Power struggle: Decarbonising the electricity sector: Effects of climate policies, policy misalignments and political economy factors on decarbonisation

Dirk Röttgers
Brilé Anderson

https://dx.doi.org/10.1787/900f4c72-en
Power struggle: decarbonising the electricity sector - Effects of climate policies, non-climate policies, and political economy factors on decarbonisation – Environment Working Paper No. 139
By Dirk Röttgers and Brilé Anderson (OECD)

OECD Working Papers should not be reported as representing the official views of the OECD or if its member countries. The opinions expressed and arguments employed are those of the authors.

This working paper is an output of the Climate, Biodiversity and Water Division of the OECD Environment Directorate, under the supervision of the Working Party on Climate, Investment and Development (WPCID) of the Environment Policy Committee (EPOC).

Authorised for publication by Rodolfo Lacy, Director, Environment Directorate.

Keywords: Decarbonisation, climate change, electricity, regression analysis, political economy

JEL Classification: H23, L94, P16, P18, P48, Q42, Q48, Q54, Q55, Q58

Abstract

This analysis investigates the effects of select climate policies, non-climate policies, as well as political economy factors on the decarbonisation of electricity in OECD countries from 2000 to 2015. Effects are analysed on the three phases of decarbonisation: (1) increasing the share of renewables installed, (2) increasing the use of renewables in generation, and (3) reducing the emissions from electricity. Results for climate policies show that higher feed-in-tariffs (in terms of USD/kWh) and higher renewable energy quotas significantly increase the installation of renewables and the use of renewables in generation, while fossil fuel subsidies significantly reduce their installation and use. However, there is no robust effect of these factors on emissions. This could be symptomatic of “weak” climate policies (e.g., uneven low carbon prices) or the continued use of highly emission-intensive sources in the “non-green” side of electricity. In contrast, political economy factors, such as governmental rents from fossil fuels and jobs in the fossil fuel industry, significantly increase electricity emissions, in addition to reducing the installation and use of renewables. The implication is that climate policies and a singular focus on ramping up renewables, in themselves, are insufficient to decarbonise. Addressing the non-green side of electricity either by attenuating vested interests in fossil fuels (e.g., via labour market reforms or identifying alternative streams of government) or reducing the use of high emission-intensive sources is also useful in any decarbonisation strategy.

Keywords: Decarbonisation, climate change, electricity, regression analysis, political economy

Résumé

Cette analyse examine les effets des politiques climatiques et non-climatiques, ainsi que de facteurs d’économie politique sur la décarbonisation de l’électricité dans les pays de l’OCDE de 2000 à 2015. Les effets sont analysés sur les trois phases de la décarbonisation: (1) l’augmentation des énergies renouvelables installées 2) l’augmentation d’énergies renouvelables dans la production de l’électricité et 3) la réduction des émissions provenant du secteur de l’électricité. Les résultats en termes de politiques climatiques montrent que des tarifs d’achat plus élevés (USD / kWh) et des quotas d’énergies renouvelables plus élevés augmentent considérablement l’installation d’énergies renouvelables et leur utilisation dans la production, tandis que les subventions aux combustibles fossiles réduisent considérablement leur installation et leur utilisation. Cependant, il n’existe aucun effet robuste de ces facteurs sur les émissions. Cela pourrait être symptomatique de politiques climatiques «faibles» (par exemple, des prix de carbone faibles et inégalement distribués) ou de l'utilisation continue de sources à forte intensité d'émission dans le domaine de l’électricité considéré comme «non vert». En revanche, des facteurs d’économie politique, tels que tels que les revenus des gouvernements provenant des combustibles fossiles et les emplois dans l’industrie fossile et les emplois dans l’industrie des combustibles fossiles, augmentent considérablement les émissions d’électricité, en plus de réduire l’installation et l’utilisation des énergies renouvelables. Il en découle que la politiques climatiques et la seule focalisation sur la montée en puissance des énergies renouvelables sont en elles-mêmes insuffisantes pour décarboniser ce secteur. S'attaquer au côté « non vert » de l'électricité en atténuant les droits acquis sur les combustibles fossiles (par exemple, via des réformes du marché du travail ou en identifiant d'autres revenus pour le gouvernement) ou en réduisant l'utilisation de sources à forte intensité d'émission est également utile dans toute stratégie de décarbonisation.

Keywords : Décarbonisation, changement climatique, électricité, régression, l'économie politique
Acknowledgments

This working paper is prepared for the Climate, Biodiversity and Water Division in the OECD Environment Directorate, under the supervision of the Working Party on Climate, Investment and Development (WPCID) of the Environment Policy Committee (EPOC). This working paper is co-authored by Dirk Röttgers and Brilé Anderson, under the supervision of Aimée Aguilar Jaber, Virginie Marchal and Simon Buckle and with substantial support on data collection and management from Mariana Mirabile.

The authors are extremely grateful to their other OECD colleagues who provided additional valuable comments on this draft working paper. They include: Geraldine Ang, Rodney Boyd, Jennifer Calder, Kurt van Dender, Luisa Dressler, Florens Flues, Raphael Jachnik, Etienne Lepers, Daniel Nachtigall, Lauren McNicoll, Caroline Roulet, Gert Wehinger, Robert Youngman, Ziga Zarnic and participants of the Applied Economics seminar at the OECD.

The authors are also thankful for valuable advice and inputs received from other experts, including: Heymi Bahar, Andrew Prag, Michael Waldron (all IEA); Ted Nace (Coal Swarm); Daron Malakian (SOAD); Professor Tobias Schmidt, Professor Thomas Bernauer, and other colleagues from the Institute of Science Technology and Policy at ETH Zürich; and participants of the 2018 FAERE conference.

All errors and inconsistencies remain the responsibility of the authors.
Table of contents

Abstract .. 3
Résumé ... 3
Acknowledgments ... 4
Acronyms .. 7
Executive Summary .. 8
1. Introduction .. 9
2. Framework to decarbonise electricity .. 11
 2.1. Climate policies .. 11
 Higher carbon prices are expected to enable decarbonisation 12
 Longer planning horizons of carbon prices are expected to enable decarbonisation 12
 Public tenders are expected to enable decarbonisation 13
 Higher feed-in tariffs (FITs) and longer contract lengths are expected to enable decarbonisation 13
 Renewable energy quotas (REQs) are expected to enable decarbonisation 14
 2.2. Non-climate policies .. 14
 Fossil fuel subsidies are expected to impede decarbonisation 15
 Public RD&D on fossil fuels are expected to impede decarbonisation 15
 Public RD&D on renewables enhances decarbonisation 16
 Basel III leverage ratio impedes decarbonisation 16
 2.3. Political economy .. 16
 State-owned enterprises in the electricity sector could enhance or impede decarbonisation ... 17
 Market concentration is expected to impede decarbonisation 18
 Older average age of power plants is expected to enhance decarbonisation 18
 A high number of jobs in the fossil fuel industry is expected to impede decarbonisation ... 19
 Greater fossil fuel rents could impede decarbonisation 20
 A shift towards public environmental concern should increase decarbonisation ... 21
3. Empirical design .. 22
 3.1. Dependent variables .. 22
 3.2. Independent variables ... 24
 3.3. Control variables .. 26
 3.4. Estimation strategy ... 27
4. Results and interpretation ... 29
 4.1. Effects of climate policies on decarbonisation .. 30
 4.2. Effects of non-climate policies on decarbonisation 31
 4.3. Effects of political economy factors on decarbonisation 32
 4.4. Additional tests and robustness checks .. 34
5. Conclusions .. 35
Annex A. Robustness checks ... 36
Annex B. Notes on Data .. 38
 CAPACITY (GWs) ... 38
GENERATION (GWh) .. 39
EMISSIONS (Tonnes of CO2e) .. 39
Age of fleet ... 39
Fossil fuel jobs .. 39
Public opinion .. 41
Operationalisation .. 41
Climate Intention ... 43
Operationalisation .. 43
Assumption of linearity .. 45

References ... 46

Tables
Table 2.1. Climate policy hypotheses .. 12
Table 2.2. Misalignment hypotheses .. 15
Table 2.3. Political economy hypotheses .. 17
Table 3.1. Interaction terms ... 28
Table 4.1. Overview of results ... 29
Table 4.2. Regression results for climate policies across phases of decarbonisation 30
Table 4.3. Regression results for climate policies across phases of decarbonisation 31
Table 4.4. Results for political economy factors across models ... 33
Table A.1. Summary statistics ... 36
Table B.1. Construction of the GW data .. 38
Table B.2. Share of generation capacity data with built and retired dates 38

Figures
Figure 2.1. Average age of fossil fuel plants ... 19
Figure 3.1. CAPACITY ... 23
Figure 3.2. GENERATION .. 23
Figure 3.3. Per capita EMISSIONS .. 24
Figure B.1. Climate intention ... 45
Acronyms

- **CO₂** Carbon dioxide
- **CO₂e** Carbon dioxide equivalent
- **CCS** Carbon capture and storage
- **EPOC** Environment Policy Committee
- **ETS** Emission Trading System
- **EU** European Union
- **FIT** Feed-in tariff
- **FSB** Financial stability board
- **G20** Group of Twenty
- **GDP** Gross domestic product
- **GHG** Greenhouse gas
- **GW** Gigawatt
- **GWh** Gigawatt hour
- **HHI** Herfindahl-Hirschman Index
- **IAEA** International Atomic Energy Agency
- **IEA** International Energy Agency
- **IMF** International Monetary Fund
- **IPCC** Intergovernmental Panel on Climate Change
- **IRENA** International Renewable Energy Agency
- **ITF** International Transport Forum
- **KWh** Kilowatt hour
- **LCA** Lifecycle Assessment
- **MICE** Multivariate imputation by chained equations
- **MWh** Megawatt hour
- **NEA** Nuclear Energy Agency
- **OECD** Organisation for Economic Co-operation and Development
- **OLS** Ordinary least squares
- **PPA** Power purchase agreement
- **PV** Photovoltaic
- **RD&D** Research, development and demonstration
- **R&D** Research and development
- **REQ** Renewable energy quota
- **SOE** State-owned enterprise
- **t** Tonnes
- **tCO₂e** Tonnes of CO₂ equivalent
- **TWh** Terawatt hour
- **UN** United Nations
- **USD** US dollars
- **WB** World Bank
- **WPCID** Working Party on Climate, Investment and Development
Executive Summary

Decarbonising electricity is a precondition for transitioning to a low-carbon economy. This analysis aims to help countries in this endeavour by investigating the effects of a set of key climate policies, non-climate policies, and political economy factors on the decarbonisation of electricity in OECD countries from 2000 to 2015. The results of this analysis can inform the design of countries’ long-term low-emission development strategies.

Climate policies include carbon prices as well as targeted incentives like feed-in tariffs, public tenders and renewable energy quotas. Non-climate policies include fossil fuel subsidies, public finance for research, development and deployment (RD&D) in fossil fuels and renewables, as well as the enforcement of leverage ratio regulations under Basel III. In contrast to policies, political economy factors represent stakeholders’ interests towards decarbonisation: state-ownership of electricity companies, market concentration in the electricity sector, employment in the fossil fuel industry, government rents from fossil fuel-based activities, the age of fossil fuel plants, and public environmental concern.

This analysis captures three phases of decarbonisation: share of renewables capacity installed (GW), share of renewables in generation (GWh), and electricity emissions per capita. Increasing renewable capacity and its use in generation needs to be accompanied by a reduction in the use of emission-intensive sources in order to lead to a reduction of emissions.

Results show that higher feed-in-tariffs (in terms USD per kWh) and higher renewable energy quotas significantly increase the installation of renewables and their use in generation, while fossil fuel subsidies significantly reduce their use. However, there is no robust influence of these factors on emissions. This could be symptomatic of “weak” climate policies (e.g., uneven low carbon prices) or the continued use of highly emission-intensive sources in the “non-green” side of electricity. In contrast, political economy factors, such as governmental rents from fossil fuels and jobs in the fossil fuel industry, significantly increase electricity emissions. However, jobs also reduces the installation and use of renewables.

