C.3.5. Combined Chronic Toxicity/Carcinogenicity Studies (OECD TG 451-3)

Status: Assay validated by the OECD.

743. Modalities detected: (anti)estrogen, (anti)androgen, thyroid, steroidogenesis.

744. Endpoints: Weight of adrenals, epididymides, ovaries, testes, thyroid, uterus (chronic toxicity studies). Pathological and histopathologic changes in adrenals, cervix, coagulating gland, epididymides, mammary glands, ovaries, pituitary, prostate, seminal vesicles, testes, thyroid gland, uterus.

Background to the assay

745. These assays determine the general toxicity (OECD TG 452 and TG 453) and carcinogenicity (OECD TG 451 and TG 453) of chemicals in laboratory animals after exposure for a period lasting most of the lifespan. Route of administration may be oral, dermal or inhalation, although oral via diet is the most common. OECD TG 453 was revised in September 2009 and replaced OECD TG 451 (older studies may have used OECD TG 451). General toxicity studies usually have a duration of 12 months whilst carcinogenicity studies usually have a duration of 18 or 24 months depending on the species tested. They provide information on major toxic effects, target organ toxicity and carcinogenicity. Although they have not been validated for the detection of endocrine disruptors (EDs), they contain many endpoints that are suitable for the determination of endocrine effects. Organ weights are not always included in the carcinogenicity phases of these studies as neoplastic changes may confound them, but they are generally determined at 12 months. A comparison can be made with validation of the OECD TG 407 (28-Day Oral Toxicity Study) for endocrine endpoints (OECD, 2006) where substances that were moderate and strong EDs for (anti)estrogenicity and (anti)androgenicity (e.g. ethinylestradiol and flutamide) and weak and strong modulators of thyroid hormone-related effects (e.g. propylthiouracil, T4 and methyl testosterone) were detected. Steroidogenesis inhibition was also detected although only one (potent) chemical was used in the validation study (CGS 18320B). OECD TG 453 and TG 452 are likely to be more sensitive than OECD TG 407 because of the extended dosing period and the larger number of animals per group (20 or 50 rodents per sex per group for chronic or carcinogenicity studies respectively compared with 5 in OECD TG 407). OECD TG 453 and TG 452, however, do not contain some sensitive endpoints (e.g. thyroid hormones, estrous cyclicity) that may be included in OECD TG 407.

When/why the assay may be used

746. These assays are likely to be used as part of a pesticide submission package and form part of the standard information requirements in certain chemical legislations (e.g. REACH for chemicals which are manufactured or imported in quantities of 1 000 tonnes or more). At least three dose levels are included so that an estimate of no-adverse-effect-levels or point of departure for benchmark doses can be determined. The assays are used for hazard identification/characterisation. It should be noted that as these...
assays are not primarily designed to detect endocrine disruption, a higher degree of systemic toxicity is typically induced than is the case with the other Level 3 and 4 assays. The possibly confounding effect of systemic toxicity on endocrine endpoints therefore needs to be considered.

747. In order to provide information relevant for assessing whether or not a chemical may fulfil the WHO/IPCS (2002) definition of an ED, the study design has to be sufficiently robust to demonstrate the presence or absence of effects. In the dose selection, the investigator should also consider and ensure that data generated are adequate to fulfil the regulatory requirement across OECD countries as appropriate (e.g. hazard and risk assessment and labelling, ED assessment, etc.). The top dose or concentration should be sufficiently high to give clear systemic (i.e. non endocrine-specific) toxicity in order to ensure that a wide range of exposures (high to low) is tested. However, endocrine effects observed solely in the presence of clear systemic toxicity should be interpreted with caution and may be disregarded when sufficiently justified to be caused by secondary effects which are unlikely to be due to endocrine activity. The reason for this advice is a concern that some endocrine active substance (EAS) sensitive assays are being run at doses/concentrations of EASs that are too low to trigger direct impacts on the endocrine system. This guidance document is not the place to address this issue directly, but it should be considered when EAS-sensitive test guidelines (TGs) are revised in the future. In addition, the number and spacing of dose/concentration levels should also be adequate to fulfil the objectives of the study (e.g. to demonstrate dose response relationships if this is required).

