Squares, RSS is the Residual Sum of Squares and TSS is the Total 
Sum of Squares. 

Collinearity: 

Collinearity is a situation where there is a linear relationship between two or more of the independent 
variables in a regression model. In practical terms, this means there is some degree of redundancy or 
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overlap the variables. Interpretation of the effects of the independent variables is difficult in this situation, 
and the standard error of their estimated effects may become very large. 

Collinearity should be described by a correlation matrix in the case when more molecular descriptors 
are involved in the QSAR model. The correlation matrix is formed from correlation coefficients of 
correlations of all pairs of the descriptors used (even between two descriptors). 

Congeneric series:  

A group of chemicals with one or more of the following: a common parent structure (e.g. aliphatic 
alcohols), same mechanism of action, and rate-limiting step. 

Comparative molecular field analysis (CoMFA): 

Comparative Molecular Field Analysis (CoMFA) is a 3D-QSAR method that uses multivariate 
statistical analysis to quantify the relationship between the biological activities of a set of compounds with 
a specified alignment, and their three-dimensional electronic and steric properties.  

Cooper statistics: 

A common problem in QSAR analysis is the prediction of group membership from molecular 
descriptors. In the simplest case, chemicals are categorised into one of two groups depending on their 
biological activity: active/inactive or toxic/non-toxic. A variety of statistical methods are available for 
developing QSARs for two-group classification (e.g. discriminant analysis, logistic regression). 

The performance of a two-group QSAR is sometimes represented in the form of a 2x2 contingency 
table:  

  Predicted class 
  Active Inactive Marginal totals 

Active a b a+b 
Inactive c d c+d 

Known   
class 

Marginal totals a+c b+d a+b+c+d 
 

The goodness-of-fit of a two-group QSAR can be summarised in the form of Cooper statistics, which 
are based on data in the contingency table, and defined as follows: 

Statistic Definition: “the proportion (or percentage) of 
the … 

 

sensitivity active chemicals (chemicals that give positive 
results experimentally) which are predicted to be 
active.” 

= a/(a+b) 
 

specificity inactive chemicals (chemicals that give negative 
results experimentally) which are predicted to be 
inactive.” 

= d/(c+d) 
 

concordance or 
accuracy 

chemicals which are classified correctly.” = (a+d)/(a+b+c+d) 

positive predictivity chemicals predicted to be active that give positive 
results experimentally.” 

= a/(a+c) 

negative predictivity chemicals predicted to be inactive that give 
negative results experimentally.” 

= d/(b+d) 
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false positive  
(over-classification) 
rate 

Inactive chemicals that are falsely predicted to be 
active.”  

= c/(c+d) 
= 1 - specificity 

false negative  
(under-classification) 
rate 

active chemicals that are falsely predicted to be 
inactive.” 

= b/(a+b) 
= 1 - sensitivity 

 
The statistics sensitivity, specificity and concordance provide measures of a two-group QSAR to 

detect known active (toxic) chemicals (sensitivity), inactive (non-toxic) chemicals (specificity) and all 
chemicals (accuracy or concordance). The false positive and false negative rates can be calculated from the 
specificity and sensitivity. 

The other two statistics, the positive and negative predictivities, are conditional probabilities: if a 
chemical is predicted to be active (toxic), the positive predictivity gives the probability that it really is 
active (toxic); similarly, if a chemical is predicted to be inactive (non-toxic), the negative predictivity gives 
the probability that it really is inactive (non-toxic). These conditional probabilities can be calculated by 
Bayesian statistics. 

Correlation coefficient (r): 

The correlation coefficient (r) is a statistical measure of the relationship between a dependent variable 
y (e.g. a toxicity endpoint) and one or more independent variable(s) x. It is given a value from 0 (for no 
relationship) to –1 (for a perfect negative correlation) or +1 (for a perfect positive correlation).  

In QSAR analysis, it is commonly used as a measure of the statistical fit of a regression-based model, 
or to describe the relationship and hence potential collinearity between two descriptors.  

The variance in the dependent variable is expressed as the total sum of squares (TSS), which can be 
divided into the variance attributed to the model (the explained sum of squares [ESS]), and the variance 
attributed to the prediction error (the residual sum of squares [RSS]).   

The correlation coefficient (r) id defined by the following equation: 

r = 
TSS
ESS

  

where ESS is the Explained Sum of Squares and TSS is the Total Sum of Squares. The squared correlation 
coefficient is the coefficient of determination. 

