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INDIVIDUAL ESTIMATES VERSUS POPULATION ESTIMATES
Education assessments can have two major purposes:

1. To measure the knowledge and skills of particular students. The performance of each student usually will
have an impact on his or her future (school career, admission to post-secondary education, and so on). It
is therefore particularly important to minimise the measurement error associated with each individual’s
estimate.

2. To assess the knowledge or skills of a population. The performance of individuals will have no impact on
their school career or professional life. In such a case, the goal of reducing error in making inferences
about the target population is more important than the goal of reducing errors at the individual level.

National and international education surveys belong to the second category.

International surveys such as PISA report student performance through plausible values.! This chapter will
explain the conceptual meaning of plausible values and the advantage of reporting with them. Individual
estimators (such as the weighted likelihood estimate [WLE] defined in Chapter 5) will be compared with
plausible values for the purposes of estimating a range of population statistics.

THE MEANING OF PLAUSIBLE VALUES (PVs)

An example taken from the physical sciences measurement area can help illustrate the complex concept
of plausible values. Suppose that a city board decides to levy a new building tax to increase the city’s
revenue. This new tax will be proportional to the length of the family house living room. Inspectors visit all
city houses to measure the length of the living rooms. They are given a measuring tape and are instructed to
record the length in term of integers only, i.e. 1 metre, 2 metres, 3 metres, 4 metres and so on.

The results of this measure are shown in Figure 6.1. About 2% of the living rooms have a reported length of
4 metres; slightly over 16% of the living rooms have a reported length of 9 metres and so on.

Figure 6.1
T Living room length expressed in integers F

18

16
14
12
10
8 I I
4 5 6 7 8 9 10 11 12 13 14

Reported length of living room

Percentage of living room

(@R SIE N

Of course, the reality is quite different, as length is a continuous variable. With a continuous variable,
observations can take any value between the minimum and the maximum. On the other hand, with a
discontinuous variable, observations can only take a predefined number of values. Figure 6.2 gives the
length distribution of the living rooms per reported length.
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Figure 6.2
T Real length per reported length F
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All living rooms with a reported length of 5 metres are not exactly 5 metres long. On average, they are
5 metres long, but their length varies around the mean. The difference between reported length and
real length is due to the rounding process and measurement error. An inspector might incorrectly report
5 metres for a particular living room, when it really measures 4.15 metres. If the rounding process were the
only source of error, then the reported length should be 4 metres. The second source of error, the error in
measuring, explains the overlap in the distribution.

In this particular example, the lengths of the living rooms are normally distributed around the mean, which
is also the reported length. If the difference between the length and the closest integer is small, then the
probability of not reporting this length with the closest integer is very small. For instance, it is unlikely that
a length of 4.15 be reported as 5 metres or 3 metres. However, as the distance between the real length and
the closest integer increases, the probability of not reporting this length with the closest integer will also
increase. For instance, it is likely that a length of 4.95 will be reported as 5 metres, whereas a length of 4.50
will be reported equally as many times as 4 metres as it is 5 metres.

The methodology of plausible values consists of:

= mathematically computing distributions (denoted as posterior distributions) around the reported values
and the reported length in the example; and

= assigning to each observation a set of random values drawn from the posterior distributions.

Plausible values can therefore be defined as random values from the posterior distributions. In the example,
a living room of 7.154 metres that was reported as 7 metres might be assigned any value from the normal
distribution around the reported length of 7. It might be 7.45 as well as 6.55 or 6.95. Therefore, plausible
values should not be used for individual estimation.

This fictitious example from the physical sciences can be translated successfully to the social sciences. For
example, with a test of six dichotomous items, a continuous variable (i.e. mental ability) can be transformed
into a discontinuous variable. The discontinuous variable will be the student raw score or the number of
correct answers. The only possible scores are: 0, 1, 2, 3, 4, 5 and 6.
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Contrary to most measures in the physical sciences, psychological or education measures encompass
substantial measurement errors because:

= The concept to be measured is broader.
= They might be affected by the mental and physical dispositions of the students on the day of the
assessment.

= The conditions in which students are tested might also affect the results.
This means that there are large overlaps in the posterior distributions, as shown in Figure 6.3.

Further, with the example of the living room, the measurement error of the posterior distributions can
be considered as independent of the living room.? In education, the measurement error is not always
independent of the proficiency level of the students. It may be smaller for average students, and larger for
low and high achievers, depending on the test average difficulty.

Further, in this particular example, the posterior distributions for score 0 and score 6 are substantially skewed,
as the posterior distributions of the living rooms with a reported length of 4 and 14 metres would be, if all living
rooms smaller than 4 metres were reported as 4, and if all living rooms longer than 14 metres were reported as
14. This means that the posterior distributions are not normally distributed, as shown in Figure 6.3.