Introduction to the table of scenarios

748. **Table C.3.5** gives guidance on a further step to take in the event of a positive (+) or negative (-) result and in the presence of positive (+), negative (-) or equivocal/absent (Eq/0) existing results. “Existing results” are subdivided into “mechanism” and “effects” data (third and fourth columns). The table is divided horizontally into a series of scenarios that represent all the combinations of these events.

749. The results of OECD TG 451-3 are given in the second column. As they are not screening tests where a yes/no (qualitative) answer is obtained for the test as a whole, positive results would generally be assessed for individual endpoints. For the purposes of this guidance, however, a positive result is defined as a biologically significant change in any of the endocrine endpoints listed above (e.g. statistically significant reductions in reproductive organ weights). Changes in related endpoints will increase their biological significance (e.g. changes in the weights of testes and epididymides accompanied by histopathological/neoplastic changes). The guidance on histopathologic changes in endocrine tests (OECD, 2009) may be helpful in interpretation. A negative result for OECD TG 451-3 is taken to be the absence of biologically significant changes in all endocrine endpoints.

750. In the absence of other pertinent lines of evidence, negative results in this test alone cannot be taken as evidence that the substance is not an ED. Further studies will be required as confirmation.

751. Equivocal results for the guideline are not considered in Table C.3.5, partly for brevity but also because equivocal results are by nature uncertain. A decision must eventually be reached about whether the endocrine endpoints tend to be positive or negative, whether the result must be put to one side, or whether further testing should be
carried out. Factors which may have interfered with the result (e.g. composition of the diet used, environmental influences) should be considered.

Existing data to be considered

752. Existing “mechanism” in vitro data are assumed to be available from estrogen receptor (ER-), androgen receptor (AR-) and steroidogenesis-based assays (Level 2). Assays may also be available for interference with thyroid modalities. In practice, it is possible that data from all of these assays may not be available, so judgement will need to be used to decide which assays to perform. Although the current in vitro test guidelines do not incorporate metabolic activation, published information on use of metabolic activation systems is available in Jacobs et al. (2008; 2013) and OECD (2008). These methods, however, have not yet been validated.

753. Existing “effects” data refer to in vivo effects that may come from Level 3 or 4 tests in the Conceptual Framework (e.g. UT or H assays); or other sub-chronic repeat dosing studies (e.g. OECD TG 407 [28-day] or OECD TG 408 [90-day]). In these cases, it should be remembered that these assays are specifically designed to be sensitive to EASs. As mentioned above, the results of these studies may be interpreted as part of a battery or group of tests carried out for regulatory purposes. Data may also be available on effects in mammalian and non-mammalian wildlife species, although caution should be used when extrapolating between taxa. A chemical causing endocrine effects in in non-mammalian environmental species (fish, for example) may also have endocrine effects in mammals, but the physiological consequences of the effects are likely to be different.

754. When considering the results of OECD TG 451-3 assays, all available data should be used in order to reach a conclusion and a weight of evidence approach taken. This may include high throughput screening data, read-across data from structural analogues and quantitative structure activity relationships (QSARs). Several QSAR models for ER and AR binding/activation are now available (see Sections B.1.1.1 and B.1.1.2).