Cross-validated explained variance (q2): 

The cross-validated explained variance or cross-validated correlation coefficient (q2) is used as a 
measure of the internal performance, and sometime used to estimate predictivity. It is calculated by the 
formula: 

q2 = 1-PRESS/TSS  

where PRESS is the Predictive Error Sum of Squares and TSS is the Total Sum of Squares. 

In contrast to r2, which always increases by adding more descriptors, the value of q2 increases when 
useful predictors are added, but decreases otherwise. 
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Cross-validation: 

Cross-validation refers to the use of one or more statistical techniques in which different proportions 
of chemicals are omitted from the training set (e.g. leave-one-out [LOO], leave-many-out [LMO]). The 
QSAR is developed on the basis of the data for the remaining chemicals, and then used to make predictions 
for the chemicals that were omitted. This procedure is repeated a number of times, so that a number of 
statistics can be derived from the comparison of predicted data with the known data. 

Cross-validation techniques can be used to assess the robustness of the model (stability of model 
parameters), and to make estimates of predictivity. 

In k-fold cross-validation, the training set is randomly split into k mutually exclusive subsets (called 
folds) of approximately equal size. The model is trained and tested k times, each time being used to make 
predictions for chemicals that were left out of the training set.  

Cross-validated estimates of accuracy are random numbers that depend on the division into folds. 
Complete cross-validation gives the average of all possibilities of choosing k subsets of objects out of a 
total training set of n objects. Except for leave-one-out (LOO) cross-validation, which is always complete, 
k-fold cross-validation provides an estimate of complete cross-validation by using a single split of the 
training set into folds. To provide a better (Monte-Carlo) estimate of complete cross-validation, k-fold 
cross-validation can be repeated a number of times. 

In stratified cross-validation, the folds are stratified so that each fold contains approximately 
proportions of the classes present in the original training set. 

Cross-validation by the Leave-One-Out (LOO) procedure: 

Cross-validation by the leave-one-out (LOO) procedure employs n training sets in which 1 object has 
been excluded from the original training set. A total of n models are developed by using each training set 
of n-1 objects. For each model, the value of the excluded object is predicted. In the case of a regression 
model, q2 can be computed. In the case of a classification model, cross-validated Cooper statistics can be 
calculated. 

Cross-validation by the Leave-Many-Out (LMO) procedure:  

Cross-validation by the leave-many-out (LMO) procedure employs a number of training sets, derived 
by omitting a fixed proportion (typically, up to 50%) of objects from the original training set. In contrast to 
LOO cross-validation, which is necessarily complete, LMO cross-validation is generally repeated a 
number of times, due to the large number of possible combinations of training sets generated by leaving 
out a fixed proportion of objects from the original training set. 

If a QSAR model has a high average q2 in LMO validation, it is generally concluded that the obtained 
model is robust. 

Data mining: 

Data mining is a collective term that refers to all procedures (informatic and statistical) that are 
applied to heterogeneous data sets, in order to develop a data matrix amenable to statistical methods. For 
example, there are large databases of toxic effect values, such as the Registry of Toxic Effects of Chemical 
Substances (RTECS) compilation of rat oral LD50 values.  
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Degradation: 

Chemicals that are released in the environment are subject to different (biotic and abiotic) 
degradation processes: biodegradation by microorganisms, photolysis by light, hydrolysis by water, 
oxidation by different oxidants (for instance, in the atmosphere by hydroxyl and nitrate radicals or by 
ozone). These degradative processes are usually modelled in terms of the rate constants of the 
corresponding chemical reactions. 

Dependent Variable: 

A dependent variable (y) is a variable modelled by an equation in which one or more independent 
variables (x) are used as predictors of the dependent variable. 

In QSPR and QSAR analysis, the dependent variable generally refers to a physicochemical property, 
toxicity endpoint, ecotoxicity endpoint or environmental parameter. The independent variables (x) in a 
QSAR model are generally molecular descriptors. 

Descriptor:  see Molecular descriptor 

Domain of applicability: see Applicability domain (AD) 

Discriminant analysis: 

Discriminant analysis refers to a group of statistical techniques that can be used to find a set of 
descriptors to detect and rationalise (in terms of a predictive model) the separation between activity classes 

Electrophilicity: 

Electrophilicity is the molecular or substructural property of having an attraction for electrons or 
negative charge. Molecular electrophilicity is often described by the molecular orbital characteristics: the 
energy of the lowest unoccupied molecular orbital (ELUMO) and electrophilic superdelocalisability. 

