Introduction

The history of human population shows that the rate of growth of the world’s population has been extremely slow, taking more than a century to double from one billion in 1800 to two billion in 1930. Growth then accelerated and another one billion people were added in just 30 years, reaching three billion in 1960 (Population Reference Bureau, 2010). Between 1960 and 2012 population increased significantly with one billion people added every 12 to 14 years. The milestone of seven billion people was reached in October 2011 according to United Nations medium variant projections (United Nations, 2011). United Nations
projections reveal that the global population is expected to reach nine billion in 2043 and ten billion in 2083 (figure 1).

![Figure 1. Milestones of the world population to reach the next billion](image)

The most dramatic growth in world population since 1950 has been in the less developed regions and future growth will also be concentrated in these regions, as the more developed countries are growing more slowly (figure 2). In 2010, 82 per cent of the world’s population lived in less developed countries. This proportion will rise to almost 86 per cent by 2050, primarily due to the fact that the first demographic transition began in the developed regions of the world around the latter part of the nineteenth century. Life expectancy at birth which was about 40 years at the start of the transition has now almost doubled and fertility has declined from a high level of about five children per woman to two during the same period (Murphy, 2011). More developed countries have already completed their demographic transitions, with low levels of fertility and mortality and natural increase adding very little to population growth. Many low fertility countries in the world have now reached the “second demographic transition”, in which fertility has plummeted to below replacement level (Population Reference Bureau, 2004).

Demographic transition in developing countries started in the middle of the twentieth century with many of these countries at the intermediate stage, in which mortality and fertility are declining at various rates. Although the demographic transition in developing countries started comparatively late, the speed at which mortality and fertility have dropped in some developing countries is remarkable. As stated by
O’Neill and Balk: “in Europe, North America and Japan, mortality fell slowly for two centuries as food supply stabilized, and housing, sanitation, and health care improved. In contrast, mortality in the majority of less developed countries fell over the course of just a few decades after World War II as Western medical and public health technology and practice spread to these regions” (O’Neill and Balk, 2001: 11-12).

This paper aims to focus on the Asian demographic transition, giving particular reference to Southern Asia. Of the world’s population in 2010, a dominant share of 4.2 billion (60.4 per cent) lived in Asia. This number will continue to grow and by 2050, Asia will be home to 5.1 billion people (55 per cent). This paper uses data from the World Population Prospects: 2010 Revision, which provides comprehensive data on the sex-age distribution of the population and on demographic indicators for all countries of the world from 1950 to 2100 (United Nations, 2011). The data is critical in highlighting trends in fertility and mortality and their implications for changes in age structure of the population, including population ageing.

The demographic transition in Asia started during the second half of the twentieth century, with steady improvement in mortality but with fertility remaining more or less constant for another two decades. This resulted in an increase in the annual population growth rate until such time that fertility began to drop as a response to a decline in mortality. As is evident from figure 3, the rate of population growth in Asia as a whole was 2 per cent per annum during the period 1950-1955. There were, however, large disparities in the rate of population growth by
subregions, with Central, Western and South-Eastern Asia growing faster than Eastern and Southern Asia. In 1965-1970, the growth rate of populations in all the subregions of Asia converged at around 2.5 per cent per annum. With this fertility decline, the Asian region in general witnessed a deceleration in the population growth rate from 1970-1975 onwards. While disparity in the growth rate by subregions of Asia continued to widen, the overall growth rate in Asia as a whole has been reduced to 1 per cent per annum at present.

In Southern Asia, the population growth rate which was less than 2 per cent per annum in 1950-1955 continued to rise. After reaching its peak at 2.5 per cent per annum in 1975-1980, the growth rate began to decline sharply, approaching the current per annum figure of less than 1.5 per cent.

