OECD GUIDELINE FOR THE TESTING OF CHEMICALS

21-day Fish Assay: A Short-Term Screening for Oestrogenic and Androgenic Activity, and Aromatase Inhibition

INTRODUCTION

1. The need to develop and validate a fish assay capable of detecting certain endocrine active substances originates from the concerns that environmental levels of chemicals may cause adverse effects in both humans and wildlife due to the interaction of these chemicals with the endocrine system. In 1998, the OECD initiated a high-priority activity to revise existing guidelines and to develop new guidelines for the screening and testing of potential endocrine disrupters. One element of the activity was to develop a Test Guideline for the screening of substances active on the endocrine system of fish species. The 21-day Fish Endocrine Screening Assay underwent an extensive validation programme consisting of inter-laboratory studies with selected chemicals to demonstrate the relevance and reliability of the assay for the detection of oestrogenic and aromatase inhibiting substances (1, 2, 3, 4, 5) in the three fish species investigated (the fathead minnow, the Japanese medaka and the zebrafish); the detection of androgenic activity is possible in the fathead minnow and the medaka, but not in the zebrafish. This Guideline (TG 230) does not allow the detection of anti-androgenic substances. The validation work has been peer-reviewed by a panel of experts nominated by the National Coordinators of the Test Guideline Programme (6). The assay is not designed to identify specific mechanisms of hormonal disruption because the test animals possess an intact hypothalamic-pituitary-gonadal (HPG) axis, which may respond to substances that impact on the HPG axis at different levels. The Fish Short Term Reproduction assay (TG 229) includes fecundity and, as appropriate, gonadal histopathology for the fathead minnow, as well as all endpoints included in this Guideline (TG 230). TG 229 provides a screening of substances which affect reproduction through various mechanisms including endocrine modalities. This should be considered prior to selecting the most appropriate Test Guideline.

2. This Test Guideline describes an in vivo screening assay where sexually mature male and spawning female fish are held together and exposed to a chemical during a limited part of their life-cycle (21 days). At termination of the 21-day exposure period, depending on the species used, one or two biomarker endpoint(s) are measured in males and females as indicators of oestrogenic, aromatase inhibition or androgenic activity of the test chemical; these endpoints are vitellogenin and secondary sexual characteristics. Vitellogenin is measured in fathead minnow, Japanese medaka and zebrafish, whereas secondary sex characteristics are measured in fathead minnow and Japanese medaka only.

3. This bioassay serves as an in vivo screening assay for certain endocrine modes of action and its application should be seen in the context of the “OECD Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals”.

© OECD, (2009)
You are free to use this material for personal, non-commercial purposes without seeking prior consent from the OECD, provided the source is duly mentioned. Any commercial use of this material is subject to written permission from the OECD.
INITIAL CONSIDERATIONS AND LIMITATIONS

4. Vitellogenin is normally produced by the liver of female oviparous vertebrates in response to circulating endogenous oestrogen. It is a precursor of egg yolk proteins and, once produced in the liver, travels in the bloodstream to the ovary, where it is taken up and modified by developing eggs. Vitellogenin is almost undetectable in the plasma of immature female and male fish because they lack sufficient circulating oestrogen; however, the liver is capable of synthesizing and secreting vitellogenin in response to exogenous oestrogen stimulation.

5. The measurement of vitellogenin serves for the detection of chemicals with various oestrogenic modes of action. The detection of oestrogenic chemicals is possible via the measurement of vitellogenin induction in male fish, and it has been abundantly documented in the scientific peer-reviewed literature (e.g., 7). Vitellogenin induction has also been demonstrated following exposure to aromatizable androgens (8, 9). A reduction in the circulating level of oestrogen in females, for instance through the inhibition of the aromatase converting the endogenous androgen to the natural oestrogen 17β-estradiol, causes a decrease in the vitellogenin level, which is used to detect chemicals having aromatase inhibiting properties (10, 11). The biological relevance of the vitellogenin response following oestrogenic/aromatase inhibition is established and has been broadly documented. However, it is possible that production of VTG in females can also be affected by general toxicity and non-endocrine toxic modes of action, e.g. hepatotoxicity.

6. Several measurement methods have been successfully developed and standardised for routine use. This is the case of species-specific Enzyme-Linked Immunosorbent Assay (ELISA) methods using immunochemistry for the quantification of vitellogenin produced in small blood or liver samples collected from individual fish (12, 13, 14, 15, 16, 17, 18). Fathead minnow blood, zebrafish blood or head/tail homogenate, and medaka liver are sampled for VTG measurement. In medaka, there is a good correlation between VTG measured from blood and from liver (19). Annex 6 provides the recommended procedures for sample collection for vitellogenin analysis. Kits for the measurement of vitellogenin are widely available; such kits should be based on a validated species-specific ELISA method.

7. Secondary sex characteristics in male fish of certain species are externally visible, quantifiable and responsive to circulating levels of endogenous androgens; this is the case for the fathead minnow and the medaka - but not for zebrafish, which does not possess quantifiable secondary sex characteristics. Females maintain the capacity to develop male secondary sex characteristics, when they are exposed to androgenic substances in water. Several studies are available in the scientific literature to document this type of response in fathead minnow (20) and medaka (21). A decrease in secondary sex characteristics in males should be interpreted with caution because of low statistical power, and should be based on expert judgement and weight of evidence. There are limitations to the use of zebrafish in this assay, due to the absence of quantifiable secondary sex characteristics responsive to androgenic acting substances.

8. In the fathead minnow, the main indicator of exogenous androgenic exposure is the number of nuptial tubercles located on the snout of the female fish. In the medaka, the number of papillary processes constitutes the main marker of exogenous exposure to androgenic compounds in female fish. Annex 5a and Annex 5b indicate the recommended procedures to follow for the evaluation of sex characteristics in fathead minnow and in medaka, respectively.

9. Definitions used in this Test Guideline are given in Annex 1.

PRINCIPLE OF THE TEST

10. In the assay, male and female fish in a reproductive status are exposed together in test vessels. Their adult and reproductive status enables a clear differentiation of each sex, and thus a sex-related
analysis of each endpoint, and ensures their sensitivity towards exogenous chemicals. At test termination, sex is confirmed by macroscopic examination of the gonads following ventral opening of the abdomen with scissors. An overview of the relevant bioassay conditions are provided in Annex 2. The assay is normally initiated with fish sampled from a population that is in spawning condition; senescent animals should not be used. Guidance on the age of fish and on the reproductive status is provided in the section on Selection of fish. The assay is conducted using three chemical exposure concentrations as well as a water control, and a solvent control if necessary. Two vessels or replicates per treatment are used (each vessel containing 5 males and 5 females) in medaka and zebrafish, whereas four vessels or replicates per treatment are used (each vessel containing 2 males and 4 females) in fathead minnow. This is to accommodate the territorial behaviour of male fathead minnow while maintaining sufficient power of the assay. The exposure is conducted for 21-days and sampling of fish is performed at day 21 of exposure.

11. On sampling at day 21, all animals are killed humanely. Secondary sex characteristics are measured in fathead minnow and medaka (see Annex 5A and Annex 5B); blood samples are collected for determination of vitellogenin in zebrafish and fathead minnow, alternatively head/tail can be collected for the determination of vitellogenin in zebrafish (Annex 6); liver is collected for VTG analysis in medaka (Annex 6).