Energy of the highest occupied molecular orbital (EHOMO): 

The energy of highest occupied molecular orbital (EHOMO) is the energy of the highest energy level 
that contains electrons in a molecule. Molecules with high HOMO energy values can donate their electrons 
more easily compared to molecules with low HOMO energy value and hence are more reactive as 
nucleophiles. This molecular orbital property is therefore often used as a measure of nucleophilicity in 
QSAR models. It is equivalent to the negative of the ionisation potential.  

Energy of the lowest unoccupied molecular orbital (ELUMO): 

The energy of lowest occupied molecular orbital (ELUMO) is the energy of the lowest energy level that 
contains no electrons in a molecule. Molecules with low LUMO energy values are more able to accept 
electrons than molecules with high energy values. This molecular orbital property is often used as a 
measure of electrophilicity in QSAR models. It is related to the electron affinity. 

Expert system:  

Any formalised system, not necessarily computer-based, which enables a user to obtain rational 
predictions about the properties or activities of chemicals. All expert systems for the prediction of chemical 
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properties or activities are built upon experimental data representing one or more effects of chemicals in 
biological systems (the database), and/or rules derived from such data (the rulebase). 

External validation: 

External validation refers to a validation exercise in which the chemical structures selected for 
inclusion in the test set are different to those included in the training set, but which should be 
representative of the same chemical domain. The QSAR model developed by using the training set 
chemicals is then applied to the test set chemicals in order to verify the predictive ability of the model. 

Many QSAR practitioners regard external validation to be the most stringent form of validation, 
provided that sufficient experimental data are available, and the test structures are selected judiciously, in 
order to allow for a sufficient coverage of the applicability domain of the model. 

In the ideal validation process, the results of external validation will be used to supplement the results 
obtained by internal validation. However, in practice, there may be insufficient data to perform an external 
validation. 

False negative rate: see Cooper statistics 

False positive rate: see Cooper statistics 

Fisher statistic: 

The Fisher statistic (F), or variance ratio, is the ratio of two s2 values (estimates of population 
variance, based on the information in two or more random samples). In the F test, the obtained value of F is 
used to test the statistical significance of the observed differences among the means of two or more random 
samples. 

The F test employs the F statistic to test various statistical hypotheses about the mean (or means) of 
the distributions from which a sample or a set of samples have been drawn. 

Fragment analysis: 

Fragment analysis refers to the analysis of a dataset that involves breaking down molecular structures 
into fragments of one or more atoms, in order to identify activitating and inactivating fragments (biophores 
and biophobes). It can be the basis of fragment-based (or group contribution) methods, in which the 
properties (activities) of a molecule are estimated by summation of the properties (activities) of the 
fragments. 

Free-Wilson analysis: 

Free-Wilson analysis is a regression technique using the presence or absence of substituents or groups 
(indicator variable) as the only molecular descriptors in correlations with biological activity. 

Functional group: 

Chemicals can be thought of as consisting of a relatively unreactive backbone and one or more 
functional groups. The functional group is an atom, or a group of atoms, which has specific chemical 
attributes, particularly for interactions with other chemicals. Functional groups often be the primary cause 
for chemical characteristic when only a few functional groups are present.  However, for complex 
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chemicals with many functional groups, the simple interactions associated with individual functional 
groups are not reliable predictors of chemical behaviour. 

Genetic algorithm (GA): 

A genetic algorithm (GA) is an optimisation method based on evolutionary principles. In GA 
terminology, a chromosome is a p-dimensional vector (a string of bits) where each position (a gene) 
corresponds to a variable (1 if included in the model, 0 otherwise). Each chromosome or individual in the 
population represents a model with a subset of variables. A population of models is obtained which evolves, 
according to genetic algorithm rules, in order to maximise the predictive power of the models (for instance, 
the explained variance in prediction, q2). 

In the first generation, the variables are chosen randomly. In the next step, reproduction takes place, 
so that the new individual contains characteristic of both its parents. The next steps are crossovers and 
mutations, which allow better variable combinations to be found. This reproduction-crossover-mutation 
process is repeated during the evolution of the population until a desired target fitness score is reached. 
Only the models producing the highest predictive power are finally retained and further analysed. 