In the sections that follow, this paper will first present fertility and mortality trends in Southern Asia. It will then examine the consequences that are due to changes in age structure, dependency ratio, population ageing and feminization of the elderly population. The paper will highlight challenges and opportunities brought about by the demographic transition. It will also provide policy recommendations to deal with ageing problems and suggest ways to reap the benefits of the current “demographic dividend” for future generations.

Fertility

During the second half of the twentieth century, there was a remarkable decline in fertility in the Asian region. The region as a whole experienced a drop in the total fertility rate (TFR) from 5.8 births per woman during the period 1950-1955 to 4.0 in 1975-1980, with a further decline to 2.7 in 1995-2000. The TFR of the region is estimated at 2.3 for 2005-2010. However, this regional average masks considerable disparities in the TFR among subregions.

Figure 4 shows that the TFR fell to below the replacement level (2.0) in Eastern Asia from 1990-1995 and it continued to fall to 1.6 from 2005-2010. While South-Eastern Asia witnessed a remarkable drop in fertility, approaching close to the replacement level at 2.3, in Western, Southern and Central Asia, the TFR was 3.0, 2.8 and 2.6 children per woman, respectively in 2005-2010.

Figure 4. Total fertility rate by subregions of Asia, 1950-2010

However, figure 5 shows that the total fertility rates in Southern Asia vary to a large extent by country. With the exception of Sri Lanka, high fertility of above five children per woman prevailed in much of Southern Asia during the period 1970-1975. Fertility transition began to take
place in most of the countries during the past 30 years and many of them experienced substantial declines in fertility between the periods 1970-1975 and 1990-1995. The notable exception is Sri Lanka which initiated fertility transition as early as 1955-1960. Sri Lanka experienced a spectacular decline in fertility from 5.8 in 1955-1960 to 4.0 in 1970-1975. It continued to drop further to 2.4 in 1990-1995 and fell close to replacement level in 1995-2000. However, Sri Lanka has witnessed a recent reversal in its fertility decline (De Silva, et. al 2010).

Closely following Sri Lanka is India which began fertility transition in 1965-1970. The TFR dropped significantly from 5.7 in 1965-1970 to 3.7 in 1990-1995. It continued to decline further, but at a slower pace, approaching 2.7 in 2005-2010. The remaining countries in the subregion did not begin fertility transition until much later. Bangladesh, the Islamic Republic of Iran and Nepal initiated fertility transition in 1980-1985, while Bhutan, Maldives and Pakistan did so in 1985-1990. What is so striking about the fertility transition in Southern Asia is the speed at which countries experienced change. Bangladesh witnessed a dramatic fall in fertility from 6.9 in 1970-1975 to 4.1 in 1990-1995, a reduction of almost three children per woman in a span of two decades. There has, however, been a slow-down in this decline in recent years.

Most of the countries in the subregion currently fall in the category of intermediate fertility, ranging from 2.4 children per woman in Sri Lanka to 3.6 in Pakistan. Below replacement fertility was reached in
the Islamic Republic of Iran in 2000-2005, followed by the Maldives in 2005-2010. The total fertility rate in Bhutan, Bangladesh, India, Nepal and Sri Lanka is close to replacement level.

Mortality

As with fertility, there has been a remarkable improvement in life expectancy at birth. In Asia as a whole, a child born today can expect to live on average for 70 years. This figure is up from an average life span of 45 years five decades ago. There is, however, a considerable difference in life expectancy in the subregions of Asia. Eastern Asia has a life expectancy at birth of 74 years, followed by 72 years in Western Asia and 69 years in South-Eastern Asia. At the other end of the spectrum are Central Asia and Southern Asia where the life expectancy at birth is 66 years and 64 years respectively.