TEST ACCEPTANCE CRITERIA

12. For the test results to be acceptable the following conditions apply:

- the mortality in the water (or solvent) controls should not exceed 10 per cent at the end of the exposure period;
- the dissolved oxygen concentration should be at least 60 per cent of the air saturation value (ASV) throughout the exposure period;
- the water temperature should not differ by more than ±1.5°C between test vessels at any one time during the exposure period and be maintained within a range of 2°C within the temperature ranges specified for the test species (Annex 2);
- evidence should be available to demonstrate that the concentrations of the test substance in solution have been satisfactorily maintained within ±20% of the mean measured values;

DESCRIPTION OF THE METHOD

Apparatus

13. Normal laboratory equipment and especially the following:

 (a) oxygen and pH meters;
 (b) equipment for determination of water hardness and alkalinity;
 (c) adequate apparatus for temperature control and preferably continuous monitoring;
 (d) tanks made of chemically inert material and of a suitable capacity in relation to the recommended loading and stocking density (see Annex 2);
 (e) spawning substrate for fathead minnow and zebrafish, Annex 4 gives the necessary details.
 (f) suitably accurate balance (i.e. accurate to ±0.5mg).

Water

14. Any water in which the test species shows suitable long-term survival and growth may be used as test water. It should be of constant quality during the period of the test. The pH of the water should be within the range 6.5 to 8.5, but during a given test it should be within a range of ±0.5 pH units. In order to
ensure that the dilution water will not unduly influence the test result (for example by complexion of test substance); samples should be taken at intervals for analysis. Measurements of heavy metals (e.g. Cu, Pb, Zn, Hg, Cd, and Ni), major anions and cations (e.g. Ca, Mg, Na, K, Cl, and SO4), pesticides (e.g. total organophosphorus and total organochlorine pesticides), total organic carbon and suspended solids should be made, for example, every three months where dilution water is known to be relatively constant in quality. If water quality has been demonstrated to be constant over at least one year, determinations can be less frequent and intervals extended (e.g. every six months). Some chemical characteristics of acceptable dilution water are listed in Annex 3.

Test solutions

15. Test solutions of the chosen concentrations are prepared by dilution of a stock solution. The stock solution should preferably be prepared by simply mixing or agitating the test substance in dilution water by using mechanical means (e.g. stirring or ultrasonication). Saturation columns (solubility columns) can be used for achieving a suitable concentrated stock solution. The use of a solvent carrier is not recommended. However, in case a solvent is necessary, a solvent control should be run in parallel, at the same solvent concentration as the chemical treatments. For difficult to test substances, a solvent may be technically the best solution; the OECD Guidance Document on aquatic toxicity testing of difficult substances and mixtures should be consulted (22). The choice of solvent will be determined by the chemical properties of the substance. The OECD Guidance Document recommends a maximum of 100µL/L, which should be observed. However a recent review (23) highlighted additional concerns when using solvents for endocrine activity testing. Therefore it is recommended that the solvent concentration, if necessary, is minimised wherever technically feasible (dependent on the physical-chemical properties of the test substance).

16. A flow-through test system will be used. Such a system continually dispenses and dilutes a stock solution of the test substance (e.g., metering pump, proportional diluter, saturator system) in order to deliver a series of concentrations to the test chambers. The flow rates of stock solutions and dilution water should be checked at intervals, preferably daily, during the test and should not vary by more than 10% throughout the test. Care should be taken to avoid the use of low-grade plastic tubing or other materials that may contain biologically active substances. When selecting the material for the flow-through system, possible adsorption of the test substance to this material should be considered.

Holding of fish

17. Test fish should be selected from a laboratory population, preferably from a single stock, which has been acclimated for at least two weeks prior to the test under conditions of water quality and illumination similar to those used in the test. It is important that the loading rate and stocking density (for definitions, see Annex 1) be appropriate for the test species used (see Annex 2).

18. Following a 48-hour settling-in period, mortalities are recorded and the following criteria applied:

- mortalities of greater than 10% of population in seven days: reject the entire batch;
- mortalities of between 5% and 10% of population: acclimation for seven additional days; if more than 5% mortality during second seven days, reject the entire batch;
- mortalities of less than 5% of population in seven days: accept the batch

19. Fish should not receive treatment for disease during the acclimation period, in the pre-exposure period, or during the exposure period.
Pre-exposure and selection of fish

20. A one-week pre-exposure period is recommended, with animals placed in vessels similar to the actual test. Fish should be fed *ad libitum* throughout the holding period and during the exposure phase. The exposure phase is started with sexually dimorphic adult fish from a laboratory supply of reproductively mature animals (e.g. with clear secondary sexual characteristics visible as far as fathead minnow and medaka are concerned), and actively spawning. For general guidance only (and not to be considered in isolation from observing the actual reproductive status of a given batch of fish), fathead minnows should be approximately 20 (±2) weeks of age, assuming they have been cultured at 25±2°C throughout their lifespan. Japanese medaka should be approximately 16 (±2) weeks of age, assuming they have been cultured at 25±2°C throughout their lifespan. Zebrafish should be approximately 16 (±2) weeks of age, assuming they have been cultured at 26±2°C throughout their lifespan.

TEST DESIGN

21. Three concentrations of the test substance, one control (water) and, if needed, one solvent control are used. The data may be analyzed in order to determine statistically significant differences between treatment and control responses. These analyses will inform whether further longer term testing for adverse effects (namely, survival, development, growth and reproduction) is required for the chemical, rather than for use in risk assessment (24).

22. For zebrafish and medaka, on day-21 of the experiment, males and females from each treatment level (5 males and 5 females in each of the two replicates) and from the control(s) are sampled for the measurement of vitellogenin and secondary sex characteristics, where applicable. For fathead minnow, on day 21 of exposure, males and females (2 males and 4 females in each of the four replicates) and from the control(s) are sampled for the measurement of vitellogenin and secondary sex characteristics.

Selection of test concentrations

23. For the purposes of this test, the highest test concentration should be set by the maximum tolerated concentration (MTC) determined from a range finder or from other toxicity data, or 10 mg/L, or the maximum solubility in water, whichever is lowest. The MTC is defined as the highest test concentration of the chemical which results in less than 10% mortality. Using this approach assumes that there are existing empirical acute toxicity data or other toxicity data from which the MTC can be estimated. Estimating the MTC can be inexact and typically requires some professional judgment.

24. Three test concentrations, spaced by a constant factor not exceeding 10, and a dilution-water control (and solvent control if necessary) are required. A range of spacing factors between 3.2 and 10 is recommended.

PROCEDURE

Selection and weighing of test fish

25. It is important to minimise variation in weight of the fish at the beginning of the assay. Suitable size ranges for the different species recommended for use in this test are given in Annex 2. For the whole batch of fish used in the test, the range in individual weights for male and female fish at the start of the test should be kept, if possible, within ± 20% of the arithmetic mean weight of the same sex. It is recommended to weigh a subsample of the fish stock before the test in order to estimate the mean weight.
Conditions of exposure

Duration

26. The test duration is 21 days, following a pre-exposure period. The recommended pre-exposure period is one week.

Feeding

27. Fish should be fed *ad libitum* with an appropriate food (Annex 2) at a sufficient rate to maintain body condition. Care should be taken to avoid microbial growth and water turbidity. As a general guidance, the daily ration may be divided into two or three equal portions for multiple feeds per day, separated by at least three hours between each feed. A single larger ration is acceptable particularly for weekends. Food should be withheld from the fish for 12 hours prior to sampling/necropsy.

28. Fish food should be evaluated for the presence of contaminants such as organochlorine pesticides, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs). Food with an elevated level of phytoestrogens that would compromise the response of the assay to known oestrogen agonist (e.g. 17-beta estradiol) should be avoided.

29. Uneaten food and faecal material should be removed from the test vessels at least twice weekly, e.g., by carefully cleaning the bottom of each tank using a siphon.