Figure 6.3
T A posterior distribution on a test of six items F
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Generating plausible values on an education test consists of drawing random numbers from the posterior
distributions. This example clearly shows that plausible values should not be used for individual performance.
Indeed, a student who scores 0 might get -3, but also -1. A student who scores 6 might get 3, but also 1.

It has been noted that:

“The simplest way to describe plausible values is to say that plausible values are a representation of the
range of abilities that a student might reasonably have. [...] Instead of directly estimating a student’s
ability 6, a probability distribution for a student’s 0 is estimated. That is, instead of obtaining a point
estimate for 6, like a WLE, a range of possible values for a student’s 6, with an associated probability for
each of these values is estimated. Plausible values are random draws from this (estimated) distribution
for a student’s 8 (Wu and Adams, 2002).3
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All this methodology aims at building a continuum from a collection of discontinuous variables (i.e. the
test score). It is meant to prevent biased inferences occurring as a result of measuring an unobservable
underlying ability through a test using a relatively small number of items.

Finally, an individual estimate of student ability can also be derived from the posterior distributions. This
derived individual estimate is called the expected a posteriori estimator (EAP). Instead of assigning a set of
random values from the posterior distributions, the mean of the posterior distributions is assigned. Therefore,
the EAP can be considered as the mean of an infinite set of plausible values for a particular student. See
Figure 6.4.

Figure 6.4
T EAP estimators F

Score 2

Score 1 N
s \
7 N

\ ,-~| Score 4
B
)

2.5 3.5

Proficiency on logit scale

As only one value is assigned per posterior distribution, the EAP estimator is also a discontinuous variable.*
However, EAP estimates and WLEs differ as the former requires a population distribution assumption, which
is not the case for the latter. Further, while any raw score for a particular test will always be associated with
one and only one WLE, different EAP values can be associated with a particular raw score, depending on
the regressors used as conditioning variables.

Researchers not used to working with plausible values might consider this apparent randomisation as a source
of imprecision. The comparison of the different types of Rasch ability estimators (WLE, EAP and PV) through
the estimation of population statistics will overcome this perception. The PISA database only includes PVs® for
student performance but uses WLE for contextual indices derived from the student or school questionnaire.
Although PISA does not include any EAP in its databases, the comparison will incorporate EAP estimates to
show biases that occur when data analysts average the plausible values at the student levels to obtain one
score value per student.

COMPARISON OF THE EFFICIENCY OF WLEs, EAP ESTIMATES AND PVs FOR THE
ESTIMATION OF SOME POPULATION STATISTICS®

A comparison between different student ability estimators could be performed on real data. Such a comparison
will outline differences, but it will not identify the best estimators for a particular population statistic.
Therefore, a simulation will be used to illustrate and evaluate the differences in various estimators.
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The simulation consists of three major steps:

= The generation of a dataset including a continuous variable that represents the student abilities
(i.e. denoted as the latent variable), some background variables including the gender and an index of
social background, denoted HISEI, and a pattern of item responses coded 0 for an incorrect answer and
1 for a correct answer. The results presented hereafter are based on a fictitious test of 15 items.”

= The computation of the student ability estimator, in particular the WLEs, EAP estimates and PVs.8

= The estimation of some population parameters using the student ability (i.e. latent variable) and the
different student ability estimators. A comparison will be made for:
— mean, variance and percentiles,
— correlation,
— between- and within-school variance.

The dataset of this simulation contains 5 250 students distributed in 150 schools with 35 students per
school. Table 6.1 presents the structure of the simulated dataset before the importation of the Rasch student
ability estimators.

Table 6.1
Structure of the simulated data
School ID Student ID Sex HISEI Item 1 Item 2 Item 14 Item 15
001 01 1 32 1 1 0 0
001 02 0 45 1 0 1 0
150 5249 0 62 0 0 1 1
150 5250 1 50 0 1 1 1

Table 6.2 presents the mean and the variance of the latent variable, the WLEs, the EAP estimates and the five
plausible values. The average of the 5 PV mean is also included.

Table 6.2 shows that a good estimate of the population’s mean (i.e. the latent variable estimate) is obtained
regardless of the type of latent variable used (WLEs, EAP estimates or PVs). It can be empirically demonstrated
that none of the estimates significantly differs from the expected mean, i.e. 0.00 in this particular case (Wu
and Adams, 2002). Additionally, it can also be shown that the mean of the WLEs will not be biased if the
test is well targeted, i.e. if the average of the item difficulties is around 0 on the Rasch scale (Wu and Adams,
2002). That is, on a well-targeted test, students will obtain a raw score of about 50% correct answers. If the
test is too easy then the mean of the WLEs will be underestimated (this is called the ceiling effect), while if
it is too difficult then the mean of the WLEs will be overestimated (this is called the floor effect).