In so far as Southern Asia is concerned, life expectancy at birth was relatively low in 1970-1975. It is evident from figure 6 that Sri Lanka is the only country in the subregion where the life expectancy at birth exceeded 60 years in 1970-1975. While India, the Islamic Republic of Iran and Pakistan had life expectancies at birth of over 50 years, in Afghanistan, Bhutan, Nepal, Bangladesh and the Maldives, this indicator was below 50 years during the same period. However, there has been a steady improvement in mortality in the subregion during the past 40 years. Countries which achieved a life span of more than 70 years in 2005-2010 include the Islamic Republic of Iran, the Maldives and Sri Lanka. At the other end of the spectrum are Afghanistan, India and Pakistan with lower than 65 years of life expectancy at birth. Rapid improvement in mortality was experienced by Bhutan, Nepal and Bangladesh over the past 40 years. In Bangladesh, there has been a dramatic increase in life expectancy at birth, rising from 36 years in 1970-1975 to 61 years in 1990-1995, with a further increase to 68 years in 2005-2010.

With the advancement in longevity, a wide gender disparity in life span has emerged in many low fertility countries. In developed regions of the world, females outlive males by about seven years on average (United Nations, 2010). By contrast, in Asia the gender disparity in the expected number of years lived is not as wide as in developed countries. However, the subregions of Asia present great variations in life expectancy at birth between males and females. In Central Asia, the female to male difference in life expectancy at birth is eight years while this difference in Southern Asia is only three years. In other subregions of Asia, the gender disparity in life expectancy at birth is between four and five years.
Although the gender disparity is not as wide in Southern Asia, it does reveal a widening gap of life expectancy between women and men at birth (figure 7). For example, the female advantage in life expectancy at birth is six years in Sri Lanka and about four years in Bhutan and the Islamic Republic of Iran. By contrast, the gender gap in life expectancy at birth is less than three years in Bangladesh, India, Maldives, Nepal and Pakistan. There is virtually no gender gap in life expectancy at birth in Afghanistan, where it is low for men and women. This is attributed to the fact that the mortality decline is substantially higher among females than males in practically all age groups (United Nations, 2010). A lower than expected gender gap in life expectancy at birth in Bangladesh, Maldives, Nepal and Pakistan is due to low life expectancy at birth of females associated with relatively low status of women and high maternal mortality.
Consequences

Changes in age structure

Declining fertility, increasing longevity and the widening disparity in life expectancy at birth between females and males have brought remarkable shifts in the age and sex structure of the population. As a result of low fertility, fewer children are born and progressively larger numbers of adults move into the older age groups. Changes in age structure of the population and population ageing are inevitable consequences of low fertility.

While the transition from a young-age population to an ageing population occurred over a much longer period in the West, the speed of ageing was much faster in the low fertility countries of Asia (Kinsella and Phillips, 2005). For instance, it took 115 years for France and 85 years for Sweden to raise the percentage of the population aged 65 years and
older from 7 per cent to 14 per cent. By stark contrast, Japan took only a quarter of a century to complete such a transition. Similarly, other low fertility countries in Asia, such as China, the Republic of Korea, Singapore and Thailand, are projected to follow the trend set by Japan. This rapid ageing process has been driven largely by sharp declines in fertility in recent decades. This has now emerged as a new issue challenging many low fertility countries in the region. The implications are profound as it implies a shrinking labour force, an increase in elderly dependency ratios and a feminization of the elderly population. There are other contentious issues related to health care cost, social support and financial security that are likely to be faced by an ageing society (National Research Council, 2001).

It can be seen from figure 8 that declining fertility has had a significant impact on the rising percentage of populations over age 60. It is also evident that the impact of a fertility decline on population ageing is much more revealing in the later stage as the high fertility cohort begins to reach the older age groups. In addition, improvement in mortality not only increases life expectancy at birth but also increases the number of additional years expected to be lived by older persons aged 60 and 80 years (United Nations, 2010). These improvements in old-age mortality have contributed to the ageing of the elderly themselves. In the long run, population ageing will inevitably result in a higher rate of growth of the elderly population. This will eventually lead to a decline in the overall growth of the population in general and the working-age popu-

![Figure 8. Total fertility rate and percentage of population aged 60 years or over in Southern Asia, 1970-2050](source: United Nations (2011)).
Demographic transition in Southern Asia: challenges and opportunities

Population in particular, as an older age structure provides the momentum for a decline in population, just as young-age population provides the momentum for an accelerated growth of population (McDonald, 2000).