The implication is that climate policies and a singular focus on ramping up renewables, in themselves, are insufficient to decarbonise. Implementing ever more stringent climate policies will not necessarily have the desired effect on decarbonisation if non-climate policies continue to encourage – directly or indirectly - the usage of fossil fuels. Addressing issues aside from using climate policies, for example, by attenuating vested interests in fossil fuels (e.g., via labour market reforms or identifying alternative streams of government revenue) could foster decarbonisation.
1. Introduction

Countries transitioning to a low-carbon economy will need to decarbonise electricity. Despite the efforts of many OECD member countries to decarbonise and foster the low-carbon transition by implementing climate policies, through explicit carbon pricing mechanisms or other market-based instruments, the emissions intensity of energy continues to rise (OECD, 2017[1]; OECD/IEA/NEA/ITF, 2015[2]). This is partly due to the level at which climate policies are set (OECD/IEA/NEA/ITF, 2015[2]). But the rise is also linked to a number of political economy constraints and pre-existing non-climate policies that send signals conflicting with a low-carbon transition (OECD/IEA/NEA/ITF, 2015[2]; OECD, 2017[1]). Emissions from electricity are likely to persist unless countries resolve these contradictory signals.

This working paper studies these dynamics by testing the effects of a set of key policies, climate specific and non-climate specific, as well as political economy factors on the decarbonisation of electricity. Climate policies broadly refer to any policy aiming to foster the low-carbon transition. The non-climate policies included are policies without a climate objective (e.g., financial regulation) but may indirectly enhance or impede the use of fossil fuels and other emission-intensive activities (OECD/IEA/NEA/ITF, 2015[2]). Political economy factors are not policies per se but represent key stakeholders’ interests towards the decarbonisation of electricity (OECD, 2017[1]).

The following regression analysis captures different phases of decarbonisation of electricity using:

- the share of renewables (includes solar, wind, geothermal, hydropower, ocean, and biomass) in installed capacity\(^1\) (% GW)
- the share of renewables used in generating electricity (% GWh); and
- per capita emissions from electricity (tCO\(_2\)e).

Decarbonisation cannot occur without installing renewable capacity. Yet, measuring decarbonisation only in terms of capacity overlooks the different characteristics and capacity factors of fossil fuel and renewable technologies. Variable renewable technologies, such as solar and wind, generate far less electricity than fossil fuels in terms of GWh. For example, unlike solar and wind power, fossil fuel plants are not subject to weather conditions. Therefore, greater renewable capacity does not always translate to an equally large shift in generation away from fossil fuels. Additionally, even if technology shifts towards renewables in generation, GHG emissions from electricity may not reduce. Germany is a notable example of this. Renewable capacity and generation in Germany drastically increased over the last decade, yet electricity simultaneously switched from nuclear to coal, resulting in relatively stable emissions despite the increasing share of renewables. Importantly, these phases of decarbonisation may respond differently to policies. Shifting towards renewables in generation can respond quicker in the short-term to incentives than adding renewable capacity, which is a longer-term planning decision. The rest of the paper refers to each of these measures as “decarbonising electricity”, which

\(^1\) Installed capacity includes all technologies: coal, natural gas, nuclear plus renewables (solar, wind, geothermal, hydropower, ocean, biomass).
means installing renewable capacity, shifting towards renewables in generation, and reducing emissions from electricity.

This paper builds on prior OECD work on the decarbonisation of electricity, which investigates the effects of different policy factors (e.g., climate policies, investment environment) on investments in renewable energy (Ang, Röttgers and Burli, 2017[3]) and the aligning policies for the low-carbon transition (OECD/IEA/NEA/ITF, 2015[2]). This analysis adds to Ang, Röttgers and Burli (2017[3]) by examining whether climate policies and other factors actually lead to greater installed capacity of renewables, shifts towards renewables in generation, and a parallel reduction in GHG emissions from electricity. Moreover, this analysis empirically investigates to what extent climate and non-climate policies with the low-carbon transition affect the decarbonisation of electricity. The added value of this working paper is:

- Moving beyond installed capacity as the sole measure of decarbonisation to include generation as well as the emissions of electricity,
- Capturing non-green electricity by using proportions as well as emissions,
- Broaden the set of independent variables to include: climate policies, non-climate policies, and political economy factors.

Results show that higher feed-in-tariffs (in terms of USD/kWh) and higher renewable energy quotas significantly increase the installation of renewables and their use in generation, while fossil fuel subsidies significantly reduce their use. However, there is no robust influence of these factors on emissions. This could be symptomatic of “weak” climate policies (e.g., uneven low carbon prices) or the continued use of highly emission-intensive sources in the “non-green” side of electricity. In contrast, political economy factors, such as governmental rents from fossil fuels and jobs in the fossil fuel industry, statistically significantly increase electricity emissions, while jobs additionally reduce the installation and use of renewables.

Results imply that climate policies, and a singular focus on ramping up renewables, in themselves, are insufficient to decarbonise. Implementing ever more stringent climate policies will not have the desired effect if non-climate policies continue to encourage – directly or indirectly - the usage of fossil fuels. Addressing issues in electricity aside from using climate policies either by attenuating vested interests in fossil fuels (e.g., via labour market reforms or identifying alternative streams of government) or reducing the use of high emission-intensive sources should underpin any decarbonisation strategy.

Section 2 introduces the theoretical framework along with hypotheses followed by an overview of the empirical design in Section 3. The subsequent Section 4 details the results and interpretations with Section 5 discusses results further and offers avenues for future research.
2. Framework to decarbonise electricity

The remainder of the section provides an overview of prior work on the decarbonisation of electricity focusing on the effects of a set of key climate and non-climate policies as well as political economy factors. Hypotheses are italicised and summarised in each subsection in Tables 2.1, 2.2, and 2.3. The analysis employs three measures of decarbonisation; however, hypotheses are stated in terms of the effect on decarbonisation, in general. While policies (climate and non-climate) as well as political economy factors are expected to influence the phases of decarbonisation differently, to the authors’ knowledge this is the first empirical analyses with such a demarcation. Therefore, the differences remain open to empirical inquiry.

2.1. Climate policies

Strong financial incentives such as carbon prices or targeted support for renewable energy are a necessary condition for the decarbonisation of electricity (OECD/IEA/NEA/ITF, 2015[2]; IRENA, 2017[4]). Such policies correct for existing market failures and incentivise a reduction of emissions (Cárdenas Rodríguez et al., 2015[5]). This holds even after the rapid reduction in the cost of wind and solar technologies in the last decade. GHG emissions can be priced explicitly, via an emissions trading system or carbon tax, or implicitly, by subsidising emissions-reducing activities such as feed-in-tariffs (FITs) or renewable energy quotas (REQs) (OECD/IEA/NEA/ITF, 2015[2]).

The remainder of this subsection reviews prior work and formulates hypotheses on the impacts of implicit and explicit pricing instruments on the decarbonisation of electricity as well as the effects of the design of such pricing instruments (i.e., how long a given carbon price is in effect). These hypotheses are summarised in Table 2.1.
Table 2.1. Climate policy hypotheses

<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>Effect on decarbonisation</th>
<th>Mechanism: Why the expected effect on decarbonisation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit carbon price (USD/tCO2e)</td>
<td>+</td>
<td>Changes the order in which utilities dispatch technologies giving renewables preference, shifts consumers’ behaviours towards lower usage, and stimulates private investment in renewable energy.</td>
</tr>
<tr>
<td>Planning horizon of carbon price (years)</td>
<td>+</td>
<td>Encourages public and private investment in renewables by signalling the government’s commitment to the low-carbon transition.</td>
</tr>
<tr>
<td>Public tenders</td>
<td>+</td>
<td>Increase private investment in renewable energy.</td>
</tr>
<tr>
<td>Feed-in tariffs (USD per kwh)</td>
<td>+</td>
<td>Foster private investment in renewable energy by guaranteeing producers a fixed price.</td>
</tr>
<tr>
<td>Feed-in tariff contract length (years)</td>
<td>+</td>
<td>Stimulates private investment in renewables by guaranteeing producers long-term contracts with a secure income.</td>
</tr>
<tr>
<td>Renewable Energy Quota (percent)</td>
<td>+</td>
<td>Creates an economic incentive for utilities to shift towards renewables in electricity.</td>
</tr>
</tbody>
</table>

Note: How to read “Effect on decarbonisation”: “+” means that as the explicit carbon price increases, the decarbonisation of electricity is expected to be enabled while “-” means that as the explicit carbon price increases, the decarbonisation of electricity is expected to be inhibited.

Source: Authors.

Higher carbon prices are expected to enable decarbonisation

An explicit carbon price can lead to decarbonisation since it induces changes in the dispatching of technologies, shifts in producer and consumer behavior, as well as greater innovation (Newcomer et al., 2008[6]; Choi, Bakshi and Haab, 2010[7]; Weigt, Ellerman and Delarue, 2013[8]; Tietenberg, 2013[9]). Modelling shows that as the price of emissions increases, utilities change the order in which existing generators are dispatched according to their GHG emissions, ultimately shifting away from emission-intensive technologies (Newcomer et al., 2008[6]). Likewise, consumers react to the increased energy prices by buying and using less electricity (Newcomer et al., 2008[6]; Choi, Bakshi and Haab, 2010[7]). A carbon price can also stimulate private finance for investment in new generation technologies since such instruments ameliorate the risk-return profile of renewable energy investments (Martin, Muûls and Wagner, 2011[10]; Fischer, 2008[11]; Acemoglu et al., 2010[12]; Cárdenas Rodríguez et al., 2015[5]). Increased private finance for investments in plants could, in turn, lead to greater installed capacity of renewables, greater use of renewables in generation and a reduction of emissions from electricity. Therefore, as the carbon price increases, decarbonisation is expected to increase.

Longer planning horizons of carbon prices are expected to enable decarbonisation

An additional feature to the effectiveness of a carbon price is the perceived certainty and longevity of such a policy. If investors believe that a carbon price is subject to change, then there is little to no incentive for any stakeholder (e.g., utilities, consumers) to react and alter...
behaviour, especially if altering behaviour comes with a high sunk cost or implies substantial change. In contrast, a carbon price instituted for a longer period of time signals the commitment of the government to mitigation and the low-carbon transition (OECD/IEA/NEA/ITF, 2015[2]). Planning horizon is defined as the remaining years on a given carbon price before the legislation is scheduled for evaluation or revision. Therefore, as the planning horizon of a country’s carbon price increases, decarbonisation is expected to increase.

Public tenders are expected to enable decarbonisation

Public tender policies aim to incentivize public and private investment in the area of procurement. Therefore, public tenders that add renewable capacity should incentivize greater public and private investment in such technologies leading to enhanced innovation. This should prompt more installation of renewables, a shift towards renewables in generation, and a potential decrease in emissions. In practice, Ang, Röttgers and Burli (2017[3]) find public tenders stimulate investment in wind and solar, but cannot be shown to affect patents in renewable technologies overall in OECD and G20 member countries. Whether tenders directly affect decarbonisation consistently enough to yield a statistical signal remains to be empirically tested. Hypothetically, an increase in public tenders to install renewable capacity is expected to increase decarbonisation.

Higher feed-in tariffs (FITs) and longer contract lengths are expected to enable decarbonisation

FITs are a widely used as a targeted incentive to shift electricity from fossil fuels to renewables either as a compliment or alternative to explicit carbon pricing. In theory, FITs should accelerate renewable energy deployment by guaranteeing renewable energy producers long-term contracts at a fixed price. Empirically, the evidence is mixed. A first strand of literature examines the impacts of FITs (operationalised as a dummy variable) on renewable generation as a percentage of cumulative generation in cross-sectional data instead of a time-series (Menz and Vachon, 2006[13]; Jenner, Groba and Indvik, 2013[14]). These authors find a statistically significant positive relationship between FITs and renewable energy deployment, which is attributed to the certainty of long-term contracts that FITs offer to investors.

A second strand of literature accounts for the effects of country characteristics over time when analysing the effect of a FIT on electricity generation. Under this specification, the relationship between a FIT and renewable energy deployment is often statistically insignificant (Carley, 2009[15]; Delmas and Montes-Sancho, 2011[16]; Nio et al., 2010[17]; Shrimali and Kniefel, 2011[18]). A third strand attempts to add greater nuance to the FIT variable by incorporating differences in policy design. For example, it shows that policy design, such as the price of USD/kWh, significantly affects renewable energy deployment (Nio et al., 2010[17]; Yin and Powers, 2009[19]; Jenner, Groba and Indvik, 2013[14]; Ang, Röttgers and Burli, 2017[3]). Given these mixed results, there is no convincing empirical reason to expect any particular effect of FITs on decarbonisation.

