1887

The Bioeconomy to 2030

Designing a Policy Agenda

image of The Bioeconomy to 2030

The biological sciences are adding value to a host of products and services, producing what some have labelled the “bioeconomy” and offering the potential to make major socio-economic contributions in OECD countries.  Using quantitative analyses of data on development pipelines and R&D expenditures from private and public databases, this book estimates biotechnological developments to 2015. Moving to a broader institutional view, it also looks at the roles of R&D funding, human resources, intellectual property, and regulation in the bioeconomy, as well as at possible developments that could influence emerging business models to create scenarios to 2030. These scenarios are included to stimulate reflection on the interplay between policy choices and technological advances in shaping the bioeconomy. Finally, the book explores policy options to support the social, environmental and economic benefits of a bioeconomy.

English French

.

Institutional and Social Drivers of the Bioeconomy

The emerging bioeconomy will be influenced by public research support, regulations, intellectual property rights, and social attitudes. In 2005, public R&D expenditures within the OECD area for all types of biotechnology were USD 28.7 billion, compared to 2003 R&D expenditures by the private sector of USD 21.5 billion. The public sector is a major player in health biotechnology and accounts for a notable share of research for primary production, with 20% of field trials for genetically modified (GM) crops between 1989 and 2007 conducted by universities or government research institutes. Data on public research support for industrial biotechnology are not available, with the exception of biofuels. Here, most support appears to go to pilot plants instead of to R&D. Regulations to ensure the safety and efficacy of biotechnology products influence the types of research that are commercially viable and research costs. Pure regulatory costs are highest for GM crops (ranging from USD 0.4 million to USD 13.5 million per variety) and for the open release of GM micro-organisms (approximately USD 3 million per release). The European Union’s de facto moratorium on the commercial production of GM crops appears to have hampered GM research in Europe. In health, the future of regulation is not clear, with economic pressures and technical opportunities pushing the system in different directions. Intellectual property rights could be increasingly used to encourage knowledge sharing through collaborative mechanisms such as patent pools or research consortia. Social attitudes to biotechnology will continue to influence market opportunities, but public opinion can change, for instance when biotechnology products provide significant benefits for consumers or the environment.

English French

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error