Scenarios: Positive and negative results combined with existing data

755. A series of scenarios (A to R) are presented in Table C.3.5 and represent all the possibilities of positive or negative results in combination with the presence or absence of existing data. The action taken will also depend on the regulatory environment, but the considerations given here are generally science based. Although OECD TG 451-3 assays primarily use rodents, the well-conserved nature of the hormonal pathways across taxa indicate that results on endocrine endpoints in these assays may be relevant to other vertebrate species. Effects in laboratory mammal tests are also highly relevant for environmental mammalian species. Wherever possible, the recommended “next step which could be taken” avoids unnecessary animal testing. However, sometimes conducting an animal test will be indicated and then the relevance of species, strain and exposure route should always be considered. The sensitivity and physiological function of the hormone under investigation in the test species should also be considered. In general, lower level tests should be conducted before higher level tests in order to avoid unnecessary animal usage, unless it is apparent that a Level 5 test will be required anyway or will be needed to establish the evidence to conclude on ED properties. At Level 5, the Extended One-Generation Reproduction Toxicity Study (EOGRTS – OECD TG 443) is the most sensitive reproduction assay for detecting endocrine disruption because it includes evaluation of a number of endocrine endpoints not included in the two-generation study (OECD TG 416)
adopted in 2001. It is recognised, however, that some jurisdictions may require a two-
generation study. Further considerations specific to each scenario are given in the table.

756. Scenarios A to C represent positive results in the OECD TG 451-3 assays in the
presence of positive in vitro mechanistic data and positive, negative or equivocal in vivo
effects data. A positive result in the in vitro assays in combination with a positive OECD
TG 451-3 assay is moderate or strong evidence for estrogen/androgen/thyroid/steroidogenesis
(E,A,T,S-) mediated activity that may or may not be supported by the in vivo effects data.
In the absence of robust upper-level data, the next step may be to conduct an upper-level
test. In the presence of robust in vivo data, there may be sufficient evidence to conclude
concern for endocrine disruption and therefore no need for further testing. Positive results
in the OECD TG 451-3 assays also indicate the potential for endocrine mediated effects in
lower vertebrates. These could be followed up with partial life cycle tests such as the Fish
Sexual Development Test, a Larval Amphibian Growth and Development Assay or a Medaka
Extended One-Generation Reproduction Test if the evidence were strong enough. In vivo
assays/tests with negative results should be interpreted with caution as they may either
indicate that the tests used do not have sufficient power to detect weak effects or,
alternatively, that the effects do not present a concern for endocrine disruption. The
possibility of other (non-E,A,T,S) mechanisms should also not be overlooked
(e.g. involving other receptors or endocrine axes).

757. Scenarios D to F represent positive results in the OECD TG 451-3 assays in the
presence of negative in vitro mechanistic data and positive, negative or equivocal in vivo
effects data. Negative results in the in vitro assays should be viewed with caution in case a
metabolite is responsible for the positive OECD TG 451-3 result. Unless the metabolic
profile of the test substance is known, one option may be to conduct these assays with an
added metabolising system. If the metabolic profile is known, then a higher level in vivo
test may be advisable. The choice of tests will depend on the available in vivo effects data.
Positive results in the OECD TG 451-3 assays may also indicate the potential for endocrine
mediated effects in lower vertebrates. As in Scenarios A to C, in vivo assays/tests with negative
results should be interpreted with caution as they may either indicate that the tests used do
not have sufficient power to detect weak effects or, alternatively, that the effects do not
present a concern for endocrine disruption.

758. Scenarios G to I represent positive results in the OECD TG 451-3 assays in the
presence of various combinations of missing or equivocal data. Positive results in the
OECD TG 451-3 assays also indicate the potential for endocrine mediated effects in lower
vertebrates. The next step to take in these eventualities will depend on the nature of the
other available data and the jurisdiction in which it is being used. In some cases, equivocal
data may be viewed as positive whilst in others it may or may not contribute to the weight
of evidence. The interpretation may also depend on the mode of action (MOA) in question
and why the data are considered equivocal, e.g. a study that is equivocal for thyroid effects
may still be of value in evaluating (anti)androgenic effects. In all three scenarios, the
recommended first step is to obtain reliable mechanistic (in vitro) data rather than proceed
further with in vivo testing. Equivocal and missing data are alternative scenarios and two
possibilities for the next step are given in most cases, but the nature of equivocal data means
that decisions need to be taken on a case-by-case basis. In all cases, the role of metabolism,
route of exposure and data from structural analogues should be considered before deciding
on the next step.