Light and temperature

30. The photoperiod and water temperature should be appropriate for the test species (see Annex 2).

Frequency of analytical determinations and measurements

31. Prior to initiation of the exposure period, proper function of the chemical delivery system should be ensured. All analytical methods needed should be established, including sufficient knowledge on the substance stability in the test system. During the test, the concentrations of the test substance are determined at regular intervals, as follows: the flow rates of diluent and toxicant stock solution should be checked preferably daily but as a minimum twice per week, and should not vary by more than 10% throughout the test. It is recommended that the actual test chemical concentrations be measured in all vessels at the start of the test and at weekly intervals thereafter.

32. It is recommended that results be based on measured concentrations. However, if concentration of the test substance in solution has been satisfactorily maintained within ±20% of the nominal concentration throughout the test, then the results can either be based on nominal or measured values.

33. Samples may need to be filtered (e.g., using a 0.45 μm pore size) or centrifuged. If needed, then centrifugation is the recommended procedure. However, if the test material does not adsorb to filters, filtration may also be acceptable.

34. During the test, dissolved oxygen, temperature, and pH should be measured in all test vessels at least once per week. Total hardness and alkalinity should be measured in the controls and one vessel at the highest concentration at least once per week. Temperature should preferably be monitored continuously in at least one test vessel.
Observations

35. A number of general (e.g. survival) and core biological responses (e.g. vitellogenin levels) are assessed over the course of the assay or at termination of the assay. Measurement and evaluation of these endpoints and their utility are described below.

Survival

36. Fish should be examined daily during the test period and any mortality should be recorded and the dead fish removed as soon as possible. Dead fish should not be replaced in either the control or treatment vessels. Sex of fish that die during the test should be determined by macroscopic evaluation of the gonads.

Behaviour and appearance

37. Any abnormal behaviour (relative to controls) should be noted; this might include signs of general toxicity including hyperventilation, uncoordinated swimming, loss of equilibrium, and atypical quiescence or feeding. Additionally external abnormalities (such as haemorrhage, discoloration) should be noted. Such signs of toxicity should be considered carefully during data interpretation since they may indicate concentrations at which biomarkers of endocrine activity are not reliable. Such behavioural observations may also provide useful qualitative information to inform potential future fish testing requirements. For example, territorial aggressiveness in normal males or masculinised females has been observed in fathead minnows under androgenic exposure; in zebrafish, the characteristic mating and spawning behaviour after the dawn onset of light is reduced or hindered by oestrogenic or anti-androgenic exposure.

38. Because some aspects of appearance (primarily colour) can change quickly with handling, it is important that qualitative observations be made prior to removal of animals from the test system. Experience to date with fathead minnows suggests that some endocrine active chemicals may initially induce changes in the following external characteristics: body colour (light or dark), coloration patterns (presence of vertical bands), and body shape (head and pectoral region). Therefore observations of physical appearance of the fish should be made over the course of the test, and at conclusion of the study.

Humane killing of fish

39. At day 21, i.e. at termination of the exposure, the fish should be euthanized with appropriate amounts of Tricaine (Tricaine methane sulfonate, Metacain, MS-222 (CAS.886-86-2), 100-500 mg/L buffered with 300 mg/L NaHCO₃ (sodium bicarbonate, CAS.144-55-8) to reduce mucous membrane irritation; blood or tissue is then sampled for vitellogenin determination, as explained in the vitellogenin section.

Observation of secondary sex characteristics

40. Some endocrine active chemicals may induce changes in specialized secondary sex characteristics (number of nuptial tubercles in male fathead minnow, papillary processes in male medaka). Notably, chemicals with certain modes of action may cause abnormal occurrence of secondary sex characteristic in animals of the opposite sex; for example, androgen receptor agonists, such as trenbolone, methyltestosterone and dihydrotestosterone, can cause female fathead minnows to develop pronounced nuptial tubercles or female medaka to develop papillary processes (11, 20, 21). It also has been reported that oestrogen receptor agonists can decrease nuptial tubercle numbers and size of the dorsal nape pad in adult males (25, 26). Such gross morphological observations may provide useful qualitative and quantitative information to inform potential future fish testing requirements. The number and size of
nuptial tubercles in fathead minnow and papillary processes in medaka can be quantified directly or more practically in preserved specimens. Recommended procedures for the evaluation of secondary sex characteristics in fathead minnow and medaka are available from Annex 5A and Annex 5B, respectively.

Vitellogenin (VTG)

41. Blood is collected from the caudal artery/vein with a heparinised microhematocrit capillary tubule, or alternatively by cardiac puncture with a syringe. Depending upon the size of the fish, collectable blood volumes generally range from 5 to 60 µl per individual for fathead minnows and 5-15 µl per individual for zebrafish. Plasma is separated from the blood via centrifugation, and stored with protease inhibitors at -80°C, until analyzed for vitellogenin. Alternatively, in medaka the liver will be used, and in zebrafish the head/tail homogenate can be used as tissue-source for vitellogenin determination (Annex 6). The measurement of VTG should be based upon a validated homologous ELISA method, using homologous VTG standard and homologous antibodies. It is recommended to use a method capable to detect VTG levels as low as few ng/ml plasma (or ng/mg tissue), which is the background level in unexposed male fish.

42. Quality control of vitellogenin analysis will be accomplished through the use of standards, blanks and at least duplicate analyses. For each ELISA method, a test for matrix effect (effect of sample dilution) should be run to determine the minimum sample dilution factor. Each ELISA plate used for VTG assays should include the following quality control samples: at least 6 calibration standards covering the range of expected vitellogenin concentrations, and at least one non-specific binding assay blank (analyzed in duplicate). Absorbance of these blanks should be less than 5% of the maximum calibration standard absorbance. At least two aliquots (well-duplicates) of each sample dilution will be analyzed. Well-duplicates that differ by more than 20% should be re-analyzed.

43. The correlation coefficient \(R^2\) for calibration curves should be greater than 0.99. However, a high correlation is not sufficient to guarantee adequate prediction of concentration in all ranges. In addition to having a sufficiently high correlation for the calibration curve, the concentration of each standard, as calculated from the calibration curve, should all fall between 70 and 120% of its nominal concentration. If the nominal concentrations trend away from the calibration regression line (e.g. at lower concentrations), it may be necessary to split the calibration curve into low and high ranges or to use a nonlinear model to adequately fit the absorbance data. If the curve is split, both line segments should have \(R^2 > 0.99\).

44. The limit of detection (LOD) is defined as the concentration of the lowest analytical standard, and limit of quantitation (LOQ) is defined as the concentration of the lowest analytical standard multiplied by the lowest dilution factor.

45. On each day that vitellogenin assays are performed, a fortification sample made using an inter-assay reference standard will be analyzed (Annex 7). The ratio of the expected concentration to the measured concentration will be reported along with the results from each set of assays performed on that day.

DATA AND REPORTING

Evaluation of Biomarker Responses by Analysis of Variance (ANOVA)

46. To identify potential endocrine activity of a chemical, responses are compared between treatments and control groups using analysis of variance (ANOVA). Where a solvent control is used, an appropriate statistical test should be performed between the dilution water and solvent controls for each endpoint. Guidance on how to handle dilution water and solvent control data in the subsequent statistical analysis can be found in OECD, 2006c (27). All biological response data should be analyzed and reported
separately by sex. If the required assumptions for parametric methods are not met - non-normal distribution (e.g. Shapiro-Wilk's test) or heterogeneous variance (Bartlett's test or Levene’s test), consideration should be given to transforming the data to homogenize variances prior to performing the ANOVA, or to carrying out a weighted ANOVA. Dunnett’s test (parametric) on multiple pair-wise comparisons or a Mann-Whitney with Bonferroni adjustment (non-parametric) may be used for non-monotonous dose-response. Other statistical tests may be used (e.g. Jonckheere-Terpstra test or Williams test) if the dose-response is approximately monotone. A statistical flowchart is provided in Annex 8 to help in the decision on the most appropriate statistical test to be used. Additional information can also be obtained from the OECD Document on Current Approaches to Statistical Analysis of Ecotoxicity Data (27).