GAs are used in QSAR analysis as a strategy for variable subset selection (VSS) in multivariate 
situations where a large number of molecular descriptors are potential x-variables. There are different types 
of GA analysis, which perform reproduction, crossover and mutation in different ways. An important 
characteristic of the GA-VSS method is that the result is usually a population of acceptable models.  

Half-life: 

The half-life (commonly denoted as t½) is the time required for the concentration of a particular 
chemical in a medium to be reduced to half of its initial value. Environmental half-life data generally 
reflect the rate of disappearance of a chemical from a medium, without identifying the mechanism of 
chemical loss. For example, loss from water may be due to a combination of evaporation, biodegradation 
and photolysis. If the elimination rate involves transport and transformation processes that follow first-
order kinetics, the half-life time is related to the total elimination rate constant k as follows: 0.693/k. In 
some cases, lifetime is used instead of half-life.  

Hansch analysis: 

Hansch analysis is the investigation of the quantitative relationship between the biological activity of 
a series of compounds and their physicochemical substituent or global parameters representing 
hydrophobic, electronic, steric, and other effects, using a multiple regression method. 

Henry constant: 

The Henry constant (H) is an air-water partition coefficient that expresses the tendency of a chemical 
to volatilise from an aqueous medium. It can be determined by measurement of the solute concentrations in 
both phases. Due to the difficulty of accurate analytical determination, the H constant is mainly calculated 
as the ratio of vapour pressure to solubility. 

Heterogenous: see Training set 

Homogeneous: see Training set 
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Homologous series: 

A homologous series is a family of chemicals containing a common functional group and differing 
only in the length of their carbon chain. 

Hydrophilicity: 

Hydrophilicity refers to the affinity of a molecule or substitutent for a polar solvent (especially water) 
or for polar groups. It represents the tendency of a molecule to be solvated by water. 

Hydrophobicity: 

Hydrophobicity refers to the association of non-polar groups or molecules in an aqueous environment, 
which arises from the tendency of water to exclude non-polar molecules. It is related to lipophilicity. It 
represents the tendency of a molecule to partition between a polar and a non-polar phase, and is therefore 
often measured by a partition coefficient between a polar and non-polar phase (usually, but not always, n-
octanol and water). 

It is often highly related to biological activity due to its strong relationship with the transport and 
distribution of a molecule, particularly through phospholipid membranes.  

Independent Variable: see Dependent variable  

Indicator Variable: 

An indicator variable is a descriptor that can assume only two values indicating the presence (=1) or 
absence (=0) of a given condition. In Free-Wilson analysis, it is used to indicate the absence or presence 
of a substituent or substructure. 

Internal validation:  

Internal validation refers to a validation exercise in which one or more statistical methods are applied 
to the training set of chemicals. Internal validation results in one or more measures of goodness-of-fit, 
robustness of model parameters, and estimates of predictivity. 

Many QSAR practitioners regard internal validation to be an essential, but not sufficient, aspect of 
statistical validation, which should ideally be supplemented by external validation. 

Lipophilic: 

Lipophilic refers a tendency of a molecule to dissolve in fat-like (e.g., hydrocarbon) solvents. 

Lipophilicity: 

Lipophilicity refers to the affinity of a molecule or of a substituent for a lipophilic environment. It is 
commonly measured by its distribution behaviour in a biphasic system (e.g., octanol-water partition 
coefficient) . 
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Molecular Descriptor: 

A molecular descriptor is a structural or physicochemical property of a molecule, or part of a 
molecule, which characterises a specific aspect of a molecule and is used as an independent variable in a 
QSAR. 

Guidance on the appropriate use of descriptors is provided in Chapter 6, and a list of commonly-used 
descriptors is provided as Table 6.1. 

Molecular modelling: 

Molecular modelling refers to the investigation of molecular structures and properties by using 
computational chemistry and graphical visualisation techniques to provide a plausible three-dimensional 
(3D) representation of a chemical.  

It can refer to the modelling of small organic molecules, macromolecules (e.g. proteins, DNA), 
crystals and inorganic structures. The 3D structure of the molecule is usually obtained by a process of 
geometry optimisation. The geometry-optimised molecule provides the basis for calculating molecular 
properties. 

Molecular Orbital Properties: 

Molecular orbital properties (molecular structure and electronic properties) are estimated by applying 
quantum chemical calculations to molecular structures.  