There is a strong relationship between the total fertility rate and the percentage of a population aged 60 years and older. Countries which have reached below replacement fertility have a markedly higher percentage of older persons. Long-term decline in fertility gives rise to a higher percentage of older persons. The rapidity of the ageing process is determined by the speed of fertility decline. For example, Japan – the first country in Asia to have completed the fertility transition from high to low fertility by the early 1960s – had the largest percentage of older persons in 2010 (30.4 per cent), and is predicted to rise further to 36 per cent in 2025 and 44 per cent in 2050. Similarly, a long-term decline in fertility in China, the Republic of Korea, Singapore and Thailand has resulted in a high percentage of older persons (12 to 16 per cent) in 2010. These countries will further exhibit a sharp increase in older persons. By 2050, the share of older persons to total population is expected to exceed 40 per cent in the Republic of Korea and Singapore, while in China and Thailand older persons will represent respectively 31 and 26 per cent of the total population.

Southern Asia will also exhibit a gradual shift in the proportion of the young-age population and old-age population. While the proportion of the population under age 15 will decrease, the proportion of the population aged 60 years and older will increase. However, unlike in Eastern Asia, where young-age and old-age populations will converge around 2015, this situation will occur around 2050 in Southern Asia. Furthermore, while Eastern Asia will experience a rapid fall in working-age population, Southern Asia will continue to have an abundant supply of labour, with working-age populations representing over 60 per cent of the total population for another four decades (figures 9 and 10).

Nonetheless, Southern Asia has experienced more than a four-fold increase in the number of old-age populations (60 plus) over the past six decades, from 28 million in 1950 to 125 million in 2010 (figure 11). The size of older populations will rise to 215 million in 2025, which will further increase by more than two-fold to 458 million in 2050. In terms of percentage, older populations in Southern Asia, which represented 7.3 per cent in 2010 will increase to 10.5 per cent in 2025 and 19.1 per cent in 2050. This represents nearly a three-fold increase over four decades and an addition of 333 million people aged 60 years and over.

However, there is a noticeable difference in the percentage of older population by countries in Southern Asia (figure 12). In 2010, only four countries in this subregion; Bhutan, the Islamic Republic of Iran, India and Sri Lanka were considered to have an aging population, which is
Figure 9. Distribution of population by broad age groups in Southern Asia, 2000-2050

Figure 10. Distribution of population by broad age groups in Eastern Asia, 2000-2050

Figure 11. Population 60 years and over in Southern Asia, 1950-2050

Figure 12. Percentage of population 60 years or over in Southern Asia, 2010-2050

defined as having 7 per cent of the total population aged 60 years and older. By 2025, all countries, except Afghanistan, will have an ageing population.

As previously discussed, Sri Lanka was the notable exception in Southern Asia where the fertility transition started much earlier. As a consequence of a steady decline in fertility, Sri Lanka has witnessed a gradual increase in its older population, which reached 12 per cent of the total population in 2010, and will increase to 18 per cent in 2025. This number will further rise to 27 per cent in 2050, which would mean that more than one out of four Sri Lankans will be aged 60 years or over. Similarly, low fertility countries, such as the Islamic Republic of Iran and the Maldives, will experience a sharp increase in their older populations. Although fertility transition in the Islamic Republic of Iran and the Maldives began in the 1980s, they completed the transition in less than three decades. As a result of this spectacular decline in fertility, the ageing process in both countries will be exceptionally rapid. For instance, the Islamic Republic of Iran will witness the fastest subregional growth in percentage of older population, rising from 7.5 per cent in 2010 to 12.7 per cent in 2025, which will further increase to 33 per cent in 2050. Likewise, in the Maldives this proportion will increase from close to 7 per cent in 2010 to 11 per cent in 2025 and to 31 per cent in 2050.