Table 6.2
Means and variances for the latent variables and the different student ability estimators
Mean Variance
Latent variable 0.00 1.00
WLE 0.00 1.40
EAP 0.00 0.75
PV1 0.01 0.99
PV2 0.00 0.99
PV3 0.00 1.01
PV4 0.00 1.01
PV5 -0.01 0.00
Average of the 5 PV statistics 0.00 1.00
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These last results explain why the mean of the WLEs provided in the PISA 2000 database differs from the
mean of the plausible values, especially for the partner countries. For the reading/reflection and evaluation
scale, the means obtained for Canada using WLEs and PVs are 538.4 and 542.5, respectively, which are
very close. In contrast, the means obtained for Peru, using WLEs and PVs are 352.2 and 322.7, respectively,
a difference of about 0.3 standard deviations. This shows that there is bias when WLEs are used to estimate
the mean if the test is not well targeted.

For the population variance, Table 6.2 shows that PVs give estimates closest to the expected value, while WLEs
overestimate it and the EAP underestimates it. These results are consistent with other simulation studies.

Table 6.3 presents some percentiles computed on the different ability estimators. For example, because the
variance computed using plausible values is not biased, the percentiles based on PVs are also unbiased.
However, because the EAP estimates and WLEs variances are biased, the percentiles, and in particular, extreme
percentiles will also be biased. These results are consistent with other simulation studies previously cited.

Table 6.4 presents the correlation between the social background index (HISEI), gender and the latent
variables and the different estimators of student abilities. The correlation coefficients with the WLEs are
both underestimated, while the correlation coefficients with the EAP estimates are overestimated. Only the
correlation coefficients with the plausible values are unbiased.?

It should be noted that the regression coefficients are all unbiased for the different types of estimators.
Nevertheless, as variances are biased for some estimators, residual variances will also be biased. Therefore,
the standard error on the regression coefficients will be biased in the case of the WLEs and the EAP

estimates.
Table 6.3
Percentiles for the latent variables and the different student ability estimators
P5 P10 P25 P50 P75 P90 P95
Latent variable -1.61 -1.26 -0.66 0.01 0.65 1.26 1.59
WLE -2.15 -1.65 -0.82 -0.1 0.61 1.38 1.81
EAP -1.48 -1.14 -0.62 -0.02 0.55 1.08 1.37
PV1 -1.68 -1.29 -0.71 -0.03 0.64 1.22 1.59
PV2 -1.67 -1.31 -0.69 -0.03 0.62 1.22 1.58
PV3 -1.67 -1.32 -0.70 -0.02 0.64 1.21 1.56
PV4 -1.69 -1.32 -0.69 -0.03 0.63 1.23 1.55
PV5 -1.65 -1.3 -0.71 -0.02 0.62 1.2 1.55
Average of the 5 PV statistics -1.67 -1.31 -0.70 -0.03 0.63 1.22 1.57
Table 6.4

Correlation between HISEI, gender and the latent variable,
the different student ability estimators

HISEI GENDER
Latent variable 0.40 0.16
WLE 0.33 0.13
EAP 0.46 0.17
PV1 0.41 0.15
PV2 0.42 0.15
PV3 0.42 0.13
PV4 0.40 0.15
PV5 0.40 0.14
Average of the 5 PV statistics 0.41 0.14
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Table 6.5
Between- and within-school variances
Between-school variance Within-school variance
Latent variable 0.33 0.62
WLE 0.34 1.02
EAP 0.35 0.38
PV1 0.35 0.61
PV2 0.36 0.60
PV3 0.36 0.61
Pv4 0.35 0.61
PV5 0.35 0.61
Average of the 5 PV statistics 0.35 0.61

Finally, Table 6.5 presents the between- and within-school variances. Between-school variances for the
different estimators do not differ from the expected value of 0.33. However, WLEs overestimate the within-
school variance, while the EAP estimates underestimate it. These results are consistent with other simulation
studies (Monseur and Adams, 2002).

As this example shows, plausible values provide unbiased estimates.

HOW TO PERFORM ANALYSES WITH PLAUSIBLE VALUES

As stated in the previous section, a set of plausible values, usually five, are drawn for each student for
each scale or subscale. Population statistics should be estimated using each plausible value separately.
The reported population statistic is then the average of each plausible value statistic. For instance, if one is
interested in the correlation coefficient between the social index and the reading performance in PISA, then
five correlation coefficients should be computed and then averaged.

Plausible values should never be averaged at the student level, i.e. by computing in the dataset the mean of
the five plausible values at the student level and then computing the statistic of interest once using that average
PV value. Doing so would be equivalent to an EAP estimate, with a bias as described in the previous section.