Molecular orbital properties are usually calculated from semi-empirical rather than ab initio methods. 
Freely available software, such as MOPAC, is available to perform these calculations. A variety of 
molecular orbital properties have been found useful in QSAR analysis, including the energies of the 
highest occupied and lowest unoccupied molecular orbitals (EHOMO and ELUMO respectively), atomic 
charges and superdelocalisabilities, dipole moment, and electrostatic potential.  

Narcosis:  

Narcosis is the non-specific surpression of physiological functions by chemicals which bind 
reversibly to membranes and proteins. The effect is brought about by non-reactive chemicals and is 
thought to result from an accumulation of the toxicant in cell membranes, diminishing their functionality. 
The narcotic effect is reversible, so that an organism will recover when the toxicant is removed.  

The potency for narcotic effects are strongly associated with molecular hydrophobicity and vapour 
pressure, and hence good relationships have been found between the acute toxicity of narcotics and log P 
(inhalation in fish) and vapour pressure (inhalation in mammals) Within the narcotic mode of toxic action, 
a number of more selective mechanisms such as non-polar narcosis, polar narcosis, amine narcosis, ester 
narcosis, anaesthetics, and sensory irritation have been proposed.  

Multivariate analysis: 

Multivariate analysis is the analysis of multi-dimensional data matrices by using statistical methods. 
Such data matrices can involve multiple dependent and/or independent variables. 
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Nucleophilicity: 

Nucleophilicity refers to the molecular or substructural property of having a repulsion for electrons or 
an attraction for positive charge. Molecular nucleophilicity is often described by the energy of the highest 
occupied molecular orbital (EHOMO) and by nucleophilic superdelocalisability. 

Outlier: 

An outlier of a QSAR model refers to a data point (chemical) that falls outside the confidence interval 
of the regression line. Outliers can be defined statistically in various ways. Typically, the outlier of a 
QSAR model has a cross-validated standardised residual greater than three standard deviation units. 

The outliers of a QSAR model should always be identified, and the reason for their outlying 
behaviour should be provided.   

Parameter space: 

The parameter space of a model is a multi-dimensional space in which the axes are defined by the 
descriptors of the model. See domain of applicability. 

Pattern recognition: 

Pattern recognition is the identification of patterns in (generally large) data sets, using appropriate 
chemometric methods. Examples are exploratory methods like Principal Component Analysis (PCA), 
Factor Analysis, Cluster Analysis, Artificial Neural Networks (ANN).  

(Model) Performance: 

The performance of a (Q)SAR model refers to its goodness-of-fit, robustness and predictive ability in 
relation to a defined applicability domain.  

Model performance is established by using the techniques of statistical validation. 

Persistence: 

The term persistent is used to characterise chemicals that have long lifetimes in the environment. The 
persistence of a chemical depends on its kinetics or reactivity, as expressed by its rates of degradation.  See 
also Degradation. 

Pharmacophore: 

The ensemble of steric and electronic features that is necessary to ensure the optimal intermolecular 
interaction with a specific biological target molecule, which may result in the activation or inhibition of a 
specific biological response. 

Partition coefficient: 

A partition coefficient is the ratio of the concentrations of a substance between two phases when the 
heterogeneous system of two phases is in equilibrium. In QSAR analysis, the octanol-water partition 
coefficient (log K) is often used as a descriptor of hydrophobicity, where 

Log Ko/w = Log [chemical]n-octanol / [chemical]water 
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Predictor:  see molecular descriptor 

Predictive Error Sum of Squares (PRESS): 

Predictive Error Sum of Squares (PRESS) is the sum of the squares of the differences (residuals) 
between the experimental and predicted responses when predictions are made for objects left out of the 
training sets, but included in the external test set. 

Predictivity: 

The predictivity (or predictive capacity/ability) of a model is a measure of its ability to make reliable 
predictions for chemical structures not included in the training set of the model. 

For regression models, a measure of predictivity is the coefficient of determination. For classification 
models, measures of predictivity include the positive predictivity and the negative predictivity. 

Some (Q)SAR practitioners distinguish between internal and external predictivity, depending on 
whether the estimate or measure of predictivity is based on internal or external validation. For other 
researchers, “predictivity” is by definition “external”, in which case the term “internal performance” would 
be used in preference to “internal predictivity”.  