This analysis separates two aspects of FIT design: the price level of the FIT (USD/kWh) and the contract length (years). This is valuable since these two aspects can attract investors

2 The latter inconclusive result could be rooted in the tendency of tenders to be one-off measures to procure a certain quantity of installed renewables capacity in contrast to feed-in-tariffs (FITs), which are consistent price-based instruments that provide long-term visibility to invest and innovate.
differently with varying effects on the market. The price level is relevant for any long-term investor who plans to hold a plant benefiting from a FIT during the period when it applies and with an appetite for stable rather than high returns. The level of the tariff might be a secondary consideration as long as it turns the project profitable. The length of the contract is relevant to investors planning to hold a plant for a longer period (or planning to sell the asset to an investor who plans to hold). If stable returns are of more concern than high returns, which is often the case for institutional investors like a pension fund, the length of the contract provides the sought-after certainty. As investors can have different appetites with respect to risk and returns, they might react differently to the price level and length of the feed-in tariff. Hypothetically, as the FIT price level and FIT contract length increases, decarbonisation is expected to increase.

Renewable energy quotas (REQs) are expected to enable decarbonisation

Renewable energy quotas (also known as renewable energy credits, quotas or REQs) emerged as a market-based alternative to FIT. REQs are used to fulfil predetermined quotas of renewables in electricity creating an economic incentive for utilities to shift (Toke, 2005[20]) and can often be traded to increase efficiency. As a consequence of the policy design and aim, REQs should spur investment as well as innovation in different renewable energy technologies (Polzin et al., 2015[21]). However, similar to FITs, the effect of REQs is empirically uncertain. REQs combined with long-term power purchase agreements appear to foster public and private investment in solar and wind (Ang, Röttgers and Burli, 2017[3]). Yet, Cárdenas Rodriguez et al. (2015[5]) find that the effect of REQ is statistically insignificant on private investment in a broader set of renewable technologies (i.e., wind, solar, biomass, small hydropower, marine and geothermal). It is possible that REQs only induce innovation in technologies that are close to competitive with fossil fuels but not in historically costlier technologies such as solar power (Johnstone et al., 2010[22]). Whether an increase in investment enhances innovation is dubious given the insignificant effect of REQ on patenting in wind and solar (Ang, Röttgers and Burli, 2017[3]). Based on the aim of the policy, our hypothesis is, however, that as GW from REQs increases, decarbonisation is expected to increase.

2.2. Non-climate policies

Decarbonisation can be fostered or thwarted by existing non-climate policies that continue to encourage or discourage the use of fossil fuels and other carbon-intensive activities (OECD/IEA/NEA/ITF, 2015[2]). The potential non-climate policies included in this analysis are fossil fuel subsidies, public RD&D in renewables as well as in fossil fuels, and Basel III financial regulations (OECD/IEA/NEA/ITF, 2015[2]). The hypotheses examined are summarised in Table 2.2.

3 The recent trend of declining price level accompanying higher installation rates in suggests that the relationship between price level and installed capacity could be negative. Indeed, it is sophisticated policy design for a market-creation tool such as FITs to persistently lower rates as the market develops. However, that does not mean that they do not serve as an incentive, even while declining. Hence, the expectation that FITs will not have a negative impact on decarbonisation, despite the overall decline coinciding with rising investments.

4 Includes the sum of upstream fossil fuel subsidies and public Research, Development & Deployment (RD&D) spending on fossil fuels excluding carbon capture storage.
Table 2.2. Misalignment hypotheses

<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>Effect on decarbonisation</th>
<th>Mechanism: Why the expected direct effect on decarbonisation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuel subsidies(^5)</td>
<td>-</td>
<td>Fossil fuel support lowers the capital costs of fossil fuel infrastructure in comparison with renewables and stimulates investment as well as innovation in fossil fuels.</td>
</tr>
<tr>
<td>Public RD&D in fossil fuels</td>
<td>-</td>
<td>Public RD&D in fossil fuels stimulates investment and innovation in fossil fuels fostering their use.</td>
</tr>
<tr>
<td>Public RD&D in renewables</td>
<td>+</td>
<td>Public RD&D in renewables stimulates investment and innovation in renewables fostering their use.</td>
</tr>
<tr>
<td>Basel III</td>
<td>-</td>
<td>The high leverage requirements of Basel III restrict access to capital needed for renewable energy investments.</td>
</tr>
</tbody>
</table>

Note: How to read “Effect on decarbonisation”: “+” means that as the public RDD in renewables increases, the decarbonisation of electricity is expected to be enabled while “-” means that as the public RDD in fossil fuels increases, the decarbonisation of electricity is expected to be inhibited.
Source: Authors.

Fossil fuel subsidies are expected to impede decarbonisation

Fossil fuel subsidies (excluding public RD&D in fossil fuels) perpetuate the use of fossil fuels in electricity by distorting prices and resource allocation decisions (OECD, 2005\(^{23}\)). OECD countries and partner economies\(^6\) spent USD 160 to 200 billion annually on fossil fuel subsidies (OECD, 2015\(^{24}\)). Given that renewable energy infrastructure is already more capital intensive in the building phase than fossil fuels, this further incentivises installing fossil fuel capacity. The removal of such subsidies is expected to increase the installed capacity of renewables and the use of renewables in electricity by making these technologies cost competitive (Riedy and Diesendorf, 2003\(^{25}\); Ouyang and Lin, 2014\(^{26}\)). Moreover, fossil fuel subsidies foster innovation and investment in high-emission fossil fuel activities (Rentschler and Bazilian, 2016\(^{27}\)). This could hamper the necessary shift needed for the low-carbon transition, further entrenching the use of these technologies in electricity. Therefore, *increasing fossil fuel subsidies is expected to impede the decarbonisation of electricity.*

Public RD&D on fossil fuels are expected to impede decarbonisation

Public RD&D in fossil fuels (excluding carbon capture and storage) is a specific type of fossil fuel subsidy, which perpetuates the use and deployment of fossil fuels as well as signals a lack of governmental commitment to the low-carbon transition. Public RD&D spending on fossil fuels hinders investment from renewables, which ultimately leads to slower adoption of renewables. This, in turn, reduces the pace of learning and cost reduction of renewables as the technologies would mature. In other words, the more a government subsidises fossil fuels via RD&D, the more it has to subsidise renewables if it wants these to compete better (Whitley and Van Der Burg, 2015\(^{28}\)). Therefore, *increasing public RD&D spending on fossil fuels is expected to impede decarbonisation.*

\(^5\) Fossil fuel subsidies includes only upstream subsidies.
\(^6\) Key partner countries include Brazil, China, India, Indonesia, Russia and South Africa.
Public RD&D on renewables enhances decarbonisation

Public RD&D in renewables can foster the installation and deployment of renewables, fund potentially disruptive technologies necessary for decarbonisation, and can signal the government’s commitment to the low-carbon transition. Governments try to improve the positioning and competitiveness of their domestic renewable industries via public RD&D (Rao and Kishore, 2010[29]). However, despite spending large amounts of public RD&D in renewables, experiences in different countries show that the development, diffusion and implementation of renewable energy technologies is a tedious process and varies by technology (Foxon et al., 2005[26]; Negro, Alkemade and Hekkert, 2012[27]; Negro, Hekkert and Smits, 2007[28]; Raven and Verbong, 2004[29]; Rao and Kishore, 2010[30]). This is partly due to innovation policies that favour incumbents, the risk return profiles of investments, and administrative barriers. Moreover, the optimal mix of public RD&D in renewables to support deployment is unclear (Neuhoff, 2005[30]). But theoretically, increases in public RD&D in renewables should lead to greater innovation and increase its competitiveness with other technologies. Therefore, increasing public RD&D in renewables is expected to increase the decarbonisation of electricity.

Basel III leverage ratio impedes decarbonisation

Basel III aims to restrict excessive leverage and exposure from banks in the wake of the 2008 financial crisis. Such regulations exist to increase the overall stability of the financial system, which is a necessary condition for any investments including ones needed for the decarbonisation of electricity. Its capital and liquidity requirements may limit access to the long-term financing required for renewable investments (OECD/IEA/NEA/ITF, 2015[2]). The Financial Stability Board, mandated by the G20 to monitor financial regulatory factors, finds limited evidence that capital requirements of Basel III harm long-term investments (FSB/IMF/WB, 2012[31]). Since compliance with Basel III only started relatively recently, empirical evidence on the effects of Basel III is scant with the exception of Ang, Röttgers and Burli (2017[3]), which finds a significant negative effect of Basel III on private and public investment in wind and solar. Therefore, unintended consequences of compliance with Basel III is expected to impede the decarbonisation of electricity.

2.3. Political economy

Political economy relates to how various political or structural factors shape the policies in place. These factors can be grouped into interests, ideologies, and institutions (Fankhauser, Gennaioli and Collins, 2015[32]; OECD, 2017[33]). Policymakers constantly have to balance their own interests with interests of other stakeholders such as citizens, lobbies or political parties whose support may be needed to pass specific reforms (Steves and Teytelboym, 2013[34]). Likewise, ideology continues to be a significant driver of policy while institutions set the rules of the game (e.g. environmentalism vs. market liberalisation) configuring the incentives of political actors and the potential decisions that they can make (World Bank, 2014[35]).

The political economy variables included in the analysis capture the interest of key stakeholders’ interests in the decarbonisation of electricity: (1) producers (i.e., age of stranded assets and market concentration), (2) the state (i.e., state ownership in the electricity sector, fossil fuel rents as well as fossil fuel jobs) as well as (3) consumers (i.e., public environmental concern). Ideology and institutional factors were excluded since this analysis concentrates on factors that policymakers could conceivably react to or change.
It is important to note that the effect of political economy factors on decarbonisation may also be indirect. Political economy factors likely affect climate and non-climate policies, since they are part of the context in which climate and non-climate policies develop. Therefore, the effects of political economy factors on decarbonisation may interact with these other policies. There could even be “feedback loops” (i.e. endogeneity) between the electricity mix (i.e., the proportion of fossil fuels and renewables installed or used in generation), climate and non-climate policies as well as political economy factors. For example, the electricity mix (i.e., ratio of renewables to non-renewables) influences political economy factors (i.e., stakeholder’s interests) while political economy factors simultaneously influence decarbonisation. Table 2.3 summarises the direct effects of political economy factors on decarbonisation that are outlined below, while possible interaction effects are highlighted when relevant.

Table 2.3. Political economy hypotheses

<table>
<thead>
<tr>
<th>Explanatory variable</th>
<th>Effect on decarbonisation</th>
<th>Mechanism: Why the expected direct effect on decarbonisation?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of state owned GW in the electricity sector</td>
<td>-</td>
<td>The high exposure of state-owned enterprises to carbon intensive technologies could be a disincentive for governments to decarbonise.</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>State-owned enterprises could push a green agenda leading to decarbonisation.</td>
</tr>
<tr>
<td>Market concentration</td>
<td>-</td>
<td>Greater market concentration favours incumbents, which limits access to the electricity market for innovative newcomer firms and decreases investment in renewables.</td>
</tr>
<tr>
<td>Age of fossil fuel plants</td>
<td>-</td>
<td>The younger fossil fuel plants, the more assets, which are at risk of being stranded, hence creating a disincentive for asset holders to decarbonise.</td>
</tr>
<tr>
<td>Jobs in fossil fuels industry</td>
<td>-</td>
<td>The higher the number of jobs at risk due to the low carbon transition, the more difficult it is for a given country to decarbonise.</td>
</tr>
<tr>
<td>Fossil fuel rents</td>
<td>-</td>
<td>The greater proportion of government revenue from fossil fuel rents, the greater the disincentive for governments to shift towards renewables.</td>
</tr>
<tr>
<td>Public environmental concern</td>
<td>+</td>
<td>The greater the public environmental concern, the greater the incentive for governments to decarbonise in order to stay in office.</td>
</tr>
</tbody>
</table>

Note: How to read “Effect on decarbonisation”: “+” means that as the public environmental concern increases, the decarbonisation of electricity is expected to be enabled while “−” means that as fossil fuel rents increase, the decarbonisation of electricity is expected to be inhibited.

Source: Authors.

State-owned enterprises in the electricity sector could enhance or impede decarbonisation.

State-owned enterprises (SOEs) could create an incentive or disincentive for governments to decarbonise electricity. SOEs account for 61% of total installed capacity and 52% of electricity plants currently planned or under construction in 2016 in OECD and G20 countries (Prag, Röttgers and Scherrer, 2018[36]). State ownership often results in preferential treatment (OECD, 2016[37]), which could be fortuitous for decarbonisation since the motivations of SOEs can extend beyond financial returns to include social and environmental objectives such as decarbonisation (OECD, 2016[37]). The preferential treatment of SOEs from governments could lower the capital cost of renewables, which

Unclassified
enables SOEs to invest in capital-intensive renewable technologies. The presence of SOEs in a given country can therefore be an opportunity to foster decarbonisation. This is backed by the findings of a recent study that indicates that SOEs can positively affect the level of investment in renewable energy (Prag, Röttgers and Scherrer, 2018[36]). This increased investment could lead to more installed renewables or use of renewables in generation.