759. Scenarios J to L represent negative results in the OECD TG 451-3 assays in the
presence of positive in vitro mechanistic data and positive, negative or equivocal in vivo
effects data. Negative outcomes in OECD TG 451-3 should be viewed with caution because of the power of the assay to detect (anti)estrogens and androgens may be limited. All three scenarios could also arise from a chemical that is positive in in vitro assays but is metabolised to a non-active metabolite leading to negative results in the OECD TG 451-3 assays. This should be considered when investigating the next step. Endocrine-active potency may also explain differences between in vitro and in vivo results (e.g. a chemical with weak endocrine activity may give a positive result in vitro but may be negative in vivo). Positive in vivo effects data may involve other E,A,T,S, non-E,A,T,S mechanisms (e.g. involving other receptors or endocrine axes), more sensitive endpoints, greater statistical power or life stages that are more sensitive to the substance than the young adult exposed animals in OECD 451-3.

760. Scenarios M to O represent negative results in the OECD TG 451-3 assays in the presence of negative in vitro mechanistic data and positive, negative or equivocal in vivo effects data. Negative results for all tests (Scenario N) may be sufficient to enable a conclusion of no concern for endocrine disruption. This will depend on the weight of evidence and may not be possible. Where there are positive in vivo effects data, there could still be an E,A,T,S-related mechanism, the effects may be related to length of exposure, route of exposure or exposure at different life stages. Other E,A,T,S or non-E,A,T,S mechanisms may also be involved.

761. Scenarios P to R represent negative results in the OECD TG 451-3 assays in the presence of various combinations of missing or equivocal data. As with the positive result scenarios above (see Paragraph 760), the next step to take in these eventualities will have to be decided on a case-by-case basis. However, the recommended first step is generally to obtain reliable mechanistic (in vitro) data rather than proceed further with in vivo testing. In all cases, the role of metabolism, route of exposure and data from structural analogues should be considered before deciding on the next step.

762. In all scenarios (A to R), the next step to take to strengthen weight of evidence will depend on the existing information. The table is meant to provide a succinct guide and may not cover all circumstances or possibilities. The scenarios may also suggest that chemicals have simple or single MOA, when in practice they may have multiple endocrine and non-endocrine MOA. In some cases, for example, two opposite modes of simultaneous action (e.g. estrogenic and anti-estrogenic) could, depending on dose, lead to a minimisation or abolition of effects, while in others two different MOA (e.g. estrogenic and anti-androgenic) could potentially reinforce effects. Endocrine pathways interact, mixed effects are common and there are many pathways that cannot be distinguished with currently available TGs. If multiple MOA are suspected, either from the existing results or based on QSAR/read-across/integrated approaches, this should be investigated further if needed for regulatory decision making.
References

Table C.3.5. Combined Chronic Toxicity/Carcinogenicity Studies (OECD TG 451-3):
Guidance for scenarios of combinations of results with existing data

This table represents possible conclusions to be drawn from assay data, and a next step which could be taken if further evidence is required about possible endocrine disrupting properties and/or effects. The guidance offered is not meant to be prescriptive, but provides science-based considerations. It encourages the use of all available data and expert judgement in a weight of evidence approach. Regional and national interpretation of results and “next steps” may vary.

The conclusions are grouped into a series of scenarios (A-R), each scenario representing a different combination of assay results, existing in vitro data and existing in vivo data. The symbol “+” indicates that the data in question represent a positive result, “-” indicates a negative result, and “Eq/0” indicates that the data are either equivocal or are not available.