Potential support ratio

As a consequence of age structure changes in population, Southern Asia will exhibit a significant shift in dependency ratios: while dependency burdens of the young will fall, those of the old will continue to rise. This will have major implications on the number of potential workers available to support older populations. This can be measured by using a simple indicator referred to as the potential support ratio, which is the inverse of the old-age dependency ratio, defined as the number of persons aged 15 to 64 for every person aged 65 or over (United Nations, 2010).

It is apparent from figure 13 that as the population ages, the potential support ratio tends to fall. The low fertility countries, such as the Islamic Republic of Iran, the Maldives and Sri Lanka will experience a remarkable drop in the potential support ratio in the next 40 years. Currently, Sri Lanka has eight persons of working age available to support one older person, but this ratio will drop to 5:1 in 2025 and by 2050, less than three working-age persons will be available to support one older person. In the Islamic Republic of Iran and the Maldives, the potential support ratio will also drop to three or less in 2050, but the decline has been remarkably fast due to a rapid decline in fertility in a short time. Other countries, such as Bangladesh and Bhutan, will also witness a sharp drop in the potential support ratio between 2025 and 2050.
Demographic transition in Southern Asia: challenges and opportunities

Figure 13. Potential support ratio in Southern Asia, 2010-2050

![Figure 13](image)

Feminization of the elderly population

Lower potential support ratios will have a significant impact on older women as their numbers will continue to grow proportionately faster than those of men. This is because of the large gender disparity in the life expectancy at birth, with females having a longer life span than males. As a result, women will outnumber men in the older age groups in every country in Southern Asia. The feminization of the elderly population (more female elderly than male elderly) is already seen in many countries in Southern Asia, with the sex ratio (males per 100 females) below 100 (figure 14). This is particularly pronounced among women aged 80 years and older. The greater number of women in the older age group is typically viewed as problematic, because they reflect high levels of widowhood and the various difficulties associated with it (Mujahid, 2006a). A higher proportion of women are likely to be widowed owing to the differences in the age of the spouse at the time of marriage (women tend to be younger than their spouse) and a higher life expectancy at birth for women compared to men. The percentage of women widowed increases with age as they tend to re-marry less frequently upon divorce or the death of a spouse. This trend is clearly visible in the data presented in figures 15 and 16, which show a great disparity in marital status and living arrangements of men and women of older ages. Among those 60 years or over, while more males are currently married than their female counterparts, more females are living alone.
Figure 14. Feminization of elderly population 60+ and 80+ in Southern Asia, 2010

Figure 15. Percentage of elderly population 60 years or over currently married in Southern Asia

Challenges and opportunities

Challenges

It has been shown that declining fertility and mortality resulting in population ageing has emerged as an issue facing several countries in Asia, including some countries in Southern Asia. The implications of such population ageing and associated growth in the size of elderly populations are of particular concern. A higher proportion of older persons is often perceived as posing a serious burden on economic and social support and health care systems. The rising number of elderly on one hand, and the declining number of the younger population on the other, will also mean that there will be a shortage of caregivers for the elderly population. As women will regularly outnumber men in the older age groups, the social and financial security as well as the health conditions of elderly women will be one of the biggest problems faced by ageing societies.
The rising number of older persons has important policy implications in the provision of health and social services (Gubhaju and Moriki-Durand, 2003 and Mujahid, 2006b). In many Asian countries, particularly those in Southern Asia, the healthcare infrastructure is already weak with most of its resources utilized to address the needs for mother and child health services and to provide reproductive health services, including family planning. Therefore, the medical, public health, social services and other facilities required to address the needs of older persons are likely to put severe strain on the healthcare system and economy (Knodel, Ofstedal and Hermalin, 2002). Furthermore, as age is a major risk factor for non-communicable diseases such as cardiovascular disease, cancer and diabetes, population ageing raises sharp concerns over the need for long-term healthcare systems. To counterbalance the high costs for treatment and care associated with non-communicable diseases, which account for nearly three-fifths of all deaths, there is a need for greater emphasis on disease prevention and screening for early detection (Bloom, 2011).