However, SOEs are on average still operating and investing in significant coal-fired capacity; they account for 56% of coal power plants and 52% of planned coal plants as of 2014 in the OECD (Prag, Röttgers and Scherrer, 2018[36]). This presents a potential "carbon entanglement" for governments reliant on returns from SOEs with coal investments, which could be in direct conflict with the decarbonisation of electricity. Potentially, acting as a disincentive for governments to decarbonise. Therefore, the effect of SOEs on decarbonisation is theoretically unclear; SOEs could either increase or impede decarbonisation.

SOEs may affect climate and non-climate policies. SOEs will lobby their interests, whether pro or contra to decarbonisation, in an attempt to steer the passage policies in line with them. Lobbyists are a key determinant of environmental policy in the European Union as well as in the United States (Baumgartner et al., 2009[38]; Michaelowa, 1998[39]; Gullberg, 2008[40]). Interests hostile to climate policy are able to prevent strong instruments from being put into place and, conversely, can further exacerbate misalignments of non-climate policies with the climate agenda (Michaelowa, 1998[39]). The analysis will test for interactions between SOEs and public tenders, carbon price, and Basel III.

Market concentration is expected to impede decarbonisation

Separately from state ownership, market concentration (i.e. when a small number of firms account for a large portion of market activity) could impede decarbonisation by restricting access to the electricity market for innovative newcomer firms and thereby decrease investment in renewables. First, incumbents in the energy sector, state-owned or not, face challenges to remain profitable with large investments in renewables because the latter have a lower capacity factor than fossil fuels. Fossil fuel plants can operate 24/7 while solar and wind power are subject to weather conditions. Secondly, concentrated markets reduce competition and thereby impede entry of new renewable energy firms to the market (Prag, Röttgers and Scherrer 2018[36]). This is especially problematic as new entrants typically bring innovation (Johnstone et al. 2010[22]). Therefore, higher market concentration is expected to impede decarbonisation.

Older average age of power plants is expected to enhance decarbonisation

The magnitude of stranded assets from decarbonisation can create a disincentive for asset holders, public or private, to decarbonise electricity. Infrastructure in the energy sector is characterised by long lifetimes, typically, 20 to 60 years (OECD, 2017[11]). Figure 2.1 shows the average age of power plants in OECD countries in 2000 and 2015. Estonia and Latvia are the only OECD countries to have a younger average of fossil fuel plants in 2015 than in 2000. Transitioning to a low-carbon economy with existing fossil fuel infrastructure will result in decommissioning of plants before the end of plants’ life, leaving these assets stranded. This means these fossil fuel assets will be devalued or converted to liabilities prematurely (Baron and Fischer, 2015[41]). The International Energy Agency’s 2°C-compatible ‘450 Scenario’ estimates the amount of stranded assets to be USD 180 billion for upstream oil and gas investments, USD 120 billion for new fossil fuel capacity in the electricity sector, and USD 4 billion for coal mining (IEA, 2014[42]). In contrast, today’s
stock of energy generation infrastructure also includes assets over 50 years old in OECD countries. The older the average age of plants (oil, gas, and coal) results in fewer stranded assets meaning decarbonisation is less costly and resistance to decarbonisation will be lower. Therefore, as the average age of power plants increases, decarbonisation is expected to increase.

The potential stranded assets from decarbonisation could lead public and private asset holders to lobby in an attempt to weaken climate policy or create policy misalignments, which will impede the decarbonisation of electricity. The analysis will interact age of fossil fuel plants with carbon price, Basel III, and public RD&D spending on renewables and fossil fuels.

Figure 2.1. Average age of fossil fuel plants

OECD countries in 2000 and 2015

Source: Author’s calculations using Global coal plant tracker (2017[43]) and Platts WEPP (2017[44]).

A high number of jobs in the fossil fuel industry is expected to impede decarbonisation

Sustained employment in fossil fuel related activities is a further disincentive for decarbonising electricity. The decarbonisation of electricity will cause structural shifts in employment, which means the livelihoods of employees in carbon intensive industries and along their supply chains, could be affected (Fankhauser, Sehlleier and Stern, 2008[45]; Martinez-Fernandez, Hinojosa and Miranda, 2010[46]). Therefore, employees in the fossil fuel sector have an incentive to organise and lobby against climate policies. Moreover, fossil fuel sector employees have concentrated interests meaning it is easier for them to
organise and lobby policymakers (Dolšak and Prakash, 2016[47]; Olson, 1971[48]). Figure 2.2 shows the employment in the fossil fuel industry in OECD countries in 2000 and 2015. Employment in the fossil fuel industry is decreasing in all OECD countries except for Canada, Sweden and the United States. Even though empirical work illustrates that fossil fuel jobs will be offset by jobs in the renewable sector, the jobs are not necessarily comparable and retraining demands time and effort (DOE, 2017[49]; Garrett-Peltier, 2017[50]; Fankhauser, Schleier and Stern, 2008[45]; Yi, 2013[51]). Even when accounting for jobs in the renewables sector, labour is a less mobile factor of production between industries than land or capital. Retraining individuals requires time, resources, and could even require individuals to physically relocate (Martinez-Fernandez, Hinojosa and Miranda, 2010[46]). Therefore, high employment in fossil fuel jobs is expected to impede the decarbonisation of electricity.

Similar to asset holders, fossil fuel employees may successfully lobby in an attempt to weaken climate policy or create policy misalignments, which then could impede the decarbonisation of electricity. This analysis investigates the interaction effects between fossil fuel jobs, carbon price as well as RD&D spending on fossil fuels and renewables.

Figure 2.2. Employment in fossil fuel industry

OECD countries in 2000 and 2015

Note: Omitted countries is due to missing data or outliers.
Source: EU KLEMS (Jäger, 2017[52]) and WORLD KLEMS (WORLD KLEMS, 2017[53]).

Greater fossil fuel rents could impede decarbonisation

Moreover, in fossil fuel producing countries, regardless of ownership or market concentration, governments collect rents from fossil fuels. From 2011 to 2015, total...
revenues from fossil fuels reached up to nearly USD 1,130 billion in OECD countries (OECD, 2017[1]). The loss of this revenue could be a disincentive for governments to shift towards renewable sources of electricity and decarbonise. Therefore, increasing fossil fuel rents is expected to impede decarbonisation.

If substantial government revenue is derived from fossil fuels, this may affect carbon pricing legislation. The following regression analysis tests for interactions between fossil fuel rents and carbon prices.

A shift towards public environmental concern should increase decarbonisation

A shift in the public’s environmental concern could also incentivise the decarbonisation of electricity by influencing governments to enact certain policies. Prior studies show that climate concern is mainly determined by age, education, political ideology and gender (Dunlap and Brulle, 2015[45]). This is a stronger predictor of environmental concern than climatic events (e.g., drought), which have a fleeting or non-existent effect (Brulle et al., 2002[46]). Prior empirical work shows that policy output is responsive to changes in public environmental concern (Anderson, Böhmelt and Ward, 2017[47]). With this shift, the government has reason to introduce environmental policies in order to maximise their chances of staying in office (Anderson, Böhmelt and Ward, 2017[47]; Agnone, 2007[48]; Shum, 2009[49]). Therefore, a shift towards greater climate concern is expected to enhance decarbonisation.
3. Empirical design

The analysis uses regressions (specifically, Tobit and fixed effect regression) to investigate the effects of the aforementioned climate and non-climate policies as well as political economy factors on the three phases of decarbonising electricity. The panel dataset includes OECD countries from 2000 to 2015 with country-year as the unit of observation. The remainder of this section details the dependent variables, independent variables, controls as well as the estimation strategy.

3.1. Dependent variables

The three dependent variables capture the three phases of decarbonisation: the percent of renewables in total installed capacity (referred to as CAPACITY), the percent of renewables used in generation (referred to as GENERATION), and electricity emissions per capita measured in tCO₂e (referred to as EMISSIONS). CAPACITY is estimated by aggregating GW data from sources specialising in estimating the GWs of different technologies: coal (Global coal plant tracker, 2017[43]), oil and gas (Platts WEPP, 2017[44]), nuclear (IAEA, 2017[54]), and renewables (IEA, 2017[55]). CAPACITY is equal to renewable GWs in a given year (i.e., solar, wind, geothermal, ocean, hydropower and biomass) over total GW in that year (i.e. coal, oil, gas, nuclear, plus renewables). GENERATION estimates come from the IEA World Energy Balances database (IEA, 2017[55]). Data are available for all technologies per country from 2000 to 2015. GENERATION is equal to renewable GWh in a given year (i.e., solar, wind, geothermal, ocean, hydropower and biomass) over total GWh in that year (i.e. coal, oil, gas, nuclear, plus renewables). EMISSIONS estimates are from the IEA World Energy Balances database (IEA, 2017[55]), which estimates emissions from combustion used for electricity production. For comparability between countries, per capita emissions were calculated using population data from UN Population Prospects Database (United Nations, 2017[56]).

Figures 3.1, 3.2 and 3.3 plot CAPACITY, GENERATION, and EMISSIONS, respectively, in OECD countries in 2000 (blue bar) and 2015 (grey bar). The share of renewables in installed capacity is higher in 2015 compared to 2000 in OECD countries with the exception of Austria, Chile, Iceland, Israel, Luxembourg, Latvia, and Norway. The share of renewables in generation is higher in 2015 compared to 2000 with the exception of Austria, Switzerland, Chile, Czech Republic, Spain, France, Greece, Japan, Korea, Luxembourg, Latvia, Mexico, Norway and Turkey. Despite these trends, per capita emissions from combustion decreased from 2000 to 2015 in nearly all OECD countries with the exception of Chile, Estonia, Japan, Korea, Luxembourg, Latvia, Netherlands, and Turkey from 2000 to 2015.
Figure 3.1. CAPACITY
OECD countries in 2000 and 2015

Figure 3.2. GENERATION
OECD countries in 2000 and 2015

Source: IEA (2017[55]).
3.2. Independent variables

The climate policy variables include:

- Explicit carbon price,
- Climate policy intention,
- Public tender,
- Feed-in tariff,
- Feed-in tariff contract length, and
- Renewable energy quota.

Explicit carbon price uses the World Bank’s Explicit Carbon Price Database, which estimates the total USD/tCO2e from emissions trading systems and carbon taxes in OECD countries from 2000 to 2015 (Ecofys and World Bank Climate Group, 2016[57]). The climate policy intention variable captures the years left on a carbon price until its revision. This is estimated using the Grantham Research Institute’s Climate Change Laws of the World Database, which covers national-level climate change legislation in 164 countries (see Annex B for further details). Public tender is the total amount of MW tendered across all renewable subsectors as share of newly installed renewable capacity, which is based on tender data used in Ang, Röttgers and Burli (2017[3]). Feed-in tariff is the average sectoral price of the feed-in tariffs (in USD/kWh) in each country year developed by Haščič and colleagues (2015[58]), whereas feed-in tariff contract length is the length of the power purchase agreement awarded under a country’s FIT policy in years (Ang, Röttgers and Burli, 2017[3]). Renewable energy quota includes any requirement to produce a certain
share of generation from renewables imposed on power producers as state-mandated obligations or voluntary goals proposed by the state, with or without the option to trade certificates or quotas’ measured in percentage points of produced electricity output (based on the REQ’s yearly obligation or goal) developed by Haščič and colleagues (2015[58]).

The non-climate policies included are:

- Fossil fuel subsidies,
- Public RD&D spending on fossil fuels,
- Public RD&D spending on renewables, and
- Implementation of Basel III leverage ratio.

Data on fossil fuel subsidies is from the OECD Inventory of Support Measures for Fossil Fuels, and it is used to calculate the total USD per country year towards electricity power generation including relevant downstream activities such as mining (OECD, 2015[24]). The variable excludes subsidies for knowledge activities, which would include research grants and other R&D subsidies, to avoid overlap with public RD&D on fossil fuels. Estimates of public RD&D spending on renewables and fossil fuels come from IEA’s Database on Detailed RD&D Budgets (IEA, 2017[59]) and are equal to total public RD&D in each country year towards renewables and fossil fuels, respectively, operationalised as % of GDP. Missing values in the RD&D data were imputed using predictive mean matching. Definitions of public RD&D in renewables and fossil fuels can be found in Annex B.

Implementation of Basel III leverage ratio is a dummy variable indicating whether the country adopted Basel III leverage ratio requirements, and uses data from Ang, Röttgers and Burli (2017[3]). The following analysis also tests for Implementation of Basel III liquidity coverage as an alternative to ensure that both of these aspects of constraining capital flows to infrastructure projects are covered (not shown).