Existing results: * “Mechanism (in vitro mechanistic data)” assumes that mechanistic data are available from estrogen receptor (ER-), androgen receptor (AR-) and steroidogenesis-based assays (Level 2). Thyroid hormone receptor (TR) and other assays concerning mechanisms of thyroid disruption may be available, but they are not in common use. In practice, data from all assays may not be available and therefore this must be taken into account when deciding on the “next step”. Quantitative structure activity relationship (QSAR) predictions of estrogen and androgen binding/activation may be made for some substances.

Existing results: ** “Effects (in vivo effects of concern)” assumes various information, such as data from repeat dose oral toxicity studies, reproduction/developmental toxicity screen tests, read-across from analogues, will be available.

*** Note: a positive result is defined as a biologically significant change in any of the endocrine endpoints.
510 – C.3.5. COMBINED CHRONIC TOXICITY/CARCINOGENICITY STUDIES (OECD TG 451-3)

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Result of OECD TG 451-3 (caro/1-year) assay</th>
<th>Existing results</th>
<th>Possible conclusions</th>
<th>Next step which could be taken to strengthen weight of evidence if necessary</th>
<th>Other considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+</td>
<td>(Anti)-E,A,T,S activity. Increased evidence of (anti)-E,A,T,S activity.</td>
<td>Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>If existing data are from a Level 5 assay, there may be sufficient information to conclude evidence of concern for endocrine disruption (the EOGRTS provides the most information; however, for endocrine disrupting chemicals [EDCs] with a carcinogenic potential, OECD TG 451-3 may be more sensitive). Consider route of exposures for effects data and possible implications of absorption, distribution, metabolism and excretion (ADME) characteristics of the chemical. Endocrine activity possible in lower vertebrates. Consider performing a Fish Sexual Development Test (FSDT), a Larval Amphibian Growth and Development Assay (LAGDA) or a Medaka Extended One-Generation Reproduction Test (MEOGRT).</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>+</td>
<td>(Anti)-E,A,T,S activity. Increased evidence of (anti)-E,A,T,S activity.</td>
<td>Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>If existing data are from an adequate Level 5 study, question why there are differences. Consider route of exposures and possible implications of ADME characteristics of the chemical. If existing data are from a less sensitive assay, a higher level test may be required. Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>+</td>
<td>Eq/0</td>
<td>(Anti)-E,A,T,S activity. Increased evidence of (anti)-E,A,T,S activity.</td>
<td>Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>Check data on chemical analogues. Consider route of exposure for OECD TG 452/453 and follow-up assay. Possible implications of ADME characteristics of the chemical. Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT. Equivocal results may indicate chemical has multiple modes of action (MOA).</td>
</tr>
<tr>
<td>D</td>
<td>+</td>
<td>–</td>
<td>(Anti)-E,A,T,S activity. Acts via non-estrogen receptor (ER), androgen receptor (AR), thyroid hormone receptor (TR), steroidogenesis (S) mechanism or requires metabolic activation for activity.</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system.</td>
<td>If existing data are from an adequate Level 5 assay, there may be sufficient information to conclude evidence of concern for endocrine disruption (the EOGRTS provides the most information; however, for EDCs with a carcinogenic potential, OECD TG 451-3 may be more sensitive). Consider route of exposures for effects data and possible implications of ADME characteristics of the chemical. Further mechanistic studies may help determine MOA. Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT.</td>
</tr>
<tr>
<td>E</td>
<td>+</td>
<td>–</td>
<td>(Anti)-E,A,T,S activity. Acts via non-ER, AR, TR, S mechanism or requires metabolic activation for activity. Route of exposure may account for the differences between OECD TG 451-3 and existing data.</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system OR Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>If existing data are from an adequate Level 5 assay, question why there are differences. Consider route of exposures and possible implications of ADME characteristics of the chemical. If existing data are from a less sensitive assay, a higher level test may be required. Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT.</td>
</tr>
</tbody>
</table>
Scenarios