Reporting of test results

47. Study data should include:

Testing facility:

- Responsible personnel and their study responsibilities
- Each laboratory should have demonstrated proficiency using a range of representative chemicals

Test Substance:

- Characterization of test substance
- Physical nature and relevant physicochemical properties
- Method and frequency of preparation of test concentrations
- Information on stability and biodegradability

Solvent:

- Characterization of solvent (nature, concentration used)
- Justification of choice of solvent (if other than water)

Test animals:

- Species and strain
- Supplier and specific supplier facility
- Age of the fish at the start of the test and reproductive/spawning status
- Details of animal acclimation procedure
- Body weight of the fish at the start of the exposure (from a sub-sample of the fish stock)

Test Conditions:

- Test procedure used (test-type, loading rate, stocking density, etc.);
- Method of preparation of stock solutions and flow-rate;
- The nominal test concentrations, weekly measured concentrations of the test solutions and analytical method used, means of the measured values and standard deviations in the test vessels and evidence that the measurements refer to the concentrations of the test substance in true solution;
- Dilution water characteristics (including pH, hardness, alkalinity, temperature, dissolved oxygen concentration, residual chlorine levels, total organic carbon, suspended solids and any other measurements made)
- Water quality within test vessels: pH, hardness, temperature and dissolved oxygen concentration;
• Detailed information on feeding (e.g. type of food(s), source, amount given and frequency and analyses for relevant contaminants if available (e.g. PCBs, PAHs and organochlorine pesticides).

Results

• Evidence that the controls met the acceptance criteria of the test;
• Data on mortalities occurring in any of the test concentrations and control;
• Statistical analytical techniques used, treatment of data and justification of techniques used;
• Data on biological observations of gross morphology, including secondary sex characteristics and vitellogenin;
• Results of the data analyses preferably in tabular and graphical form;
• Incidence of any unusual reactions by the fish and any visible effects produced by the test substance

GUIDANCE FOR THE INTERPRETATION AND ACCEPTANCE OF THE TEST RESULTS

48. This section contains a few considerations to be taken into account in the interpretation of test results for the various endpoints measured. The results should be interpreted with caution where the test substance appears to cause overt toxicity or to impact on the general condition of the test animal.

49. In setting the range of test concentrations, care should be taken not to exceed the maximum tolerated concentration to allow a meaningful interpretation of the data. It is important to have at least one treatment where there are no signs of toxic effects. Signs of disease and signs of toxic effects should be thoroughly assessed and reported. For example, it is possible that production of VTG in females can also be affected by general toxicity and non-endocrine toxic modes of action, e.g. hepatotoxicity. However, interpretation of effects may be strengthened by other treatment levels that are not confounded by systemic toxicity.

50. There are a few aspects to consider for the acceptance of test results. As a guide, the VTG levels in control groups of males and females should be distinct and separated by about three orders of magnitude in fathead minnow and zebrafish, and about one order of magnitude for medaka. Examples of the range of values encountered in control and treatment groups are available in the validation reports (1, 2, 3, 4). High VTG values in control males could compromise the responsiveness of the assay and its ability to detect weak oestrogen agonists. Low VTG values in control females could compromise the responsiveness of the assay and its ability to detect aromatase inhibitors and oestrogen antagonists. The validation studies were used to build that guidance.

51. If a laboratory has not performed the assay before or substantial changes (e.g. change of fish strain or supplier) have been made it is advisable that a technical proficiency study is conducted. It is recommended that substances covering a range of modes of action or impacts on a number of the test endpoints are used. In practice, each laboratory is encouraged to build its own historical control data for males and females and to perform a positive control chemical for estrogenic activity (e.g. 17β-estradiol at 100 ng/L, or a known weak agonist) resulting in increased VTG in male fish, a positive control chemical for aromatase inhibition (e.g. fadrozole or prochloraz at 300 µg/L) resulting in decreased VTG in female fish, and a positive control chemical for androgenic activity (e.g. 17β-trenbolone at 5 µg/L) resulting in induction of secondary sex characteristics in female fathead minnow and medaka. All these data can be compared to available data from the validation studies (1, 2, 3) to ensure laboratory proficiency.

52. In general, vitellogenin measurements should be considered positive if there is a statistically significant increase in VTG in males (p<0.05), or a statistically significant decrease in females (p<0.05) at least at the highest dose tested compared to the control group, and in the absence of signs of general
toxicity. A positive result is further supported by the demonstration of a biologically plausible relationship between the dose and the response curve. As mentioned earlier, the vitellogenin decrease may not entirely be of endocrine origin; however a positive result should generally be interpreted as evidence of endocrine activity in vivo, and should normally initiate actions for further clarification.
LITERATURE

ABBREVIATIONS & DEFINITIONS

CV – coefficient of variation

ELISA: Enzyme-Linked Immunosorbent Assay

Loading rate - the wet weight of fish per volume of water.

Stocking density - is the number of fish per volume of water.

VTG - vitellogenin is a phospholipoglycoprotein precursor to egg yolk protein that normally occurs in sexually active females of all oviparous species.

HPG axis: hypothalamic-pituitary-gonadal axis

MTC: Maximum Tolerated Concentration, representing about 10% of the LC50
EXPERIMENTAL CONDITIONS FOR THE FISH ENDOCRINE SCREENING ASSAY

1. **Recommended species**
 - **Fathead minnow** (*Pimephales promelas*)
 - **Medaka** (*Oryzias latipes*)
 - **Zebrafish** (*Danio rerio*)

2. **Test type**
 - Flow-through

3. **Water temperature**
 - 25 ± 2°C
 - 25 ± 2°C
 - 26 ± 2°C

4. **Illumination quality**
 - Fluorescent bulbs (wide spectrum)
 - Fluorescent bulbs (wide spectrum)
 - Fluorescent bulbs (wide spectrum)

5. **Light intensity**
 - 10-20 µE/M²/s, 540-1000 lux, or 50-100 ft-c (ambient laboratory levels)
 - 10-20 µE/M²/s, 540-1000 lux, or 50-100 ft-c (ambient laboratory levels)
 - 10-20 µE/M²/s, 540-1000 lux, or 50-100 ft-c (ambient laboratory levels)

6. **Photoperiod (dawn / dusk transitions are optional, however not considered necessary)**
 - 16 h light, 8 h dark
 - 12-16 h light, 12-8 h dark
 - 12-16 h light, 12-8 h dark

7. **Loading rate**
 - <5 g per L
 - <5 g per L
 - <5 g per L

8. **Test chamber size**
 - 10 L (minimum)
 - 2 L (minimum)
 - 5 L (minimum)

9. **Test solution volume**
 - 8 L (minimum)
 - 1.5 L (minimum)
 - 4 L (minimum)

10. **Volume exchanges of test solutions**
 - Minimum of 6 daily
 - Minimum of 5 daily
 - Minimum of 5 daily

11. **Age of test organisms**
 - See paragraph 20
 - See paragraph 20
 - See paragraph 20