All policy variables including subnational policies have been aggregated accordingly. Where possible, averages for example, in the case of FITs, were weighted by the size of the subnational jurisdiction.

The political economy variables include:

- Capacity share of state ownership,
- Market concentration,
- Average age of fossil fuel plants,
- Jobs in fossil fuel industries,
- Government rents from fossil fuels, and
- Public environmental concern.

The capacity share of state ownership is the percentage of installed capacity owned by state-owned enterprises from Prag, Röttgers and Scherrer (2018[36]). Market concentration is measured using the Herfindahl-Hirschman Index (HHI) of market power from Prag, Röttgers and Scherrer (2018[36]). The index ranges from 0 to 100 where high numbers indicate greater market concentration. Risk of stranded assets is estimated using

7 Voluntary systems without a goal (e.g., subnational voluntary quota pledges in US states) and mandatory measures from non-governmental entities are excluded.

8 Herfindahl-Hirschman Index (HHI) of market power based on cumulative historic electricity capacity additions in a country collected in UDI’s World Electric Power Plant Database. The HHI is constructed based on updated data from UDI (2016) and the calculations and estimations of Benatia and Koźluk (2016), including the estimation of capacity removal, i.e. exit from the market (Prag, Röttgers and Scherrer, 2018[36]).
the average age of fossil fuel plants in a country-year and calculated using the GW data on: coal (Global coal plant tracker, 2017[43]), oil and gas (Platts WEPP, 2017[44]) (see calculations in Annex B). Jobs in fossil fuel industries is the % of the labour force working in the fossil fuel industry in country year, and estimated using EU KLEMS (Jäger, 2017[52]) and WORLD KLEMS (WORLD KLEMS, 2017[53]) databases. Missing values were imputed using predictive mean matching (see Annex B for further details). Government rents from fossil fuels are equal to the total amount of fossil fuel rents collected by the government (as % of GDP) from the World Bank database on Natural Resource Rents (World Bank, 2017[60]). The shift in public environmental concern aggregates responses on environmental concern questions from different population-based surveys (see Annex B for the list). For example, the Eurobarometer asks: "Please tell me, for the problem of protecting nature and fighting pollution, whether you personally consider it a very important problem (4), important (3), of little importance (2), or not at all important (1)". Survey responses are averaged for each country and year; missing values are imputed using predictive mean matching; and answers are then standardised on a 0 to 1 scale. The change is then calculated between years. A positive value indicates a shift towards greater environmental concern, while a negative value indicates less environmental concern.

3.3. Control variables

The analysis controls for macroeconomic, institutional, sectoral and financial factors, which could affect decarbonisation. These controls are omitted from the result tables in the forthcoming sections. All models include a one year lag of the proportion of fossil fuel capacity to other capacity to control for the possibility of endogeneity between the dependent and independent variables. The models test the effects of policies on decarbonisation; however, it is conceivably that the degree of decarbonisation already achieved, in turn, impacts policies and political economy factors. Hence, a control variable is necessary to hold constant for the effect an existing degree of decarbonisation on policy.

- **Macroeconomic factors**: unemployment (% of labour force), real GDP growth, real GDP per capita, and real GDP (World Bank, 2017[61]).
- **Institutional factors**: rule of law (index) and ease of doing business from World Bank database on Measuring Business Regulations (World Bank, 2017[61]).
- **Sectoral factors**: net imports of coal in USD over (UN, 2018[62]) electricity consumption (IEA, 2017[55]), electricity transmission loss (% of output) (World Bank, 2017[61]), the per capita particulate matter concentration (2.5) (OECD, 2018[63]), and energy intensity of GDP (IEA, 2017[55]).
- **Financial sector controls**: Sovereign credit rating (Moody's, 2017[64]), interest rate, z-score, Boone indicator (World Bank, 2017[65]).
- **Control for endogeneity**: Lagged share of installed fossil fuel capacity over installed non-fossil fuel capacity.

9 The following variables were tested as controls, but eventually discarded as they did not change results in a meaningful way and might otherwise have caused spurious results if all included: Existence of green banks, wholesale coal price, electricity price, government effectiveness, investment in smart grids, investment in energy storage, electricity access, perpetual inventory of renewable technology patents, patent count for smart grids, patent count for energy storage, patent count for carbon capture and storage, spill over effects of renewable energy patent counts, barrier to entry, carbon intensity of GDP, per capita electricity consumption, and a binary variable for EU ETS participation.
3.4. Estimation strategy

This section outlines the estimation strategy for the three models of decarbonisation using data spanning the years 2000 to 2015. It shows the regression equations, explains the specification of models, outlines robustness checks with alternative sets of variables, and discusses alternative model specifications.

Since CAPACITY and GENERATION range from 0% to 100%, a Tobit model is most appropriate to analyse the data. To adapt to censoring at 0 and 1, the Tobit model specification sets upper and lower limits at 0 and 1. A few OECD countries have close to no renewables in installed capacity or generation for a subset of the years of the dataset (see Figure 3.1, 3.2, and 3.3). Therefore, an OLS specification might misestimate the impact of the independent variables: it places no restrictions on the linear relationship between independent variables and the dependent variable. Since this could lead to an impossible predicted negative value and the few very low observations might skew the model in this direction, a Tobit specification with these restrictions is the more reasonable alternative. The employed Tobit model accounts for the panel dataset using a random effects specification 10. The regression analysis employs the following model for CAPACITY and GENERATION:

\[
Y_{it} = \alpha + \beta_1 \text{ClimatePol}_{it} + \beta_2 \text{Misalignments}_{it} + \beta_3 \text{PolEcon}_{it} + \beta_4 \text{Controls}_{it} + (\epsilon_{it} + \gamma_t + \delta_t)
\]

with \(0 < \text{CAPACITY} < 1\) and \(0 < \text{GENERATION} < 1\).

The third model for the decarbonisation of the electricity sector uses EMISSIONS (i.e., tonnes of CO\(_2\)e per capita) and employs a fixed effects model accounting for the country and time-fixed effects with the same independent variables as the CAPACITY and GENERATION models. The EMISSIONS model additionally accounts for heteroscedasticity by using robust standard errors 11.

In principle, any variable could be interacting with another variable; however, this would reduce the degrees of freedom and run the risk of overfitting the data. Therefore, the analysis needed to restrict the interactions to those between the political economy and policy variables. The interaction effects tested yielded insignificant results and are omitted from the Results section. The unit of analysis, country-year, may be the cause of the insignificance. Perhaps, political economy factors only affect climate and non-climate policies over a greater period of time: two or five years. Yet, this is quite challenging to implement since it requires the lag of policies over time, which is cumbersome to analyse for a large number of the independent variables. Moreover, it greatly reduces the number of observations in the dataset, which would lead to less stable results.

While mediation analysis would have been ideal, the model would be too complex to test. Mediation analysis would have enabled analysing the isolated effects: How much of an effect do political economy factors have on decarbonisation in isolation, and how much of their effects are mediated through climate and non-climate policies? However, the number of political economy factors, as well as the number of climate and non-climate policies

10 Note that fixed effects are not available in Tobit regressions.

11 Note here that in the econometric program employed, robust standard errors were only available for the fixed effects model, but not for the Tobit model. However, a comparison of CAPACITY and GENERATION models using non-Tobit random effects regressions with and without robust standard errors shows that the difference of using robust standard errors is negligible. By transfer, this should also be true for the Tobit results.
renders this technically infeasible. Moreover, the possible mediation channels among the set of variables would also have been conceptually overwhelming. Therefore, while testing only direct effects is far from ideal, testing those direct effects and possible interactions is the best option given data and conceptual constraints.

Table 3.1. Interaction terms

<table>
<thead>
<tr>
<th>Political Economy Factors</th>
<th>Capacity share of state ownership</th>
<th>Average age of fossil fuel plants</th>
<th>Jobs in fossil fuel industries</th>
<th>Government rents from fossil fuels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit carbon price</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Public tender</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Public RD&D spending on fossil fuels</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Public RD&D spending on renewables</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Implementation of Basel III leverage ratio</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Note: X represents an interaction term between the row and column.

Source: Authors’ calculations.
4. Results and interpretation

This section presents the empirical results of the models for the decarbonisation of electricity. Results illustrate that climate and non-climate policies as well as political economy factors impact the phases of decarbonisation differently. To enable a comparison between the phases of decarbonisation, the results are presented by category of independent variables: a sub-section each for climate policies, non-climate policies, and political economy factors. These results in Tables 4.2, 4.3, and 4.4 are from the same model, but split by independent variables to ease interpretation. Please note that these models included the full set of controls outlined Section 3.3; however, controls are not reported. Table A.2 in Appendix A shows the robustness of results to removing either all policy misalignment variables or political economy variables from the model. Table 4.1 presents a simplified overview of results showing only robust effects, while blank cells identify statistically insignificant and non-robust effects.

Table 4.1. Overview of results

<table>
<thead>
<tr>
<th></th>
<th>CAPACITY</th>
<th>GENERATION</th>
<th>EMISSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit carbon price (USD/CO2e)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Climate policy intention (years left on carbon price)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Public tenders (as ratio of newly installed renewable)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Feed-in tariff (USD/kWh)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Feed-in tariff contract length (years)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Renewable energy quotas (%)</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Fossil fuel subsidies relevant to electricity (bn USD)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Public RD&D spending on fossil fuels (USD bn)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public RD&D spending on renewables (USD bn)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial implementation Basel III leverage ratio (dummy)</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Capacity share of state ownership (incl. foreign)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Concentration (HHI)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Average age of fossil fuel plants (years)</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government rent from fossil fuel-based activities (% of GDP)</td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Jobs in the fossil fuel industry (% of labour force)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Public concern for environmental issues (unit-less)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: As the independent variable increases, the dependent variable (+) increases or decreases (-). Grey indicates results that are not robust. Note that signs for EMISSION are expected to be opposite than in CAPACITY and GENERATION to show the same direction of effect on decarbonisation.

Source: Authors’ calculations.

The effects in Table 4.1 are in the expected directions with the exception of Basel III (discussed below). As expected, climate and non-climate policies as well as political
economy factors affect the phases of decarbonisation differently. The interpretation of these effects is discussed in greater detail below.

4.1. Effects of climate policies on decarbonisation

Table 4.2 compares results of climate policy variables for the three phases of decarbonisation models for OECD member countries from 2000 to 2015. Results are interpreted for each variable and across models. Note that for all results presented in Table 4.2 are from the full model. In other words, the results account for the effects of non-climate policies, political economy factors as well as additional control variables.

Table 4.2. Regression results for climate policies across phases of decarbonisation

<table>
<thead>
<tr>
<th></th>
<th>CAPACITY</th>
<th>GENERATION</th>
<th>EMISSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit carbon price (USD/tCO2e)</td>
<td>-0.000</td>
<td>0.001</td>
<td>-0.01*</td>
</tr>
<tr>
<td>Climate policy intention (years left on carbon price)</td>
<td>0.001**</td>
<td>0.001***</td>
<td>-0.003</td>
</tr>
<tr>
<td>Public tenders (as ratio of newly installed renewable)</td>
<td>0.923</td>
<td>0.726</td>
<td>9.771</td>
</tr>
<tr>
<td>Feed-in tariff (USD/kWh)</td>
<td>0.013**</td>
<td>0.028***</td>
<td>-0.098**</td>
</tr>
<tr>
<td>Feed-in tariff contract length (years)</td>
<td>0.001**</td>
<td>0.000</td>
<td>-0.007</td>
</tr>
<tr>
<td>Renewable energy quotas (%)</td>
<td>0.002***</td>
<td>0.001</td>
<td>-0.003</td>
</tr>
<tr>
<td>Observations</td>
<td>316</td>
<td>316</td>
<td>316</td>
</tr>
</tbody>
</table>

Note: * 10% significance level or higher; ** 5% significance level or higher; *** 1% significance level or higher. Bolded numbers signal non-robust results. The capacity and generation models are random effects Tobit model with a lower limit at 0 and an upper limit at 1. The emissions model is a fixed-effects least squares model.

How to read? For example, consider the explicit carbon price (USD/tCO2e) on emissions, an 1 USD/tCO2 price increase in the explicit carbon price, reduces emissions by -0.01 tCO2e per capita.

Source: Authors' calculations.

The effects of climate policies in Table 4.2 are in line with the hypotheses, but show notable differences between phases of decarbonisation. Explicit carbon prices, climate policy intention, feed-in tariffs, the feed-in tariff contract length and renewable energy quotas have the expected effect. Results do not show a statistically significant effect for public tenders.