Principal components analysis (PCA): 

Principal components analysis (PCA) is a method for reducing data dimensionality by applying 
mathematical techniques. The main element of this approach consists of the construction of a reduced set 
of new orthogonal, i.e. not correlated, variables, each of which is derived from a linear combination of the 
original variables. It is an explorative method that is useful for visualising the structure of the data in a 
complex matrix. In QSAR analysis, it is also used to verify the correlation among the descriptors, thereby 
supporting the selection of molecular descriptors in models. 

Principal components regression (PCR): 

Principal components regression (PCR) is the application of regression analysis to a data set in which 
the descriptors are principal components, derived from more fundamental descriptors. 

Quantitative structure-activity relationship (QSAR): 

A Quantitative Structure-Activity Relationship (QSAR) is a quantitative relationship between a 
biological activity (e.g. toxicity) and one or more molecular descriptors that are used to predict the activity. 

Quantitative structure-property relationship (QSPR): 

A Quantitative Structure-Property Relationship (QSPR) is quantitative relationship between a 
physicochemical property or environmental parameter (e.g. a partition coefficient) and one or more 
descriptors that are used to predict the property. 

Randomisation testing: 

Randomisation testing is a technique for checking the robustness of a QSAR model. In this test, the 
dependent variable vector, y-vector, is randomly shuffled and a new QSAR model is developed using the 
original independent variable matrix. The process is repeated several times. It is expected that the resulting 
QSAR models should generally have low r2 and low q2 LOO values. 
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If the new models developed from the data set with randomised responses have significantly lower R2 

and Q2 than the original model, then strong evidence is provided that the proposed model is well founded, 
and not just the result of chance correlation. 

In contrast, if all QSAR models obtained in the y-randomisation test have relatively high r2 and q2 
LOO, it implies that an acceptable QSAR model cannot be obtained for the given data set by the current 
modelling method. 

Receiver Operating Characteristics (ROC) Graph: 

A Receiver Operating Characteristics (ROC) Graph can be used to visually compare the predictive 
abilities of different two-group classification models. The y axis of the ROC graph is the sensitivity (true 
positive rate) whereas the x axis is the false positive rate (1-specificity). The diagonal line in the plot 
represents models with random responses, whereas the top left corner represents the ideal model 
performance. Therefore, the best classification models are located in the upper left triangle, as close as 
possible to the corner. 

Reliable (Q)SAR and reliability: 

A (Q)SAR that is considered to be “reliable” or “valid” for a particular purpose is a model that 
exhibits an adequate performance for the intended purpose. 

The criteria for determining whether the model performance is “adequate” will depend on the 
particular purpose and are highly context- dependent.  

Regression Analysis: 

Regression analysis is the use of statistical methods for modelling a dependent variable y in terms of 
predictors x (independent variables or molecular descriptors).  

 y= b0+ b1x1+b2x2+…….bn xn 

Simple regression analysis allows for a line of best fit to be placed between two sets of data. In 
QSAR analysis, quantitative measures of potency (e.g. LD50, EC50) may be used as the dependent variable 
and the physicochemical and / or structural descriptors of the molecule as independent variables. Thus, for 
a series of chemicals, the general form of the regression model between the concentrations causing a 
response (C) and a physicochemical property (PP) is: 

 Log 1 / C  =  a PP  +  c 

Where a is the regression coefficient and c is the constant. 

When more than one independent variable is used, it is termed multiple linear regression (MLR) 
analysis. This has the general form: 

 Log 1 / C  =  a PP1 + b PP2 ….  +  c 

There are a number of conditions that must be met for successful use of regression analysis for the 
development of QSARs. The number of independent variables must be as low as possible, and the ratio of 
observations to variables must be as high as possible (a ratio of 5:1 is considered an absolute minimum). 
Care must also be taken to ensure that all variables in a multiple linear regression analysis are significant 
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(this can be assessed by reference to the t-value for each variable and its associated probability and by the 
standardised regression coefficient) and preferably that no combinations of independent variables are 
collinear (unless an appropriate method has been applied to control the collinearity). Methods to check 
collinearity and to obtain reliable models even in presence of “some” collinearity in the descriptors are 
described in Chapter 5. 

For both simple and multiple linear regression analysis, a number of measures of statistical fit are 
commonly applied. These include the standard error of the estimate, coefficient of determination, the 
Fisher statistic (and its associated probability) as well as measures of predictivity. The number of 
chemicals (data points) should also always be reported. 