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Result of OECD TG 451-3 (carc/1-year) assay</th>
<th>Existing results</th>
<th>Effects (in vitro mechanistic data)</th>
<th>Possible conclusions</th>
<th>Next step which could be taken to strengthen weight of evidence if necessary</th>
<th>Other considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>+</td>
<td>Eq/0</td>
<td>(Anti)-E,A,T,S activity. Acts via non-ER, AR, TR, S mechanism or requires metabolic activation for activity.</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system OR Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>Check data on chemical analogues. Further mechanistic studies may help determine MOA. Upper-level studies will provide more hazard data.</td>
<td>Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT. Equivocal results may indicate chemical has multiple MOA.</td>
</tr>
<tr>
<td>G</td>
<td>+</td>
<td>Eq/0</td>
<td>(Anti)-E,A,T,S activity. May act via ER, AR, TR, S mechanism (metabolic activation needed).</td>
<td>Perform in vitro ER, AR, TR, S assays (for the “0” scenario, otherwise Eq result available) OR Perform in vitro ER, AR, TR, S assays with added metabolising system.</td>
<td>If existing data are from a Level 5 assay, there may be sufficient information to conclude evidence of concern for endocrine disruption (the EOGRTS provides the most information; however, for EDCs with a carcinogenic potential, OECD TG 451-3 may be more sensitive). Check data on chemical analogues. Further mechanistic studies may help determine MOA. Consider route of exposures for effects data and possible implications of ADME characteristics of the chemical. Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT. Equivocal results may indicate chemical has multiple MOA.</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>+</td>
<td>Eq/0</td>
<td>(Anti)-E,A,T,S activity. Acts via unknown mechanism or may require metabolic activation for activity. Route of exposure may account for the differences between OECD TG 451-3 and existing data.</td>
<td>For the “0” scenario, perform in vitro ER, AR, TR, S assays with added metabolising system (otherwise Eq result available).</td>
<td>If existing data are from an adequate Level 5 assay, question why there are differences. Consider route of exposures and possible implications of ADME characteristics of the chemical. If existing data are from a less sensitive assay, a higher level test may be required. Check data on chemical analogues. Further mechanistic studies may help determine MOA. Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT. Equivocal results may indicate chemical has multiple MOA.</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>+</td>
<td>Eq/0</td>
<td>(Anti)-E,A,T,S activity. Acts via unknown mechanism. Unexplained potency for adverse effects.</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system OR Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>Check data on chemical analogues. Further mechanistic studies may help determine MOA. Endocrine activity possible in lower vertebrates. Consider performing an FSDT, LAGDA or MEOGRT. Equivocal results may indicate chemical has multiple MOA.</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>-</td>
<td>+</td>
<td>No evidence for (anti)-E,A,T,S activity in OECD TG 451-3. Effects on reproduction will not be detected by these assays. Metabolism or potency explains the difference from existing in vitro and in vivo data.</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system OR Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>If existing data are from an adequate Level 5 assay, question why there are differences. Effects seen in existing studies may be in a more sensitive life stage. Consider route of exposures and possible implications of ADME characteristics of the chemical. Further mechanistic studies may help determine MOA.</td>
<td></td>
</tr>
<tr>
<td>Scenarios</td>
<td>Result of OECD TG 451-3 (carc/1 year) assay</td>
<td>Existing results</td>
<td>Possible conclusions</td>
<td>Next step which could be taken to strengthen weight of evidence if necessary</td>
<td>Other considerations</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanism (in vitro mechanistic data)**</td>
<td>Effects (in vivo effects of concern)**</td>
<td>Perform in vitro, AR, TR, S assays with added metabolising system OR Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>If existing data are from an adequate Level 5 assay, there may be sufficient information to conclude absence of concern for endocrine disruption (the EOGRTS provides the most information; however, for EDCs with a carcinogenic potential, OECD TG 451-3 may be more sensitive). If existing data are from a less sensitive assay, a higher level test may be required. Further mechanistic studies with metabolism may help determine MOA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>–</td>
<td>+</td>
<td>No evidence for (anti)-E,A,T,S activity in OECD TG 451-3. Effects on reproduction will not be detected by these assays. Metabolism or potency explains in vitro/in vivo differences.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existing results</td>
<td>Effects</td>
<td>Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>–</td>
<td>+</td>
<td>No evidence for (anti)-E,A,T,S activity in OECD TG 451-3. Effects on reproduction will not be detected by these assays. Metabolism or potency explains in vitro/in vivo differences. Unknown potential for adverse effects.</td>
<td>Metabolic deactivation of chemical may occur in vivo so that possible in vitro activity is not realised. Consider possible routes of exposure implications of metabolism. Equivocal results may indicate chemical has multiple MOA.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>–</td>
<td>–</td>
<td>No evidence for (anti)-E,A,T,S activity in OECD TG 451-3. Effects on reproduction will not be detected by these assays. Effects seen in existing studies are via non-E,A,T,S mechanism.</td>
<td>Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>If existing data are from an adequate Level 5 assay, question why there are differences. Effects seen in existing studies may be in a more sensitive life stage. Consider route of exposures and possible implications of ADME characteristics of the chemical.</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>–</td>
<td>–</td>
<td>No evidence for (anti)-E,A,T,S activity in OECD TG 451-3. Weak (anti)-E,A,S activity may not be detected by this assay. No evidence for (anti)-E,A,T,S activity in vitro. No evidence of adverse effects.</td>
<td>Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>If existing data are from an adequate Level 5 assay, there may be sufficient information to conclude absence of concern for endocrine disruption (the EOGRTS provides the most information; however, for EDCs with a carcinogenic potential, OECD TG 451-3 may be more sensitive).</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>–</td>
<td>–</td>
<td>No evidence for (anti)-E,A,T,S activity in OECD TG 451-3. Effects on reproduction will not be detected by these assays. No evidence for (anti)-E,A,T,S activity in vitro. Unknown potential for adverse effects.</td>
<td>Perform assay from Level 5 (e.g. EOGRTS or two-generation assay).</td>
<td>Consider route of exposures and possible implications for ADME characteristics of the chemical in follow-up assay.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Existing results</td>
<td>Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: OECD TG 451 assay.
C.3.5. COMBINED CHRONIC TOXICITY/CARCINOGENICITY STUDIES (OECD TG 451-3)