Results show the expected negative effect of explicit carbon price on electricity emissions; however, this result is not robust (see Table A.2 in Appendix A). The unstable effect of explicit carbon prices could be due to the weak price signal to markets caused by relatively low prices or volatility within years. Using annual averages masks this volatility. Volatile carbon prices may have the same yearly average as non-volatile ones, but ultimately, send a very different price signal.

Climate policy intention, i.e. years left on a given carbon price before revision, increases installed capacity of renewables as well as the use in generation. This is likely due to policy predictability and signals a governmental commitment to the low-carbon transition. This, in turn, affects long-term decisions such as investments in new capacity (Fuss et al., 2009[60]). However, there is no observable effect on emissions. The longevity of the carbon price may be insufficient if the carbon price is low and volatile.

The price level of the feed-in tariff affects capacity and generation, while the length of the feed-in-tariff only affects capacity illustrating the effectiveness of this policy instrument. This result is stable in the robustness checks with the exception of the effect on emissions (see Table A A.2). This indicates that a subsidy targeting effectiveness over market-efficiency could have a sustainable and far-reaching effect than a policy merely targeting market efficiency. The price-premium above market price, while intended to
cover a price gap between renewables cost of electricity and the price in a market dominated by fossil fuels, could also partly have spurred innovation, in turn decreasing renewables cost of electricity. Indeed, evidence on innovation in the renewables sector suggests that among targeted support policies, feed-in tariffs have a particularly strong effect on innovation (Ang, Röttgers and Burli, 2017[3]). Further, it is relevant here that the effect of the amount of the tariff is more than twice as high for generation as it is for capacity. This shows that while it incentivises building new capacity, it incentivises using this capacity even more, which is why it has a differentiated effect on building capacity versus using renewables in generation.

While the global trend is to lower feed-in tariffs, installation rates still keep soaring. FIT results in Table 4.2 do not support the hypothesis of a negative relationship between feed-in-tariffs and shifting to renewables in capacity and generation. Even when observations without any feed-in tariff (i.e. a value of zero) are removed from the capacity regression, results still show a positive sign (not shown). Therefore, even though tariffs are indeed lower, they still function as an incentive. As long as tariffs provide a margin over the market price, they will serve to attract investments. This margin over the market price can be upheld with decreasing installation prices, despite drops in the tariff, resulting in consistently positive effects of feed-in tariffs.

Generally, climate policies show statistically significant effects on installed capacity rather than use of renewables in generation or emissions. This might partly be explained by investor decision-making driving the market rather producer decision-making, but also might partly be due to the translation of generation capacity into actually generated electricity: The capacity factor for renewables electricity plants is generally lower than for other electricity generation plants. Therefore, due to technical reasons, renewables have a greater effect on capacity compared to the generation and emissions.

4.2. Effects of non-climate policies on decarbonisation

Table 4.3 compares results of policy misalignment variables from all three decarbonisation models for OECD member countries from 2000 to 2015. Results from Table 4.3 are interpreted for each variable and across models. Note that for all results presented in Table 4.3 the full model was employed, i.e. results account for the effects of climate policies, political economy factors as well as additional control variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>CAPACITY</th>
<th>GENERATION</th>
<th>EMISSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil fuel subsidies relevant to electricity (USD B)</td>
<td>-0.014***</td>
<td>-0.007*</td>
<td>-0.034</td>
</tr>
<tr>
<td>Public RD&D spending on fossil fuels (USD 2014 PPP)</td>
<td>-0.001</td>
<td>-0.006</td>
<td>-0.012</td>
</tr>
<tr>
<td>Public RD&D spending on renewables (USD 2014 PPP)</td>
<td>-0.005</td>
<td>0.002</td>
<td>0.352*</td>
</tr>
<tr>
<td>Partial implementation Basel III leverage ratio (dummy)</td>
<td>0.018**</td>
<td>0.033***</td>
<td>-0.222**</td>
</tr>
<tr>
<td>Observations</td>
<td>316</td>
<td>316</td>
<td>316</td>
</tr>
</tbody>
</table>

Note: * 10% significance level or higher; ** 5% significance level or higher; *** 1% significance level or higher. Bolded numbers signal non-robust results. The capacity and generation models are random effects Tobit model with a lower limit at 0 and an upper limit at 1. The emissions model is a fixed-effects least squares model. How to read? Let us consider the effect of fossil fuel subsidies on installed capacity. A 1 USD B increase in fossil fuel subsidies, decreases installed capacity of renewables by 1%.

Source: Authors' calculations.

Results on the non-climate policies of fossil fuel subsidies relevant to electricity are in line with the above hypotheses as well as previous research, particularly
(OECD/IEA/NEA/ITF, 2015[2]), stating that they act counter to decarbonisation. The effect cannot be shown for the EMISSIONS model, but it stands to reason that the effect subsidies have on generation and especially on installed capacity will lead to lock-in, determining the emissions profile of a country for decades.

Results show that fossil fuel subsidies relevant to electricity have a negative effect on the share of renewables installed and shifting towards renewables in generation. The effect on capacity may be due to the longevity and predictability of these fossil fuel subsidies, which then influences the long-term investment decisions on power plants. Since these subsidies mainly target mining raw material or the consumption of the final output, it is unsurprising to find an effect on generation. Despite the effect on generation, there is no observable effect on emissions. This could be due to the increasing efficiency of combustion engines, meaning that even if the share of fossil fuels used in generation increases, emissions remain stable.

The effect of public R&D spending on renewables in the EMISSIONS model is counterintuitive; increases in public RD&D spending on renewables increases emissions. This result, however, is not robust (see Table A.2 in Appendix A).

The result on the partial implementation of the Basel III leverage ratio suggests that Basel III prudential regulations increase decarbonisation. Substituting this variable with the partial implementation of the Basel III liquidity coverage results in similar evidence (not shown). However, the results could be a by-product of the fact that Basel III constrains all infrastructure investments, that is renewables investments as well as other capacity investments (Ang, Röttgers and Burli, 2017[3]; Ma, 2016[68]). These results could mean that this constraint is smaller for renewables investments compared to other technologies. For example, the large amounts of debt required for coal power plants may be too burdensome on banks' balance sheets under Basel III rules. Another explanation could be that renewables are seen as less risky projects for the future since the risk-evaluation will likely change in the upcoming decades. Solar and wind technologies are maturing and the electricity grid is adapting to their use, while the climate-related policy risks of fossil fuel plants are becoming more apparent. Given this risk-profile of investments, if banks decide to invest in infrastructure at all, they might prefer to take the lower long-term risk. Additional to the risks themselves, the ability to hedge against them could have an influence, too.

4.3. Effects of political economy factors on decarbonisation

Table 4.4 displays results of political economy factors from all three decarbonisation models for OECD member countries from 2000 to 2015. As for Table 4.2 and 4.3, results are interpreted for each variable across models. Note that for all results presented in Table 4.4 the full model was employed, meaning climate policies, non-climate policies as well as additional control variables are included only not displayed in Table 4.4.
The results on the average age of fossil fuel plants highlight the need for careful management of stranded assets. Countries with older fossil fuel plants have a higher share of renewables in installed capacity on average. Conversely, younger fossil fuel fleets are harder to retire and replace with renewable capacity. This result is an affirmation of the “Tragedy of the Horizon” narrative (Carney, 2015[67]), which warns of the financial exposure of companies to climate change, including exposure to a rapid transition to a low-carbon economy. Companies holding young fossil-fuel dependent assets might find these assets stranded in a mitigation-friendly policy environment. To limit this exposure, Carney (2015[67]), suggests a more responsible handling of investments, which includes the prevention of stranded assets by avoiding unpredictable changes and acting in time so markets can adjust. Companies holding assets in the electricity sector could adjust their investments accordingly to reduce their exposure to changing climate policies by a

12 Tests show market concentration and capacity share of state-ownership do not suffer from multicollinearity.
reevaluation of assets. Otherwise, companies might invest in building or maintaining assets with false assumptions about their runtime or profitability.

Results also show that the share of a country's jobs in the fossil fuel industry has a negative effect on all measures of decarbonisation in the expected directions. The prospect of generating unemployment is a strong deterrent for governments to closing carbon-intensive plants. This result shows that the potential loss of fossil fuel jobs affects decarbonisation, even when accounting for the overall rate of unemployment in a country. The implementation of measures to accompany the labour market through the transition of the energy sector could facilitate the public acceptability of decarbonisation. When interpreting the coefficients, it is important to note that while the maximum of the variable is 0.15, this value is an outlier, and the maximum otherwise would be 0.015. Accordingly, while the coefficients might seem large in comparison to the maxima of the dependent variables, a change of 1 percentage point change would only cause a change of 0.01 times the size of the coefficient, which is reasonable. Models omitting outliers showed virtually the same results (not shown). Further, as jobs in the fossil fuel industry are closely related to the dependent variables results were tested with stronger endogeneity controls. For example, even when controlling for the current ratio of fossil fuel capacity to renewables capacity, i.e. a variable controlling for the relative abundance of current employment opportunities in the renewables sector, the effect holds.

4.4. Additional tests and robustness checks

Variance inflation factors of each model verify that multicollinearity is unproblematic in all models. The model fits were tested with the Akaike and Bayesian Information Criterion (AIC and BIC). Both show that the full models achieve better fit for all three respective dependent variables compared to partial models.

Results stay robust when tested without control variables. In the full capacity model, omitting all control variables except for the endogeneity control leads to a few expected changes in the levels of significance, but overall does not change results in a noteworthy way. Omitting all controls including the endogeneity control variable notably turns the feed-in tariff and the capacity share of state-ownership insignificant in the capacity regression, but has no other effect. The effect of removing only the endogeneity control, but no other control variable, even shows only a change in levels of significances, but no change from overall statistical significance to insignificance or vice versa. While the full models for generation and emission react slightly stronger in the absence of controls (in- or excluding endogeneity), changes in models are reasonable and expected given the purpose of the controls. Removing only the endogeneity control in these models also does not lead to noteworthy changes.
5. Conclusions

The aim of this working paper is to identify relevant factors to help countries who wish to transition towards a low-carbon economy to decarbonise electricity. The analysis investigated the influence of a select set of climate and non-climate policies as well as political economy factors on decarbonisation in OECD countries from 2000 to 2015. Overall, current climate policies are insufficient to decarbonise electricity in isolation. FITs and REPs increase the share renewables installed and used in generation, but there is no observed effect on emissions from electricity. For countries pursuing decarbonisation, strengthening climate policies is the first step, for example, creating a uniform stable carbon price. The next essential step is examining the “non-green” side of electricity. If non-climate policies (e.g., fossil fuel reform) or incentives (e.g., fossil fuel rents, fossil fuel jobs) continue to foster the usage of fossil fuels, the effectiveness of climate policies is severely limited.

Anticipating the social and economic consequences of decarbonisation (i.e., loss of jobs) could facilitate decarbonisation. Low-skilled or aged workers displaced from fossil fuel intensive industries may face particular difficulties reintegrating into employment. These workers also tend to live in remote areas where there are few alternative opportunities for employment (OECD, 2012[68]). With this said, there is great diversity in the employment in fossil-fuel related sectors. The workforce in the carbon-intensive electricity sector includes high-skilled and low-skilled workers. Therefore, there is a need to avoid a one-size-fits-all approach for labour market policy (OECD, 2012[68]). Future OECD work intends to explore the distributional impacts of mitigation policy and different tactics used to attenuate and address these outcomes.

Failure to implement structural policy reforms to account for social and distributional factors of a transition (e.g., retraining workers from carbon-intensive industries) will ultimately slow down decarbonisation. OECD (2012[68]) work finds that employers and trade unions within the energy sector may also play a key role to transition fossil fuel employees. Preliminary investigations suggest that a significant share of the conversion of the electricity sector from fossil fuels to renewable sources is occurring within large electrical utilities, a number of which are actively retraining their workforces as part of their implementation of a transition to clean energy (OECD, 2012[68]).

The drawback of this analysis is that it treats countries in isolation when electricity is imported and exported across national boundaries and neighbouring countries heavily influence each other’s policy. What is the incentive to add renewable capacity if the grid is connected to a neighbour who produces cheap emission-intensive energy with no planned climate policies? This relates to policy diffusion of countries’ adopting policies via learning, reputation, or neighbour-effects is widespread phenomenon. Domestic climate policies matter but so do the policies of countries’ neighbours. Future analyses should understand what the influence is of domestic policies and neighbours.