For large numbers of independent variables (i.e. physicochemical and/or structural properties) some 
form of variable selection technique is commonly applied. This may be an empirical process from the user, 
i.e. the selection of properties known or thought to be important. Alternatively, variable selection may 
employ stepwise selection techniques (forward or backward), best subsets selection, or the use of genetic 
algorithms. 

Residual Sum of Squares (RSS): 

Residual Sum of Squares (RSS) is the sum of the squares of the differences (residuals) between the 
experimental and estimated responses when predictions are made for objects in the training set. 

Sensitivity: see Cooper statistics 

Similarity analysis: 

Similarity analysis refers to a variety of methods for quantifying the similarity between molecules in 
terms of their molecular structure (including shape, size, electronic and hydrophobic characteristics. 
Methods for performing similarity analysis generally are generally based on quantum-mechanical 
calculations, and are therefore implemented by specialised software packages. 

Simplified Molecular Line Entry System (SMILES): 

Simplified Molecular Line Entry System (SMILES) is a 2D or (very occasionally a 3D) representation 
of chemical structure. It is in the form a 2D string and has become a standard method for denoting 
structures in databases, and for inserting chemical structures into models for property calculation. The 
SMILES string is written by following a small number of rules, which are simple to learn and use. Briefly, 
in the SMILES string each non-hydrogen atom (hydrogen is only explicitly included in special 
circumstances) is denoted by its symbol; double and triple bonds are shown by “=” and “#” symbols, 
respectively; branches are shown in parentheses; and rings are opened and closed by the use of numbers. 

Specificity: see Cooper statistics 

Standard Deviation: 

The standard deviation (s) is the square root of the variance. The variance of a sample (s2) is given by 
the following formula: 

 s2 = 1/(n-1) ∑ (xi – x’) 

where xi are the values of the objects in the sample, and x’ is the sample mean. 
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Standard Deviation Error in Calculation (SDEC): 

The Standard Deviation Error in Calculation (SDEC) is similar to the standard error of the estimate. 
SDEC is given by the following formula: 

 SDEC = √RSS / n 

where RSS is the residual sum of squares (RSS) and n is the number of objects in the training set.  

Standard Deviation Error in Prediction (SDEP): 

The Standard Deviation Error in Prediction (SDEP) is similar to SDEC, but the residuals are 
calculated by using the predicted value of the dependent variable (PRESS: Predictive Error Sum of Squares) 
when an observation is left out of the training set and put in the test set.  

Standard Error of the Estimate (s): 

The standard error of the estimate (s) is the square root of the residual sum of squares (RSS). The 
RSS are the sum of the squares of the residuals divided by the corresponding degrees of freedom. 

Standardised Regression Coefficient: 

The standardised regression coefficients are the coefficients of the independent variables (predictors) 
in a regression model divided by the standard deviation of the corresponding predictor. They provide a 
measure of the relative importance of the corresponding variable.  

Structural alert: 

A structural alert is a molecular (sub)structure associated with the presence of a biological activity. 

Structure-activity relationship (SAR): 

A Structure-Activity Relationship (SAR) is qualitative relationship (i.e. an association) between a 
molecular (sub)structure and the presence or absence of a biological activity, or the capacity to modulate a 
biological activity imparted by another substructure. A substructure associated with the presence of a 
biological activity is sometimes called a structural alert. 

A SAR can also be based on the ensemble of steric and electronic features (biophore or toxicophore) 
considered necessary to ensure the intermolecular interaction with a specific biological target molecule, 
which results in the manifestation of a specific biological effect. 

Similarly, the biophobe (or toxicophobe) refer to the features that are necessary to ensure the optimal 
intermolecular interaction with a specific biological target molecule, which results in the absence of a 
specific toxic effect. 

Substructure: 

A substructure is an atom, or group of adjacently connected atoms, in a molecule. 
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Superdelocalisability: 

Superdelocabilisability is a descriptor, derived by quantum-mechanical calculation, that serves as an 
index of the reactivity of occupied and unoccupied orbitals in a molecule. A distinction is made between 
electrophilic and nucleophilic superdelocalisability (or acceptor and donor superdelocalisability, 
respectively): the former describes the interactions with an electrophilic centre, whereas the latter 
describing the interactions with a nucleophilic centre in the second reactant. 