With an increasing number of younger women entering the labour force, often away from home, the availability of caregivers for older persons is decreasing. With rapid urbanization, globalization and migration experienced by many Asian countries, the situation is further exacerbated, leading many older persons in rural areas without caregivers (Hermalin and Myers, 2002 and Nizamuddin, 2003).

It has been found that more elderly males are currently married than their female counterparts, but more elderly females are living alone than elderly males. It should, however, be noted that the percentage of elderly males and females living alone is rather small, as in many Asian societies the family continues to provide them with care and support and the tradition of older persons residing with family members is generally the norm (Knodel and others, 1999). However, as traditional means of support are steadily eroding in most societies, there is an urgent need for alternative means of support for older persons, especially to those poor women living alone.

In many Asian countries, women are disadvantaged as they have less education, work experience, income and access to assets than men, as well as diminished authority within the family. Hence, women are more likely to be dependent upon family members and public programmes, especially at advanced age and under conditions of illness and disability (Mujahid, 2006b). These needs put extra pressure on family members for care giving (Knodel, Ofstedal and Hermalin, 2002). More importantly, a majority of countries in Asia do not have social security systems in place. Even countries that have social security systems face problems in caring for older persons. Day-to-day care requires a great deal of resources, which include assistance from family members. Caregivers are usually women who are then caught up with the multiple responsibilities of raising children, caring for elderly
parents and engaging in economic activities—forming what is called the sandwich generation. For this group of caregivers, more intensive and practical government support should be provided to ensure support towards older persons.

Considering the experience of low fertility countries in Eastern and South-Eastern Asia, countries in Southern Asia should consider the consequences of declining fertility rates. It is crucial that governments plan ahead for their ageing societies before fertility drops well below the replacement level. In this regard, governments are increasingly being urged to start preparing policy measures to deal with ageing problems as soon as possible including the establishment of universal pension systems (Mason, Lee and Russo, 2002 and Ogawa, 2003).

Opportunities − Reaping the demographic dividend

As stated earlier, the Asian region has presented highly diverse trends in fertility over the past six decades. In general, the region had a very high fertility in the early 1950s, with the fertility transition first occurring in Eastern Asia in the late 1950s. Fertility transition began to take place in most countries in Southern Asia over the past 30 years and many of them experienced substantial declines in fertility between the periods 1970-1975 and 1990-1995.

Owing to recent declines in fertility, countries in Southern Asia have a relatively large and rising working-age population. This growth in working-age population with fewer dependent children and elderly to support provides a “window of opportunity” to build human capital. Studies have revealed that the benefit afforded by the changing age structure, referred to as the “demographic dividend”, will last for a few decades, typically between four and seven, in most countries (Seetharam, 2006). The “window of opportunity” is relatively short and temporary, closing as the population ages and dependency ratios increase.