This analysis could be furthered by investigating similar mechanisms at the subnational level to exploit within-country variation. Cities, states, and provinces implement a plethora of climate policies, which are aggregated at the country-level for this analysis. Moreover, political economy issues vary substantially within countries. Translating this analysis into the local context may be useful for countries intending to decarbonise electricity.
Annex A. Robustness checks

Table A.1. shows the summary values of all variables used in regressions models. It also includes those variables that were tested but discarded since they did not add value to the model.

Table A.1. Summary statistics.

For OECD countries where data available; includes imputed data for missing years.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Observations</th>
<th>Mean</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit carbon price (USD/tCO2e)</td>
<td>833</td>
<td>3.83</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Climate policy intention (years left on target)</td>
<td>799</td>
<td>4.29</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>Tender (as ratio of newly installed renewable)</td>
<td>745</td>
<td>0</td>
<td>-0.2</td>
<td>1</td>
</tr>
<tr>
<td>Feed-in tariff (USD/kWh)</td>
<td>833</td>
<td>0.12</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Feed-in tariff contract length (years)</td>
<td>833</td>
<td>7.22</td>
<td>0</td>
<td>25</td>
</tr>
<tr>
<td>Renewable energy quota (%)</td>
<td>832</td>
<td>1.12</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Fossil fuel subsidies relevant to electricity (bn USD)</td>
<td>833</td>
<td>0.06</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Public RD&D spending on renewables (bn USD)</td>
<td>456</td>
<td>0.06</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Public RD&D spending on renewables (USD bn)</td>
<td>478</td>
<td>0.12</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Partial implementation Basel III leverage ratio (dummy)</td>
<td>833</td>
<td>0.11</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Capacity share of state ownership (incl. foreign)</td>
<td>833</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Market Concentration (HHI)</td>
<td>833</td>
<td>38.87</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>Average age of fossil fuel plants (years)</td>
<td>833</td>
<td>21.39</td>
<td>0.8</td>
<td>48</td>
</tr>
<tr>
<td>Jobs in the fossil fuel industry (% of labour force)</td>
<td>561</td>
<td>0.01</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Government rent from fossil fuel-based activities (% of GDP)</td>
<td>783</td>
<td>2.12</td>
<td>0</td>
<td>56</td>
</tr>
<tr>
<td>Public concern for environmental issues (unitless)</td>
<td>640</td>
<td>0.09</td>
<td>-2.1</td>
<td>3</td>
</tr>
<tr>
<td>Sovereign credit rating (ranks)</td>
<td>833</td>
<td>7.25</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Interest rate (%)</td>
<td>799</td>
<td>5.05</td>
<td>-11.6</td>
<td>48</td>
</tr>
<tr>
<td>Stability of financial institutions</td>
<td>833</td>
<td>11.25</td>
<td>-0.3</td>
<td>40</td>
</tr>
<tr>
<td>Banking competitiveness (Boone indicator)</td>
<td>833</td>
<td>-0.04</td>
<td>-1.6</td>
<td>2</td>
</tr>
<tr>
<td>GDP (USD)</td>
<td>833</td>
<td>1150.53</td>
<td>7.1</td>
<td>16920</td>
</tr>
<tr>
<td>Real GDP growth (%)</td>
<td>833</td>
<td>2.86</td>
<td>-14.8</td>
<td>26</td>
</tr>
<tr>
<td>Unemployment rate (%)</td>
<td>799</td>
<td>8.32</td>
<td>1.9</td>
<td>27</td>
</tr>
<tr>
<td>GDP per capita (USD)</td>
<td>833</td>
<td>29.69</td>
<td>0.8</td>
<td>112</td>
</tr>
<tr>
<td>Ease of doing business (index)</td>
<td>799</td>
<td>69.61</td>
<td>13.4</td>
<td>94</td>
</tr>
<tr>
<td>Rule of law (index)</td>
<td>833</td>
<td>0.93</td>
<td>-1.1</td>
<td>2</td>
</tr>
<tr>
<td>Energy import dependency</td>
<td>577</td>
<td>0.02</td>
<td>-0.6</td>
<td>1</td>
</tr>
<tr>
<td>Energy intensity of GDP (toe/USD)</td>
<td>833</td>
<td>162.67</td>
<td>0</td>
<td>3109</td>
</tr>
<tr>
<td>Electricity transmission loss (% of output)</td>
<td>833</td>
<td>8.36</td>
<td>1.2</td>
<td>28</td>
</tr>
<tr>
<td>Air pollution (pm2.5)</td>
<td>816</td>
<td>16.26</td>
<td>2.8</td>
<td>68</td>
</tr>
<tr>
<td>Capacity fossil fuel capacity to others (%)</td>
<td>764</td>
<td>144.91</td>
<td>0</td>
<td>30451</td>
</tr>
</tbody>
</table>

Source: Author’s calculations.
Table A.2. Determinants of the change in the rate of renewable electricity in the power sector in OECD countries

<table>
<thead>
<tr>
<th>Factor</th>
<th>Capacity proportion, climate policies only</th>
<th>Capacity proportion, without political economy</th>
<th>Capacity proportion, without non-climate policies</th>
<th>Generation proportion, climate policies only</th>
<th>Generation proportion, without political economy</th>
<th>Generation proportion, without non-climate policies</th>
<th>Emissions climate policies only</th>
<th>Emissions, without political economy</th>
<th>Emissions, without non-climate policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explicit carbon price (USD/CO2e)</td>
<td>-0.001</td>
<td>-0.000</td>
<td>-0.001</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>-0.006</td>
<td>-0.011</td>
<td>-0.007</td>
</tr>
<tr>
<td>Climate policy intention (years left on target)</td>
<td>0.001***</td>
<td>0.001**</td>
<td>0.001***</td>
<td>0.001***</td>
<td>0.001**</td>
<td>0.001***</td>
<td>0.002***</td>
<td>0.007</td>
<td>0.009</td>
</tr>
<tr>
<td>Tender (as ratio of newly installed renewable)</td>
<td>0.022</td>
<td>0.389</td>
<td>0.911</td>
<td>0.085</td>
<td>0.322</td>
<td>0.825</td>
<td>0.786</td>
<td>12.371</td>
<td>5.589</td>
</tr>
<tr>
<td>Feed-in tariff (USD/kWh)</td>
<td>0.016***</td>
<td>0.019***</td>
<td>0.015***</td>
<td>0.037***</td>
<td>0.036***</td>
<td>0.029***</td>
<td>-0.182**</td>
<td>-0.208***</td>
<td>-0.029</td>
</tr>
<tr>
<td>Feed-in tariff contract length (years)</td>
<td>0.001**</td>
<td>0.001***</td>
<td>0.000</td>
<td>-0.000</td>
<td>0.000</td>
<td>-0.000</td>
<td>-0.004</td>
<td>-0.006</td>
<td>-0.006</td>
</tr>
<tr>
<td>Renewable energy quota (%)</td>
<td>0.004***</td>
<td>0.003***</td>
<td>0.003***</td>
<td>0.002**</td>
<td>0.001*</td>
<td>0.001*</td>
<td>-0.034*</td>
<td>-0.031</td>
<td>-0.002</td>
</tr>
<tr>
<td>Fossil fuel subsidies relevant to electricity (bn USD)</td>
<td>-0.015***</td>
<td>-0.008**</td>
<td>-0.008**</td>
<td>-0.006</td>
<td>0.001</td>
<td>0.181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public RD&D spending on renewables (USD bn)</td>
<td>0.000</td>
<td>-0.009</td>
<td>-0.009</td>
<td>-0.006</td>
<td>0.001</td>
<td>0.181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partial implementation Basel III leverage ratio (dummy)</td>
<td>0.030***</td>
<td>0.027***</td>
<td>-0.217*</td>
<td>-0.006</td>
<td>0.001</td>
<td>0.181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity share of state ownership (incl. foreign)</td>
<td>0.080**</td>
<td>0.024</td>
<td>0.352</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market Concentration (HHI)</td>
<td>-0.004***</td>
<td>-0.002**</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average age of fossil fuel plants (years)</td>
<td>0.003**</td>
<td>0.002</td>
<td>-0.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government rent from fossil fuel-based activities (% of GDP)</td>
<td>-0.008</td>
<td>-0.009</td>
<td>0.375***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jobs in the fossil fuel industry (% of labour force)</td>
<td>-1.217***</td>
<td>-1.145***</td>
<td>29.683***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public concern on environmental issues (unitless)</td>
<td>-0.000</td>
<td>-0.002</td>
<td>-0.015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>454</td>
<td>394</td>
<td>325</td>
<td>454</td>
<td>394</td>
<td>325</td>
<td>426</td>
<td>370</td>
<td>325</td>
</tr>
</tbody>
</table>

Note: * signifies statistical significance at the 10% significance level or higher; ** signifies statistical significance at the 5% significance level or higher; *** signifies statistical significance at the 1% significance level or higher; the model is a OLS fixed effects model. Results for control variables listed in Section 3.3 are not shown here.

Source: Author’s calculations.
Annex B. Notes on Data

CAPACITY (GWs)

Different data sources specialise in specific technologies. Data from the data sources in Table B.1. have been merged to ensure the best possible coverage per technology.

Table B.1. Construction of the GW data

<table>
<thead>
<tr>
<th>Technology</th>
<th>Source</th>
<th>Date of reference</th>
<th>Level of data disaggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>(Global coal plant tracker, 2017[43])</td>
<td>July 2017</td>
<td>Power plant</td>
</tr>
<tr>
<td>Oil</td>
<td>(Platts WEPP, 2017[44])</td>
<td>March 2017</td>
<td>Power plant</td>
</tr>
<tr>
<td>Gas</td>
<td>(Platts WEPP, 2017[44])</td>
<td>March 2017</td>
<td>Power plant</td>
</tr>
<tr>
<td>Nuclear</td>
<td>(IAEA, 2017[54])</td>
<td>May 2017</td>
<td>Power plant</td>
</tr>
<tr>
<td>Renewables</td>
<td>(IEA, 2017[69])</td>
<td>October 2017</td>
<td>Country level</td>
</tr>
</tbody>
</table>

Source: Authors

The level of disaggregation of data varies between sources. The unit is at the plant level in GCT, Platts and IAEA (i.e., one row in the database is a power plant); while IEA data on renewables is aggregated at the country-level per year (i.e., a row refers to the GWs in operation in a specific country in a specific year).

Time series are available from 2000 to 2015 for renewable installed capacity in operation at the country level. Plants are labelled as: planned, under construction, in operation, or decommissioned for coal, oil, and gas. Plants “in operation” refer to plants in operation in 2017.

Using the information on the status of the plant, together with the date in which the power plant was built or retired, it is possible to retroactively construct a time series of generation capacity in operation from 2000 to 2017. Whenever information on the built or retired date was missing, dates were estimated. The following steps are carried out:

1. Estimates of missing dates

For gas and oil, a large part of the sample missed retirement dates (see table below). Therefore, the decommissioning data is estimated using the average lifetime per technology and per country (Table B.2).

Table B.2. Share of generation capacity data with built and retired dates

<table>
<thead>
<tr>
<th></th>
<th>In operation with date built</th>
<th>Retired with both dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>100%</td>
<td>95%</td>
</tr>
<tr>
<td>Gas</td>
<td>99%</td>
<td>55%</td>
</tr>
<tr>
<td>Oil</td>
<td>97%</td>
<td>58%</td>
</tr>
<tr>
<td>Nuclear</td>
<td>100%</td>
<td>99%</td>
</tr>
</tbody>
</table>

Source: Authors

2. Construction of time series

Using built and retirement dates for each plant, it is possible to reconstruct a time series from 2000 to 2017, as follows:
Plants in operation in year \(t \) =
\[
\text{plants in operation in 2017 built after or at year} \ t \ + \\
\text{plants marked decommissioned in 2017, but decommissioned after year} \ t
\]

GENERATION (GWh)

The electricity output (GWh) is based on the IEA World Energy Balances database. Data are available for all technologies per country from 2000 to 2015.

EMISSIONS (Tonnes of CO2e)

The CO2e emissions per capita are emissions from combustion, based on IEA World Energy Balances data (IEA, 2017[55]), divided by population, based on World Bank (2017[61]).

Age of fleet

The age of fleet for the period 2000 to 2017 was estimated for coal, oil, gas and nuclear, which are the technologies for which data are available at the power plant level (see Table C.1).

Starting from the time series of generation capacity - estimated as explained in section “Capacity (GWs)” above - a weighted average is used to calculate the age of the fleet per country (c) and technology (t):

\[
\frac{\sum_{c,t,i} \text{Age}_i \times \text{MW}_i}{\sum_{c,t,i} \text{MW}_i}
\]

Where \(i \) = power plants in country \(c \) and technology \(t \).