12. **Approximate wet weight of adult fish (g)**
 - Females: 1.5 ± 20%
 - Males: 2.5 ± 20%
 - Females: 0.35 ± 20%
 - Males: 0.35 ± 20%
 - Females: 0.65 ± 20%
 - Males: 0.4 ± 20%

13. **No. of fish per test vessel**
 - 6 (2 males and 4 females)
 - 10 (5 males and 5 females)
 - 10 (5 males and 5 females)

14. **No. of treatments**
 - = 3 (plus appropriate controls)
 - = 3 (plus appropriate controls)
 - = 3 (plus appropriate controls)
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. No. vessels per treatment</td>
<td>4 minimum</td>
<td>2 minimum</td>
</tr>
<tr>
<td>16. No. of fish per test concentration</td>
<td>16 adult females and 8 males (4 females and 2 males in each replicate vessel)</td>
<td>10 adult females and 10 males (5 females and 5 males in each replicate vessel)</td>
</tr>
<tr>
<td>17. Feeding regime</td>
<td>Live or frozen adult or nauplii brine shrimp two or three times daily (ad libitum), commercially available food or a combination of the above</td>
<td>Brine shrimp nauplii two or three times daily (ad libitum), commercially available food or a combination of the above</td>
</tr>
<tr>
<td>18. Aeration</td>
<td>None unless DO concentration falls below 60% air saturation</td>
<td>None unless DO concentration falls below 60% air saturation</td>
</tr>
<tr>
<td>19. Dilution water</td>
<td>Clean surface, well or reconstituted water or dechlorinated tap water</td>
<td>Clean surface, well or reconstituted water or dechlorinated tap water</td>
</tr>
<tr>
<td>20. Pre-exposure period</td>
<td>7 days recommended</td>
<td>7 days recommended</td>
</tr>
<tr>
<td>21. Chemical exposure duration</td>
<td>21-d</td>
<td>21-d</td>
</tr>
<tr>
<td>22. Biological endpoints</td>
<td>- survival - behaviour - 2y sex characteristics) - VTG</td>
<td>- survival - behaviour - 2y sex characteristics), - VTG</td>
</tr>
<tr>
<td>23. Test acceptability</td>
<td>Dissolved oxygen ≥60% of saturation; mean temperature of 25 ± 2°C; 90% survival of fish in the controls; measured test concentrations within 20% of mean measured values per treatment level.</td>
<td>Dissolved oxygen ≥60% of saturation; mean temperature of 24 ± 2°C; 90% survival of fish in the controls; measured test concentrations within 20% of mean measured values per treatment level.</td>
</tr>
</tbody>
</table>
SOME CHEMICAL CHARACTERISTICS OF ACCEPTABLE DILUTION WATER

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>CONCENTRATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulate matter</td>
<td><20 mg/L</td>
</tr>
<tr>
<td>Total organic carbon</td>
<td><2 mg/L</td>
</tr>
<tr>
<td>Unionised ammonia</td>
<td><1 μg/L</td>
</tr>
<tr>
<td>Residual chlorine</td>
<td><10 μg/L</td>
</tr>
<tr>
<td>Total organophosphorus pesticides</td>
<td><50 ng/L</td>
</tr>
<tr>
<td>Total organochlorine pesticides plus polychlorinated biphenyls</td>
<td><50 ng/L</td>
</tr>
<tr>
<td>Total organic chlorine</td>
<td><25 ng/L</td>
</tr>
</tbody>
</table>
Spawning tray: all glass instrument dish, for example 22x15x5.5 cm (l x w x d), covered with a removable stainless steel wire lattice (mesh width 2mm). The lattice should cover the opening of the instrument dish at a level below the brim.

On the lattice, spawning substrate should be fixed. It should provide structure for the fish to move into. For example, artificial aquaria plants made of green plastic material are suitable (NB: possible adsorption of the test substance to the plastic material should be considered). The plastic material should be leached out in sufficient volume of warm water for sufficient time to ensure that no substances may be disposed to the test water. When using glass materials it should be ensured that the fish are neither injured nor cramped during their vigorous actions.

The distance between the tray and the glass panes should be at least 3 cm to ensure that the spawning is not performed outside the tray. The eggs spawned onto the tray fall through the lattice and can be sampled 45-60 min after the start of illumination. The transparent eggs are non-adhesive and can easily be counted by using transversal light. When using five females per vessel, egg numbers up to 20 at a day can be regarded as low, up to 100 as medium and more than 100 as high numbers. The spawning tray should be removed, the eggs collected and the spawning tray re-introduced in the test vessel, either as late as possible in the evening or very early in the morning. The time until re-introduction should not exceed one hour since otherwise the cue of the spawning substrate may induce individual mating and spawning at an unusual time. If a situation needs a later introduction of the spawning tray, this should be done at least 9 hours after start of the illumination. At this late time of the day, spawning is not induced any longer.
Two or three combined plastic/ceramic/glass or stainless steel spawning tiles and trays are placed in each of the test chamber (e.g., 80mm length of grey semi-circular guttering sitting on a lipped tray of 130mm length) (see picture). Properly seasoned PVC or ceramic tiles have demonstrated to be appropriate for a spawning substrate (Thorpe et al., 2007).

It is recommended that the tiles are abraded to improve adhesion. The tray should also be screened to prevent fish from access to the fallen eggs unless the egg adhesion efficiency has been demonstrated for the spawning substrate used.

The base is designed to contain any eggs that do not adhere to the tile surface and would therefore fall to the bottom of the tank (or those eggs laid directly onto the flat plastic base). All spawning substrates should be leached for a minimum of 12 hours, in dilution water, before use.

Overview

Potentially important characteristics of physical appearance in adult fathead minnows in endocrine disrupter testing include body colour (i.e., light/dark), coloration patterns (i.e., presence or absence of vertical bands), body shape (i.e., shape of head and pectoral region, distension of abdomen), and specialized secondary sex characteristics (i.e., number and size of nuptial tubercles, size of dorsal pad and ovipositor).

Nuptial tubercles are located on the head (dorsal pad) of reproductively-active male fathead minnows, and are usually arranged in a bilaterally-symmetric pattern (Jensen et al. 2001). Control females and juvenile males and females exhibit no tubercle development (Jensen et al. 2001). There can be up to eight individual tubercles around the eyes and between the nares of the males. The greatest numbers and largest tubercles are located in two parallel lines immediately below the nares and above the mouth. In many fish there are groups of tubercles below the lower jaw; those closest to the mouth generally occur as a single pair, while the more ventral set can be comprised of up to four tubercles. The actual numbers of tubercles is seldom more than 30 (range, 18-28; Jensen et al. 2001). The predominant tubercles (in terms of numbers) are present as a single, relatively round structure, with the height approximately equivalent to the radius. Most reproductively-active males also have, at least some, tubercles which are enlarged and pronounced such that they are indistinguishable as individual structures.

Some types of endocrine-disrupting chemicals can cause the abnormal occurrence of certain secondary sex characteristics in the opposite sex; for example, androgen receptor agonists, such as 17β-methyltestosterone or 17β-trenbolone, can cause female fathead minnows to develop nuptial tubercles (Smith 1974; Ankley et al. 2001; 2003), while oestrogen receptor agonists may decrease number or size of nuptial tubercles in males (Miles-Richardson et al. 1999; Harries et al. 2000).

Below is a description of the characterization of nuptial tubercles in fathead minnows based on procedures used at the U.S. Environmental Protection Agency lab in Duluth, MN. Specific products and/or equipment can be substituted with comparable materials available.