It can be seen from figure 17 that all subregions in Asia, while at various stages of the demographic transition, have experienced significant increases in the proportion of working-age populations since the 1970s. They have either entered the peaks of the demographic bulge or are reaching it - and in both cases are well placed to reap the “demographic dividend” before their populations start ageing. The demographic transition has been fastest and most pronounced in Eastern Asia, where the working-age population, about 57 per cent in 1970, peaked at 72 per cent in 2010, before declining rapidly. South-East Asia is also at advanced stages of the demographic transition, where the working-age population will peak in 2025. While in the case of Southern, Central and Western Asia, swelling numbers of working-age populations will peak around 2040 and then begin to decline.
In so far as Southern Asia is concerned, it has lagged behind Eastern and South-Eastern Asia in the demographic dividend. South-East Asia has recently begun to reap the benefit from the demographic dividend, but is likely to see this benefit reduced over the next two decades, as the population ages. On the other hand, demographic transition in Southern Asia is still continuing, suggesting the potential for economic growth. It is clearly visible from figure 18 that with the exception of Sri Lanka, the share of working-age populations will continue to grow in all the countries of Southern Asia, which is expected to last for another two or three decades. However, to fully capitalize on the benefits of demographic dividend, Southern Asia would need to put in place similar types of investments and policy initiatives employed by Eastern Asia. These include, for example, massive investments in education and human resource development. Such investments are possible because of savings from low dependency ratios resulting from the demographic transition. These savings should be properly utilized to increase the capacity of the current and future labour force to participate fully in a skill-based economy.

The opening of a “demographic window” has been effectively utilized by several East Asian countries/areas (Japan, the Republic of Korea and Taiwan Province of China) between the 1960s and 1990s (Bloom, Canning and Sevilla, 2003). The East Asian experience provides compelling evidence of the impact of the “demographic dividend” in the region's
spectacular economic growth. Studies suggest that the demographic dividend accounts for between one-fourth and two-fifths of East Asia’s “economic miracle”. The phenomenal growth of per capita income, rising by more than 6 per cent annually between 1965 and 1990, was credited to the size of working-age population growing nearly four times faster (an average of 2.4 per cent a year) than the dependent population. With the benefits of good education and a liberalized trade environment, this huge workforce was absorbed into the job market, thereby increasing the region’s capacity for economic production (Bloom, Canning and Sevilla, 2003).

China’s experience in effectively capitalizing on the demographic dividend is similar to other East Asian countries. China’s rapid fertility decline in the 1970s has brought a significant demographic dividend, which coincided with the economic boom. An abundant labour supply, combined with a relatively low dependency ratio (young and old), made a significant contribution to increasing per capita output and, thus, the standard of living. Hence, China has been able to reap the benefit of favourable population structure, which contributed to 15 per cent of China’s economic growth between 1982 and 2000 (Wang and Mason, 2005).
In conclusion, while the importance of policy to reap the benefits of demographic dividend was demonstrated in Eastern Asia, Southern Asia is yet to put into place appropriate social and economic policies to reap the benefit from demographic dividend to spur economic growth and invest in the future. David Bloom has cautioned that "reaping the demographic dividend is not automatic—it depends on a policy environment that emphasises population and family planning, good public health, good education, open labour market, free and fair trade, and good governance and economic management" (Bloom, 2002). Effective policies in those key areas allow maximum returns from a concentration of the population in the working age cohort. Transforming a youthful population into a productive workforce requires investment in education at all levels, while a larger, better-educated workforce will yield benefits only if they can find jobs. In many countries, necessary steps to reaping the benefits of the demographic dividend include strengthening the rule of law, improving the efficiency of government and reducing corruption (Bloom, Canning and Sevilla, 2003).

It is, therefore, important to create awareness among planners and policymakers of the relevance of demographic dividend for investment planning and human resources development in policy formulation. The demographic dividend is a one-time window of opportunity from which the Asian countries, including Southern Asia, should not fail to fully benefit (United Nations, 2007: 32). It is also essential that the region prepares for the irreversible demographic transition to follow, where a much greater proportion of its population will be older and require greater support.
Southern Asia consists of 9 countries, namely Afghanistan, Bangladesh, Bhutan, India, Islamic Republic of Iran, Maldives, Nepal, Pakistan and Sri Lanka. During the past 6 decades, Southern Asia saw an unprecedented growth in population, rising from 490 million in 1950 to 835 million in 1975 and to 1.5 billion in 2000. In 2010, the population of Southern Asia reached 1.7 billion, which is expected to increase to 2.4 billion in 2050.
References