Mathematically, secondary analyses with plausible values can be described as follows. If 8 is the population
statistic and 6 is the statistic of interest computed on one plausible value, then:

1 M
ezﬂge,

where M is the number of plausible values.

Plausible values also allow computing the uncertainty in the estimate of 8 due to the lack of precision in the
measurement test. If a perfect test could be developed, then the measurement error would be equal to zero
and the five statistics from the plausible values would be exactly identical. Unfortunately, perfect tests do
not exist and never will. This measurement variance, usually denoted imputation variance, is equal to:

BM:Li(QI—Qf

M-113

It corresponds to the variance of the five plausible value statistics of interest. The final stage is to combine
the sampling variance and the imputation variance as follows:

1
V:U+[1 +ﬂ)3m

where U is the sampling variance.
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Chapter 7 will demonstrate how to compute sampling variances and imputation variances and how to
combine them, using the PISA databases.

CONCLUSION

This chapter was devoted to the meaning of plausible values and the steps required to analyse data with
PVs. A comparison between PVs and alternate individual ability estimates was presented to demonstrate the
superiority of this methodology for reporting population estimates.

Notes

1. The methodology of plausible values was first implemented in the National Assessment of Educational Progress (NAEP) studies.
For more information, see Beaton (1987).

2. The measurement error will be independent of the length of the living rooms if the inspectors are using a measuring instrument
that is at least 15 metres long (such as a measuring tape). If they are using a standard metre, then the overall measurement error
will be proportional to the length of the living room.

3. The probability distribution for a student’s 8 can be based on the cognitive data only, i.e. the item response pattern, but
can also include additional information, such as student gender, social background, and so on. The probability distribution
becomes therefore conditioned by this additional information. A mathematical explanation of the model used for the scaling of
the PISA 2000 scaling can be found in the PISA 2000 Technical Report (OECD, 2002c).

4. If several regressors are used as conditioning variables, then the EAP estimator tends to be a continuous variable.
5. PISA 2000 data files include both WLEs and PVs.

6. PV and EAP estimators can be computed with or without regressors. As the PVs in PISA were generated based on all variables
collected through the student questionnaires, this comparison will only include PVs and EAP estimators with the use of

regressors.

7. The data generation starts with a factorial analysis on a 3 by 3 squared correlation matrix. The correlation between the latent
variable and gender was set at 0.20, the correlation between the latent variable and the social background indicator was set
at 0.40 and the correlation between gender and the social background indicator was set at 0.00. Three random variables are
drawn from normal distributions and combined according to the factorial regression coefficients to create the three variables of
interest, i.e. reading, gender and social background. Based on the student score on the latent variable and a predefined set of
20 item difficulties; probabilities of success are computed according to the Rasch Model. These probabilities are then compared
to uniform distribution and recoded into 0 and 1. Finally, gender is recoded into a dichotomous variable.

8. The estimators were computed with the Conquest Software® developed by M.L. Wu, R.J. Adams and M.R. Wilson.

9. The results on the EAP and PV correlation coefficients are observed when the probability distributions are generated with
conditioning variables. Without the conditioning, the correlation with the plausible values would be underestimated.
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User's Guide

Preparation of data files

All data files (in text format) and the SPSS® control files are available on the PISA website
(www.pisa.oecd.org).

SPSS® users

By running the SPSS® control files, the PISA data files are created in the SPSS® format. Before starting
analysis in the following chapters, save the PISA 2000 data files in the folder of “c:\pisa2000\data\”, the
PISA 2003 data files in “c:\pisa2003\data\”, and the PISA 2006 data files in “c:\pisa2006\data\”.

SPSS® syntax and macros

All syntaxes and macros in this manual can be copied from the PISA website (www.pisa.oecd.org).
These macros were developed for SPSS 17.0. The 19 SPSS® macros presented in Chapter 17 need
to be saved under “c:\pisa\macro\”, before staring analysis. Each chapter of the manual contains a
complete set of syntaxes, which must be done sequentially, for all of them to run correctly, within
the chapter.

Rounding of figures

In the tables and formulas, figures were rounded to a convenient number of decimal places, although
calculations were always made with the full number of decimal places.

Country abbreviations used in this manual

AUS | Australia FRA | France MEX | Mexico

AUT | Austria GBR | United Kingdom NLD | Netherlands
BEL Belgium GRC | Greece NOR | Norway

CAN | Canada HUN | Hungary NZL | New Zealand
CHE | Switzerland IRL Ireland POL | Poland

CZE | Czech Republic ISL Iceland PRT | Portugal

DEU | Germany ITA Italy SVK | Slovak Republic
DNK | Denmark JPN Japan SWE | Sweden

ESP Spain KOR | Korea TUR | Turkey

FIN Finland LUX | Luxembourg USA | United States
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