Viewing is best accomplished using an illuminated magnifying glass or 3X illuminated dissection scope. View fish dorsally and anterior forward (head toward viewer).

a. Place fish in small Petri dish (e.g., 100 mm in diameter), anterior forward, and ventral down. Focus viewfinder to allow identification of tubercles. Gently and slowly roll fish from side to side to identify tubercle areas. Count and score tubercles.

b. Repeat the observation on the ventral head surface by placing the fish dorsal anterior forward in the Petri dish.

c. Observations should be completed within 2 min for each fish.
Tubercle Counting and Rating

Six specific areas have been identified for assessment of tubercle presence and development in adult fathead minnows. A template was developed to map the location and quantity of tubercles present (see Appendix 1, Page 24). The number of tubercles is recorded and their size can be quantitatively ranked as: 0- absence, 1-present, 2-enlarged and 3-pronounced for each organism (Fig. 1).

Rate 0- absence of any tubercle. Rating 1-present, is identified as any tubercle having a single point whose height is nearly equivalent to its radius (diameter). Rating 2- enlarged, is identified by tissue resembling an asterisk in appearance, usually having a large radial base with grooves or furrows emerging from the centre. Tubercle height is often more jagged but can be somewhat rounded at times. Rating 3- pronounced, is usually quite large and rounded with less definition in structure. At times these tubercles will run together forming a single mass along an individual or combination of areas (B, C and D, described below). Coloration and design are similar to rating 2 but at times are fairly indiscriminate. Using this rating system generally will result in overall tubercle scores of <50 in a normal control male possessing a tubercle count of 18 to 20 (Jensen et al. 2001).

The actual number of tubercles in some fish may be greater than the template boxes (Appendix 1) for a particular rating area. If this happens, additional rating numbers may be marked within, to the right or to the left of the box. The template therefore does not should display symmetry. An additional technique for mapping tubercles which are paired or joined vertically along the horizontal plane of the mouth could be done by double-marking two tubercle rating points in a single box.

Mapping regions:

A - Tubercles located around eye. Mapped dorsal to ventral around anterior rim of eye. Commonly multiple in mature control males, not present in control females, generally paired (one near each eye) or single in females exposed to androgens.

B - Tubercles located between nares, (sensory canal pores). Normally in pairs for control males at more elevated levels (2- enlarged or 3- pronounced) of development. Not present in control females with some occurrence and development in females exposed to androgens.
C - Tubercles located immediately anterior to nares, parallel to mouth. Generally enlarged or pronounced in mature control males. Present or enlarged in less developed males or androgen-treated females.

D - Tubercles located parallel along mouth line. Generally rated developed in control males. Absent in control females but present in androgen-exposed females.

E - Tubercles located on lower jaw, close to mouth, usually small and commonly in pairs. Varying in control or treated males, and treated females.

F - Tubercles located ventral to E. Commonly small and paired. Present in control males and androgen-exposed females.

References

Appendix 1

Tubercle Template

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Total Score</th>
<th>Numerical Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-present</td>
<td>2-enlarged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-pronounced</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X1</th>
<th>X1</th>
<th>X1</th>
<th>X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
<tr>
<td>D</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>X1</td>
<td>X1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
</tbody>
</table>

Tubercle Template

<table>
<thead>
<tr>
<th>ID</th>
<th>Date</th>
<th>Total Score</th>
<th>Numerical Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-present</td>
<td>2-enlarged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-pronounced</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>X1</th>
<th>X1</th>
<th>X1</th>
<th>X1</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
<tr>
<td>D</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>X1</td>
<td>X1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
<td>X1</td>
</tr>
</tbody>
</table>
ASSESSMENT OF SECONDARY SEX CHARACTERISTICS IN MEDAKA FOR THE DETECTION OF CERTAIN ENDOCRINE ACTIVE SUBSTANCES

Below is a description of the measurement of papillary processes*, which are the secondary sex characteristics in medaka (*Oryzias latipes*).

* Papillary processes normally appear only in adult males and are found on fin rays from the second to the seventh or eighth counting from the posterior end of the anal fin (Fig. 1 and 2). However, processes rarely appear on the first fin ray from the posterior end of the anal fin. This SOP covers the measurement of processes on the first fin ray (the fin ray number refers to the order from the posterior end of the anal fin in this SOP).

(1) After the excision of the liver (Annex 6), the carcass is placed into a conical tube containing about 10 mL of 10% neutral buffered formalin (upside: head, downside: tail). If the gonad is fixed a solution other than 10% neutral buffered formalin, make a transverse cut across the carcass between anterior region of anal fin and anus using razor, taking care not to harm the gonopore and gonad itself (Fig. 3). Place the cranial side of the fish body into the fixative solution to preserve the gonad, and the tail side of the fish body into the 10% neutral buffered formalin as described above.

(2) After placing the fish body into 10% neutral buffered formalin, grasp the anterior region of the anal fin with tweezers and fold it for about 30 seconds to keep the anal fin open. When grasping the anal fin with tweezers, grasp a few fin rays in the anterior region with care not to scratch the papillary processes.

(3) After keeping the anal fin open for about 30 seconds, store the fish body in 10% neutral buffered formalin at room temperature until the measurement of the papillary processes (measurement should be conducted after fixing for at least 24 hours).

Measurement

(1) After fixing the fish body in the 10% neutral buffered formalin for at least 24 hours, pick up the fish carcass from the conical tube and wipe the formalin on the filter paper (or paper towel).

(2) Place the fish abdomen side up. Then cut the anal fin using small dissection scissors carefully (it is preferable to cut the anal fin with small amount of pterygiophore).

(3) Grasp the anterior region of the severed anal fin with tweezers and put it on a glass slide with a several drops of water. Then cover the anal fin with a cover glass. Be careful not to scratch the papillary processes when grasping the anal fin with tweezers.

(4) Count the number of the joint plate with papillary processes using the counter under a biological microscope (upright microscope or inverted microscope). The papillary processes are recognized when a small formation of processes is visible on the posterior margin of joint plate. Write the number of joint plate with papillary processes in each fin ray to the worksheet (e.g. first fin ray: 0, second fin ray: 10, third fin ray: 12, etc.) and enter the sum of this number on the Excel spreadsheet by individual fish. If necessary, take a photograph of the anal fin and count the number of joint plate with papillary processes on the photograph.

(5) After the measurement, put the anal fin into the conical tube described in (1) and store it.
Fig. 1. Diagram showing sexual difference in shape and size of the anal fin. A, male; B, female. Oka, T. B., 1931. On the processes on the fin rays of the male of *Oryzias latipes* and other sex characters of this fish. J. Fac. Sci., Tokyo Univ., IV, 2: 209-218.

Fig. 3. Photograph of fish body showing the cut site when the gonad is fixed in the fixing solution other than 10% neutral buffered formalin. In that case, the remaining body will be cut off between anterior region of anal fin and anal using razor (red bar), and the head side of fish body will be put into the fixing solution for gonad and the tail side of the fish body will be put into the 10% neutral buffered formalin.
ANNEX 6

RECOMMENDED PROCEDURES FOR SAMPLE COLLECTION
FOR VITELLOGENIN ANALYSIS

Care should be taken to avoid cross-contamination between VTG samples of males and females.

Procedure 1A: Fathead Minnow, Blood Collection from the Caudal Vein/Artery

After anaesthetization, the caudal peduncle is partially severed with a scalpel blade and blood is collected from the caudal vein/artery with a heparinised microhematocrit capillary tube. After the blood has been collected, the plasma is quickly isolated by centrifugation for 3 min at 15,000 g (or alternatively for 10 min. at 15,000g at 4°C). If desired, percent hematocrit can be determined following centrifugation. The plasma portion is then removed from the microhematocrit tube and stored in a centrifuge tube with 0.13 units of aprotinin (a protease inhibitor) at -80°C until determination of vitellogenin can be made. Depending on the size of the fathead minnow (which is sex-dependent), collectable plasma volumes generally range from 5 to 60 microliters per fish (Jensen et al. 2001).

