OECD Education Working Papers

This series is designed to make available to a wider readership selected studies drawing on the work of the OECD Directorate for Education. Authorship is usually collective, but principal writers are named. The papers are generally available only in their original language (English or French) with a short summary available in the other.

English, French

AI scoring for international large-scale assessments using a deep learning model and multilingual data

Artificial Intelligence (AI) scoring for constructed-response items, using recent advancements in multilingual, deep learning techniques utilising models pre-trained with a massive multilingual text corpus, is examined using international large-scale assessment data. Historical student responses to Reading and Science literacy cognitive items developed under the PISA analytical framework are used as training data for deep learning together with multilingual data to construct an AI model. The trained AI models are then used to score and the results compared with human-scored data. The score distributions estimated based on the AI-scored data and the human-scored data are highly consistent with each other; furthermore, even item-level psychometric properties of the majority of items showed high levels of agreement, although a few items showed discrepancies. This study demonstrates a practical procedure for using a multilingual data approach, and this new AI-scoring methodology reached a practical level of quality, even in the context of an international large-scale assessment.


This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error