Fossil fuel jobs

The EU KLEMS and WORLD KLEMS database includes indicators on economic growth, productivity, employment creation, capital formation and technological change at the industry level for varying countries from 1970 until 2015.

The EU KLEMS database includes: Austria, Belgium, Bulgaria, Croatia, Cyprus\(^{13}\), Czech Republic, Denmark, Estonia, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and United Kingdom. The World KLEMS database includes: Japan, Canada, Russia, China, Korea, India, and United States.

Data for Australia, Iceland, Israel, Mexico, Norway, New Zealand, Sweden, and Turkey is missing.

\(^{13}\) Note by Turkey: The information in this document with reference to “Cyprus” relates to the southern part of the Island. There is no single authority representing both Turkish and Greek Cypriot people on the Island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the United Nations, Turkey shall preserve its position concerning the “Cyprus issue”.

Note by all the European Union Member States of the OECD and the European Union: The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus.
EU KLEMS and World KLEMS include the indicator, the number of persons engaged (in thousands), by industry. We coded the following industries as related to the fossil fuel industry: (1) mining and quarrying, (2) coke and refined petroleum products, as well as (3) electricity, gas and water supply.

A subset of countries modified (2) to include nuclear fuel: coke, refined petroleum products and nuclear fuel. These countries include: Austria, Canada, Japan, Russia and Korea. For each of these countries, we attempted to estimate the percent of number of persons engaged in jobs related to nuclear fuel. We calculated the GWs per job for the year with data, estimated the number of jobs in nuclear fuel each year using this ratio, and subtracted this from (2). This assumes that GW to job ratio is constant over time (Table B.3).

\[\text{GWh}_{\text{NUCLEAR,YR}} \times \left(\frac{\text{Job}_{\text{NUCLEAR}}}{\text{GWh}_{\text{NUCLEAR}}} \right) = \text{Job}_{\text{NUCLEAR,YR}} \]

<table>
<thead>
<tr>
<th>Country</th>
<th>Source</th>
<th>Nuclear-fuel cycle related jobs</th>
<th>Job_{NUCLEAR}/GWh_{NUCLEAR}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>FORATOM (European Atomic Forum): Nuclear industry jobs in Europe per country</td>
<td>0 jobs</td>
<td>No adjustment required</td>
</tr>
<tr>
<td>Canada</td>
<td>Canada Manufacturers and Exporters (Nuclear jobs in Canada)</td>
<td>10,000 jobs in mining uranium (as of 2010)</td>
<td>90,658 GWh in 2010 1 job per 9.1 GWh</td>
</tr>
<tr>
<td>Japan</td>
<td>Japan Nuclear Fuel Limited</td>
<td>No uranium mining 2,658 jobs in nuclear fuel cycle (in 2017)</td>
<td>18,060 GWh in 2016 1 job per 6.8 GWh</td>
</tr>
<tr>
<td>Russia</td>
<td>Russia Nuclear Industry Business opportunities</td>
<td>Employs 200,000 (as of 2009) in uranium mining and fuel cycle</td>
<td>No nuclear GWh data for Russia – Subtract jobs in total from each year</td>
</tr>
<tr>
<td>Korea</td>
<td>Korean Nuclear Fuel Company</td>
<td>Involved in nuclear fuel cycle, not in uranium mining (Approx. 700 jobs as of 2008)</td>
<td>150,958 GWh 1 job per 215.7 GWh</td>
</tr>
</tbody>
</table>

Source: Authors
Public opinion

This variable captures changes in the public’s environmental concern over time (Table).

Operationalisation

1. Identified surveys with similar questions
2. Revalued scaled (when necessary). Ascending order equals greater concern.
3. Aggregated individual responses on the relevant question for each country year
4. Imputed missing country-year values using the MICE Package in R (Multivariate Imputation by Chained Equations) with predictive mean matching as the method.
5. Responses were standardised from 0 to 1 since questions from different surveys use varying scales.
6. Calculated the weighted mean of each country year if weights were provided in the original survey otherwise the mean was used.
7. Calculated the difference between years to find the change in public mood.

Table B.4. Selected surveys

<table>
<thead>
<tr>
<th>Countries</th>
<th>Survey</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria, Belgium, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Iceland, Israel, Italy, Japan, South Korea, Latvia, Lithuania, Latvia, Lithuania, Luxembourg, Mexico, Netherlands, New Zealand, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States</td>
<td>Eurobarometer conducted by European Commission</td>
<td>Please tell me, for the problem of protecting nature and fighting pollution, whether you personally consider it a very important problem, important, of little importance, or not at all important.</td>
</tr>
<tr>
<td>Australia</td>
<td>Australian Election Study is a collaboration of several national universities, and led by Australian National University.</td>
<td>Here is a list of important issues that were discussed during the election campaign. When you were deciding about how to vote, how important was each of these issues to you personally? The environment... (Extremely important, quite important, not very important)</td>
</tr>
</tbody>
</table>

Note by Turkey: The information in this document with reference to “Cyprus” relates to the southern part of the Island. There is no single authority representing both Turkish and Greek Cypriot people on the Island. Turkey recognises the Turkish Republic of Northern Cyprus (TRNC). Until a lasting and equitable solution is found within the context of the United Nations, Turkey shall preserve its position concerning the “Cyprus issue”.

Note by all the European Union Member States of the OECD and the European Union: The Republic of Cyprus is recognised by all members of the United Nations with the exception of Turkey. The information in this document relates to the area under the effective control of the Government of the Republic of Cyprus.
<table>
<thead>
<tr>
<th>Countries</th>
<th>Survey</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan, Korea, Canada</td>
<td>World Values Survey is a collaboration of several research institutions worldwide. The presidency is based at the Institute for Comparative Research in Vienna, Austria.</td>
<td>Government should reduce environmental pollution (Strongly Disagree ... Strongly Agree)</td>
</tr>
<tr>
<td>Chile, Mexico</td>
<td>Latinobarómetro is a non-profit NGO based in Santiago, Chile, and is solely responsible for the production and publication of the data.</td>
<td>How concerned are you personally about environmental problems - would you say a great deal, a fair amount, not very much, or not at all?</td>
</tr>
<tr>
<td>USA</td>
<td>American National Election Studies is a collaboration of several national universities, and led by University of Michigan.</td>
<td>Some people think it is important to protect the environment even if it costs some jobs or otherwise reduces our standard of living. (Suppose these people are at one end of the scale, at point number 1). Other people think that protecting the environment is not as important as maintaining jobs and our standard of living. (Suppose these people are at the other end of the scale, at point number 7. And of course, some other people have opinions somewhere in between, at points 2,3,4,5, or 6).</td>
</tr>
<tr>
<td>New Zealand</td>
<td>New Zealand Election Study led by Victoria University of Wellington</td>
<td>For the next questions, please indicate whether you think there should be more or less public expenditure in each of the following areas. Remember if you say “more” it could require a tax increase, and if you say “less” it could require a reduction in those services. Please tick one box in each row (Much More ... More less)</td>
</tr>
</tbody>
</table>

Notes on Chile and Mexico: The question above (How concerned are you personally about environmental problems …) was only asked in 2001. A different survey question was asked more frequently from 2000 to 2015 including 2001: All things considered, as far as you know or have heard, how would you rate the environment in (country)? Would you say that it is very good, good, about average, bad, or very bad? Using 2001 data (N = 273 in Chile, N = 273 in Mexico), we regressed the frequent question (All things considered …) on the infrequent question (How concerned …). We then used this model to predict responses to the infrequent question, how concerned are you, in the years where it was not asked. After predicting these values, we preceded as normal.

Source: Authors.
Climate Intention

This variable captures the national government’s intention to mitigate climate change, which is measured by the planning horizon of a country’s mitigation policy. Planning horizon is the remaining number of years that a country’s mitigation policy is in force. Mitigation policy is defined as carbon price. This definition could be seen as overly restrictive, but this is the strongest signal that a government can send regarding their intention to mitigation, which is by actually correcting the market failure and the longevity of the law signals the continued commitment of a government to mitigate.

Operationalisation

The Climate Intention variable uses the database, Climate Change Laws of the World, from the Grantham Institute at the London School of Economics. It covers national-level climate change legislation and policies in 164 countries and is regularly updated.

Given the scope of the analysis, we restricted the dataset to laws in G20 and OECD member states.

We further reduced the dataset by the purpose of each law, which is coded as either: (1) Mitigation, (2) Mitigation and Adaptation, or (3) None. We restricted the dataset to laws labelled as (1) Mitigation and (2) Mitigation and Adaptation to form the Climate Intention variable.

Mitigation and Mitigation/Adaptation laws are further categorised by subject area. Out of the 58 subject areas, we restrict Climate Intention to those related to carbon pricing:

- Carbon Pricing, Energy Supply, Energy Demand, Institutions / Administrative arrangements
- Carbon Pricing, Energy Supply, Energy Demand, REDD+ and LULUCF, Adaptation, Institutions / Administrative arrangements
- Carbon Pricing, Energy Supply, Energy Demand, REDD+ and LULUCF, Adaptation, Research and Development, Institutions / Administrative arrangements
- Carbon Pricing, Energy Supply, Energy Demand, REDD+ and LULUCF, Transportation, Adaptation
- Carbon Pricing, Energy Supply, Energy Demand, REDD+ and LULUCF, Transportation, Adaptation, Research and Development, Institutions / Administrative arrangements
- Carbon Pricing, Energy Supply, Energy Demand, REDD+ and LULUCF, Transportation, Institutions / Administrative arrangements
- Carbon Pricing, Energy Supply, Energy Demand, Transportation, Adaptation, Adaptation, Research and Development
- Carbon Pricing, Energy Supply, Energy Demand, Transportation, Adaptation, Research and Development, Institutions / Administrative arrangements
- Carbon Pricing, Energy Supply, REDD+ and LULUCF, Adaptation, Research and Development, Institutions / Administrative arrangements
- Carbon Pricing, Energy Supply, Transportation, Adaptation, Research and Development, Institutions / Administrative arrangements
- Carbon Pricing, Institutions / Administrative arrangements

Climate Intention captures the planning horizon of the mitigation strategy (i.e., carbon pricing law). For example, New Zealand instituted the Climate Change Response Act in 2002 with a planning horizon until 2020. Table B. 5. illustrates the coding of the *Climate Intention* variable.

<table>
<thead>
<tr>
<th>Country</th>
<th>Year</th>
<th>Climate Intention</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Zealand</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2001</td>
<td>0</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2002</td>
<td>18</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2003</td>
<td>17</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2004</td>
<td>16</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2005</td>
<td>15</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2006</td>
<td>14</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2007</td>
<td>13</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2008</td>
<td>12</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2009</td>
<td>11</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2010</td>
<td>10</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2011</td>
<td>9</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2012</td>
<td>8</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2013</td>
<td>7</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2014</td>
<td>6</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2015</td>
<td>5</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2016</td>
<td>4</td>
</tr>
</tbody>
</table>

The *Climate Intention* of EU member states are coded using the 2020 Climate and Energy Package in 2009 and a 2030 Strategy Climate and Energy Policies in 2014. We only use the national policy of EU member states if it occurs before 2009.
Assumption of linearity

We assume linearity of Climate Intention. The objective is to capture the intention of the government to mitigate. After a law is enacted, the government’s intention to tackle climate change is signalled not only by the enactment of a mitigation policy with carbon pricing, but by the planning horizon of this law. We imagine the distribution of intention for a fictionalised country to reflect the figure below. The intention of the government to tackle mitigation is strongest as soon as the law is enacted, and this wanes with time unless the government enacts a new law with a longer planning horizon. Our measure captures the blue dotted line in Figure B.1.

Figure B.1. Climate intention

Source: Authors
References

Agnone, J. (2007), “Amplifying Public Opinion: The Policy Impact of the U.S. Environmental Movement”, *Social Forces*, Vol. 4, https://watermark.silverchair.com/85-4-1593.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485vsQAAawwggGoBkgqlhkiG9w0BBwagggGZMIIBQIBADCCAY4GCsQGSib3DQEjHATAeBglghkgBZQMEAS4wEQMqpaMGWJ1EzAbaqhfAgEQgIIBX0puWlbXiO74JDJ415B3XzbKxTH2S9dPgcYGpo14SNqY (accessed on 23 November 2017).

IRENA (2017), *Accelerating the Energy Transition through Innovation*.

Moody's (2017), “Sovereign Credit Rating”.

UDI Platts (2017), *World Electric Power Plants Database*.