Procedure 1B: Fathead Minnow, Blood Collection from Heart

Alternatively, blood may also be collected by cardiac puncture using a heparinized syringe (1000 units of heparin per ml). The blood is transferred into Eppendorf tubes (held on ice) and then centrifuged (5 min, 7,000 g, room temperature). The plasma should be transferred into clean Eppendorf tubes (in aliquots if the volume of plasma makes this feasible) and promptly frozen at -80°C, until analyzed (Panter et al., 1998).

Procedure 2A: Japanese Medaka, Excision of the Liver in Medaka

Removal of the test fish from the test chamber

(1) Test fish should be removed from the test chamber using the small spoon-net. Be careful not to drop the test fish into other test chambers.

(2) In principle, the test fish should be removed in the following order: control, solvent control (where appropriate), lowest concentration, middle concentration, highest concentration and positive control. In addition, all males should be removed from one test chamber before the remaining females are removed.

(3) The sex of each test fish is identified on the basis of external secondary sex characteristics (e.g., the shape of the anal fin).

(4) Place the test fish in a container for transport and carry it to the workstation for excision of the liver. Check the labels of the test chamber and the transport container for accuracy and to confirm that the number of fish that have been removed from the test chamber and that the number of fish remaining in the test chamber are consistent with expectation.

(5) If the sex cannot be identified by the fish’s external appearance, remove all fish from the test
chamber. In this case, the sex should be identified by observing the gonad or secondary sex characteristics under a stereoscopic microscope.

Excision of the liver

1. Transfer the test fish from the container for transport to the anaesthetic solution using the small spoon-net.

2. After the test fish is anesthetized, transfer the test fish on the filter paper (or a paper towel) using tweezers (commodity type). When grasping the test fish, apply the tweezers to the sides of the head to prevent breaking the tail.

3. Wipe the water on the surface of the test fish on the filter paper (or the paper towel).

4. Place the fish abdomen side up. Then make a small transverse incision partway between the ventral neck region and the mid-abdominal region using dissection scissors.

5. Insert the dissection scissors into the small incision, and incise the abdomen from a point caudal to the branchial mantle to the cranial side of the anus along the midline of the abdomen. Be careful not to insert the dissection scissors too deeply so as to avoid damaging the liver and gonad.

6. Conduct the following operations under the stereoscopic microscope.

7. Place the test fish abdomen side up on the paper towel (glass Petri dish or slide glass are also available).

8. Extend the walls of the abdominal cavity with precision tweezers and exteriorize the internal organs. It is also acceptable to exteriorize the internal organs by removing one side of the wall of the abdominal cavity if necessary.

9. Expose the connected portion of the liver and gallbladder using another pair of precision tweezers. Then grasp the bile duct and cut off the gallbladder. Be careful not to break the gallbladder.

10. Grasp the oesophagus and excise the gastrointestinal tract from the liver in the same way. Be careful not to leak the contents of the gastrointestinal tract. Excise the caudal gastrointestinal tract from the anus and remove the tract from the abdominal cavity.

11. Trim the mass of fat and other tissues from the periphery of the liver. Be careful not to scratch the liver.

12. Grasp the hepatic portal area using the precision tweezers and remove the liver from the abdominal cavity.

13. Place the liver on the slide glass. Using the precision tweezers, remove any additional fat and extraneous tissue (e.g., abdominal lining), if needed, from the surface of the liver.

14. Measure the liver weight with 1.5 mL microtube as a tare using an electronic analytical balance. Record the value on the worksheet (read: 0.1 mg). Confirm the identification
information on the microtube label.

(15) Close the cap of the microtube containing the liver. Store it in a cooling rack (or ice rack).

(16) Following the excision of one liver, clean the dissection instruments or replace them with clean ones.

(17) Remove livers from all of the fish in the transport container as described above.

(18) After the livers have been excised from all of the fish in the transport container (i.e., all males or females in a test chamber), place all liver specimens in a tube rack with a label for identification and store it in a freezer. When the livers are donated for pre-treatment shortly after the excision, the specimens are carried to the next workstation in a cooling rack (or ice rack).

Following liver excision, the fish carcass is available for measurement of secondary sex characteristics.

Specimen

Store the liver specimens taken from the test fish at ≤ -70 °C if they are not used for the pre-treatment shortly after the excision.
Fig-1
A cut is made just anterior to pectoral fins with scissors.

Fig-2
The midline of abdomen is incised with scissors to a point approximately 2mm cranial to the anus.

Fig-3
The abdominal walls are spread with forceps for exposure of the liver and other internal organs. (Alternatively, the abdominal walls may be pinned laterally).
The liver is bluntly dissected and excised using forceps.

The intestines are gently retracted using forceps.

Both ends of the intestines and any mesenteric attachments are severed using scissors.
Fig-7 (female)
The procedure is identical for the female.

Fig-8
The completed procedure.
Procedure 2 B: Japanese Medaka (Oryzias latipes), Liver Pre-treatment for Vitellogenin Analysis

Take the bottle of homogenate buffer from the ELISA kit and cool it with crushed ice (temperature of the solution: $\leq 4^\circ$C). If homogenate buffer from EnBio ELISA system is used, thaw the solution at room temperature, and then cool the bottle with crushed ice.

Calculate the volume of homogenate buffer for the liver on the basis of its weight (add 50 µL of homogenate buffer per mg liver weight for homogenate). For example, if the weight of the liver is 4.5 mg, the volume of homogenate buffer for the liver is 225 µL. Prepare a list of the volume of homogenate buffer for all livers.

Preparation of the liver for pre-treatment
(1) Take the 1.5 mL microtube containing the liver from the freezer just before the pre-treatment.

(2) Pre-treatment of the liver from males should be performed before females to prevent vitellogenin contamination. In addition, the pre-treatment for test groups should be conducted in the following order: control, solvent control (where appropriate), lowest concentration, middle concentration, highest concentration and positive control.

(3) The number of 1.5 mL microtubes containing liver samples taken from the freezer at a given time should not exceed the number that can be centrifuged at that time.

(4) Arrange the 1.5 mL microtubes containing liver samples in the order of specimen number on the ice rack (no need to thaw the liver).

Operation of the pre-treatment
1 Addition of the homogenization buffer
Check the list for the volume of the homogenate buffer to be used for a particular sample of liver and adjust the micropipette (volume range: 100-1000 µL) to the appropriate volume. Attach a clean tip to the micropipette.

Take the homogenate buffer from the reagent bottle and add the buffer to the 1.5 mL microtube containing the liver.

Add the homogenate buffer to all of 1.5 mL microtubes containing the liver according to the procedure described above. There is no need to change the micropipette tip to a new one. However, if the tip is contaminated or suspected to be contaminated, the tip should be changed.

2 Homogenization of the liver
(1) Attach a new pestle for homogenization to the microtube homogenizer.

(2) Insert the pestle into the 1.5 mL microtube. Hold the microtube homogenizer to press the liver between the surface of the pestle and the inner wall of the 1.5 mL microtube.

(3) Operate the microtube homogenizer for 10 to 20 seconds. Cool the 1.5 mL microtube with crushed ice during the operation.

(4) Lift up the pestle from the 1.5 mL microtube and leave it at rest for about 10 seconds. Then conduct a visual check of the state of the suspension.

