The global space sector is a high-technology niche with a complex ecosystem, which employed at least 900,000 persons around the world in 2013, including public administrations (space agencies, space departments in civil and defence-related organisations), the space manufacturing industry (building rockets, satellites, ground systems); direct suppliers to this industry (components), and the wider space services sector (mainly commercial satellite telecommunications). But these estimates do not take into account universities and research institutions, which also play a key role in R&D, as receivers of public contracts and initiators of much of the space sector’s innovation.

The global space sector is accelerating

Globalisation is affecting the space economy at different levels. In the 1980s, only a handful of countries had the capacity to build and launch a satellite. Many more countries and corporate players across a wide range of industrial sectors are now engaged in space-related activities, a trend that is expected to strengthen in the coming years. Supply chains for the development and operation of space systems are also increasingly evolving at the international level, even if the space sector remains heavily influenced and shaped by strategic and security considerations. Many space technologies are dual use, i.e. employed for both civilian and military programmes, which tends to constrain international trade in space products. Nonetheless, as evidenced by recent OECD research on global value chains, product and service supply chains for space systems are internationalising at a rapid pace. While the mode of interaction between space actors may vary (e.g. in-kind co-operation among space agencies, contracting out to foreign suppliers, industrial offset programmes), the trend towards globalisation is having an impact right across the space economy – from R&D and design, to manufacturing and services.

As more actors seek to enter global value chains, competition on the relatively small commercial open markets for spacecraft, launchers and parts is getting stronger for incumbents. In parallel, the expansion of aerospace and electronics groups to address new national markets, where fresh public investments in space programmes are being made, is affecting human resources. As new opportunities arise, in the form
of scientific co-operation, technological innovations, new applications, emerging markets etc., so too do new risks – the growing vulnerability of widely stretched supply chains to various kinds of disruption is just one example. Balancing these new risks and opportunities over the next few years will prove challenging for policy makers and industry players alike.

The “democratisation” of space is gaining ground

New dynamic forces are being unleashed in the space sector, with some technological innovations coming increasingly into use (e.g. electric propulsion systems on-board large telecommunications satellites, 3-D printing used by industry and tested in orbit on the International Space Station) and others just around the corner (e.g. advances in miniaturisation making small satellites even more affordable). Scientific and technological innovations are making space applications more accessible to more people. It still takes years of R&D, with sustained funding, to develop leading-edge sensors and new spacecraft. However, it is now possible for universities to buy off-the-shelf technologies and equipment to build micro-satellites with ever-growing functionality. Innovative industrial processes are also promising to potentially revolutionise space manufacturing, for example the adaptation of the automobile industry’s mass production techniques to selected space systems. These new dynamics, coupled with globalisation, could increasingly impact the way space activities are conducted around the world, particularly for incumbent industrial actors.

Many of the socio-economic impacts from space investments are becoming more visible

Socio-economic impacts derived from space investments are diverse. Impacts of using space applications can often be qualitative (e.g. improved decision-making based on satellite imagery) but also monetarily quantifiable in documented cases, such as cost-efficiencies derived from using satellite navigation tools. However, the flow of evidence-based information to decision makers and citizens needs to be improved. When assessing the net benefits of space investments, more effort is needed internationally in building the knowledge base and devising the mechanisms for transferring know-how and experience to practitioners worldwide. This can improve the provision of evidence-based information on the benefits and limitations of space applications, while at the same time reducing the risk of “reinventing the wheel”.

© OECD
Reproduction of this summary is allowed provided the OECD copyright and the title of the original publication are mentioned.

Multilingual summaries are translated excerpts of OECD publications originally published in English and in French.
They are available free of charge on the OECD Online Bookshop www.oecd.org/bookshop
For more information, contact the OECD Rights and Translation unit,
Public Affairs and Communications Directorate at: rights@oecd.org or by fax: +33 (0)1 45 24 99 30.
OECD Rights and Translation unit (PAC)
2 rue André-Pascal, 75116
Paris, France
Visit our website www.oecd.org/rights

Read the complete English version on OECD iLibrary!
doi: 10.1787/9789264217294-en