Supervised learning: 

Supervised learning refers to the development of an algorithm (e.g. QSAR model) by a process that 
uses both the predictor and the response values, whereas in unsupervised learning, only the predictor 
values are used. Examples of supervised learning methods are (multiple) linear regression and discriminant 
analysis. Examples of unsupervised learning methods are different types of cluster analysis and principal 
components analysis (PCA). 

Test set: 

A test set is sometimes called an “independent” or “external” test set (or validation set), and 
distinguished from “training set”. It is a set of chemicals, not present in the training set, selected for their 
use in assessing the predictive ability of a (Q)SAR.  

For the purpose of (Q)SAR validation, it is important that the test set is representative of the training 
set, and contains a sufficient number of chemical structures.  

Theoretical molecular descriptor: 

A theoretical molecular descriptor is a number, obtained by applying a scientifically-based algorithm, 
that represents a particular aspect or feature (mono-dimensional, two-dimensional or three-dimensional) of 
the chemical structure. Theoretical molecular descriptors have the advantage that they can be generated for 
any chemical from a simple representation of its molecular structure (generally by using a specialised 
software programme). These descriptors can therefore be generated for chemicals that have not been 
synthesised, and used in QSARs for the purpose of lead identification in drug development. 

Three-dimensional (3D) QSAR: 

A technique that uses properties or theoretical descriptors derived from the 3D structure of a molecule 
(e.g. related to molecular size and the electric field around the molecule) as the descriptors for QSAR 
generation. 

Topological descriptor:  

A topological descriptor (or index) is a 2D descriptor of a molecule based on Graph Theory. 
Topological indices describe the connections between the atoms in a molecule. Typically, they are 
associated with the size or bulk of a molecule. Specific indices may describe the extent of branching vs. 
linearity in a molecule, or the contribution of rings to a molecule.  

There are many different types of topological index, and thousands have been proposed in the QSAR 
literature. Specialised software packages have been developed to calculate many of these. 
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Total Sum of Squares (TSS): 

The total sum of squares (TSS) is the sum of the squares of the differences between the experimental 
responses and the mean values. 

Toxic endpoint: 

A toxic endpoint is a measure of the deleterious effect to an organism following exposure to a 
chemical. A large number of toxic endpoints are used in regulatory assessments of chemicals. These 
include lethality, generation of tumours (carcinogenicity), immunological responses, organ effects, 
development and fertility effects.  

It is the purpose of a toxicity test to determine whether a chemical has the potential to exhibit the toxic 
effect of interest, and in some cases, to determine relative potency. In QSAR analysis, it is important to 
develop models for individual toxic endpoints, and different methods may be required for different 
endpoints. 

Toxicophore: 

The ensemble of steric and electronic features that is necessary to ensure the optimal intermolecular 
interaction with a specific biological target molecule, which results in the manifestation of a specific toxic 
effect. 

Training set: 

A training set is a set of chemicals used to derive a QSAR. The data in a training set are typically 
organised in the form of a matrix of chemicals and their measured properties or effects in a consistent test 
method. A homogeneous training set is a set of chemicals which belong to a common chemical class, share 
a common chemical functionality, have a common skeleton, or common mechanism of action. A 
heterogeneous training set is a set of chemicals which belong to multiple chemical classes, or which do not 
share a common chemical functionality or common mechanism of action. 

Unsupervised learning:  see supervised learning. 

Validation: 

According to the OECD Guidance Document on the Validation and International Acceptance of New 
or Updated Test Methods for Hazard Assessment, validation is defined as the process by which the 
reliability and relevance of a particular approach, method, process or assessment is established for a 
defined purpose (http://www.oecd.org/document/30/0,2340,en_2649_34365_1916638_1_1_1_1,00.html, 
accessed 6 February 2007). 

 Valid (Q)SAR, validated QSAR and validity: 

A validated (Q)SAR is a model considered to be reliable for a particular purpose based on the results 
of the validation process in which the domain of application and the level of uncertainty required is defined. 

A valid (Q)SAR is a model considered to be adequate for the intended purpose either because 
reliability has been demonstrated by historical use or by a validation process 
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The critieria for judging (Q)SAR validity (reliability) are determined by specific regulatory 
constraints in member countries which include the number of chemicals, time required in the descision 
process and the level of uncertainty acceptable for the regulatory application.  

Variance ratio: see Fisher statistic 

Y-scrambling:  see Randomisation testing: 