Scenarios and Results

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Result of OECD TG 451-3 (carc/1 year) assay</th>
<th>Existing results</th>
<th>Possible conclusions</th>
<th>Next step which could be taken to strengthen weight of evidence if necessary</th>
<th>Other considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>–</td>
<td>Eq/0</td>
<td>+</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system.</td>
<td>Consider route of exposure for OECD TG 452/453 and possible implications for differences from existing assay. Effects seen in existing studies may be in a more sensitive life stage. Equivocal results may indicate chemical has multiple MOA.</td>
</tr>
<tr>
<td>Q</td>
<td>–</td>
<td>Eq/0</td>
<td>–</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system.</td>
<td>If existing data are from an adequate Level 5 assay, there may be sufficient information to conclude absence of concern for endocrine disruption (the EOGRTS provides the most information; however, for EDCs with a carcinogenic potential, OECD TG 451-3 may be more sensitive). Further mechanistic studies may strengthen weight of evidence.</td>
</tr>
<tr>
<td>R</td>
<td>–</td>
<td>Eq/0</td>
<td>Eq/0</td>
<td>Perform in vitro ER, AR, TR, S assays with added metabolising system, otherwise Eq result available.</td>
<td>Further mechanistic studies may strengthen weight of evidence. Check data on chemical analogues. Equivocal results may indicate chemical has multiple MOA.</td>
</tr>
</tbody>
</table>
From:
Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption

Access the complete publication at:
https://doi.org/10.1787/9789264304741-en

Please cite this chapter as:
DOI: https://doi.org/10.1787/9789264304741-24-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d’exploitation du droit de copie (CFC) at contact@cfcopies.com.