(5) If pieces of liver are observed in the suspension, repeat the operations (3) and (4) to prepare satisfactory liver homogenate.

(6) Cool the suspended liver homogenate on the ice rack until centrifugation.
(7) Change the pestle to the new one for each homogenate.
(8) Homogenize all livers with homogenate buffer according to the procedure described above.

3 Centrifugation of the suspended liver homogenate
(1) Confirm the temperature of the refrigerated centrifuge chamber at ≤ 5°C.
(2) Insert the 1.5 mL microtubes containing the suspended liver homogenate in refrigerated centrifuge (adjust the balance if necessary).
(3) Centrifuge the suspended liver homogenate at 13,000 g for 10 min at ≤ 5°C. However, if the supernatants are adequately separated, centrifugal force and time may be adjusted as needed.
(4) Following centrifugation, check that the supernatants are adequately separated (surface: lipid, intermediate: supernatant, bottom layer: liver tissue). If the separation is not adequate, centrifuge the suspension again under the same conditions.
(5) Remove all specimens from the refrigerated centrifuge and arrange them in the order of specimen number on the ice rack. Be careful not to resuspend each separated layer after the centrifugation.

4 Collection of the supernatant
(1) Place four 0.5 mL microtubes for storage of the supernatant into the tube rack.
(2) Collect 30 µL of each supernatant (separated as the intermediate layer) with the micropipette and dispense it to one 0.5 mL microtube. Be careful not to collect the lipid on the surface or the liver tissue in the bottom layer.
(3) Collect the supernatant and dispense it to other two 0.5 mL microtubes in the same manner as described above.
(4) Collect the rest of the supernatant with the micropipette (if feasible: ≥ 100 µL). Then dispense the supernatant to the remaining 0.5 mL microtube. Be careful not to collect the lipid on the surface or the liver tissue in the bottom layer.
(5) Close the cap of the 0.5 mL microtube and write the volume of the supernatant on the label. Then immediately cool the microtubes on the ice rack.
(6) Change the tip of the micropipette to the new one for each supernatant. If a large amount of lipid becomes attached to the tip, change it to the new one immediately to avoid contamination of the liver extract with fat.
(7) Dispense all of the centrifuged supernatant to four 0.5 mL microtubes according to the procedure described above.
(8) After dispensing the supernatant to the 0.5 mL microtubes, place all of them in the tube rack with the identification label, and then freeze them in the freezer immediately. If the VTG concentrations are measured immediately after the pre-treatment, keep one 0.5 mL microtube (containing 30 µL of supernatant) cool in the tube rack and transfer it to the workstation where the ELISA assay is conducted. In such case, place the remaining microtubes in the tube racks and freeze them in the freezer.
(9) After the collection of the supernatant, discard the residue adequately.

Storage of the specimen
Store the 0.5 mL microtubes containing the supernatant of the liver homogenate at ≤ -70 °C until they are used for the ELISA.

Procedure 3A: Zebrafish, Blood Collection from the Caudal Vein / Artery
Immediately following anaesthesia, the caudal peduncle is severed transversely, and the blood is removed from the caudal artery/vein with a heparinised microhematocrit capillary tube. Blood volumes range from 5 to 15 microliters depending on fish size. An equal volume of aprotinin buffer (6 micrograms/mL in PBS) is
added to the microcapillary tube, and plasma is separated from the blood via centrifugation (5 minutes at 600 g). Plasma is collected in the test tubes and stored at – 20 °C until analyzed for vitellogenin or other proteins of interest.

Procedure 3B: Zebrafish, Blood Collection by Cardiac Puncture

To avoid coagulation of blood and degradation of protein the samples are collected within Phosphate-buffered saline (PBS) buffer containing heparin (1000 units/mL) and the protease inhibitor aprotinin (2TIU/mL). As ingredients for the buffer, heparin, ammonium-salt and lyophilized aprotinin are recommended. For blood sampling, a syringe (1mL) with a fixed thin needle (e.g. Braun Omnikan-F) is recommended. The syringe should be prefilled with buffer (approximately 100 microliter) to completely elute the small blood volumes from each fish. The blood samples are taken by cardiac puncture. At first the fish should be anesthetized with MS-222 (100mg/L). The proper plane of anaesthesia allows the user to distinguish the heartbeat of the zebrafish. While puncturing the heart, keep the syringe piston under weak tension. Collectable blood volumes range between 20 - 40 microliters. After cardiac puncture, the blood/buffer-mixture should be filled into the test tube. Plasma is separated from the blood via centrifugation (20 min; 5000 g) and should be stored at -80°C until required for analysis.

Procedure 3C: SOP: Zebrafish, homogenisation of head & tail

1. The fish are anaesthetised and euthanised in accordance with the test description.

2. The head and tail are cut of the fish in accordance with Figure 1. **Important:** *All dissection instruments, and the cutting board should be rinsed and cleaned properly (e.g. with 96% ethanol) between handling of each single fish to prevent “vitellogenin pollution” from females or induced males to uninduced males.*

3. The weight of the pooled head and tail from each fish is measured to the nearest mg.

4. After being weighed, the parts are placed in appropriate tubes (e.g. 1.5 ml eppendorf) and frozen at –80 °C until homogenisation or directly homogenised on ice with two plastic pistils. (Other methods can be used if they are performed on ice and the result is a homogenous mass). **Important:** *The tubes should be numbered properly so that the head and tail from the fish can be related to their respective body-section used for gonad histology.*
5. When a homogenous mass is achieved, 4 x the tissue weight of ice-cold homogenisation buffer* is added. Keep working with the pistils until the mixture is homogeneous. **Important note:** New pistils are used for each fish.

6. The samples are placed on ice until centrifugation at 4°C at 50000 x g for 30 min.

7. Use a pipette to dispense portions of 20 µl supernatant into at least two tubes by dipping the tip of the pipette below the fat layer on the surface and carefully sucking up the supernatant without fat- or pellet fractions.

8. The tubes are stored at -80°C until use.

*Homogenisation buffer:
- (50 mM Tris-HCl pH 7.4; 1% Protease inhibitor cocktail (Sigma)): 12 ml Tris-HCl pH 7.4 + 120 µl Protease inhibitor cocktail.
- TRIS: TRIS-ULTRA PURE (ICN) e.g. from Bie & Berntsen, Denmark.
- Protease inhibitor cocktail: From Sigma (for mammalian tissue) Product number P 8340.

NOTE: The homogenisation buffer should be used the same day as manufactured. Place on ice during use.
ANNEX 7

VITELLOGENIN FORTIFICATION SAMPLES AND INTER-ASSAY REFERENCE STANDARD

On each day that vitellogenin assays are performed, a fortification sample made using an inter-assay reference standard will be analyzed. The vitellogenin used to make the inter-assay reference standard will be from a batch different from the one used to prepare calibration standards for the assay being performed.

The fortification sample will be made by adding a known quantity of the inter-assay standard to a sample of control male plasma. The sample will be fortified to achieve a vitellogenin concentration between 10 and 100 times the expected vitellogenin concentration of control male fish. The sample of control male plasma that is fortified may be from an individual fish or may be a composite from several fish.

A subsample of the unfortified control male plasma will be analyzed in at least two duplicate wells. The fortified sample also will be analyzed in at least two duplicate wells. The mean quantity of vitellogenin in the two unfortified control male plasma samples will be added to the calculated quantity of vitellogenin added to fortification the samples to determine an expected concentration. The ratio of this expected concentration to the measured concentration will be reported along with the results from each set of assays performed on that day.
ANNEX 8

Decision flowchart for the statistical analysis