Towards Green ICT Strategies

ASSESSING POLICIES AND PROGRAMMES ON ICT AND THE ENVIRONMENT

Christian Reimsbach-Kounatze
Working Party on the Information Economy

TOWARDS GREEN ICT STRATEGIES

Assessing Policies and Programmes on ICT and the Environment
FOREWORD

This report was presented to the Working Party on the Information Economy (WPIE) in December 2008, and declassified by the Committee for Information, Computer and Communications Policy in March 2009.

The report was prepared by Christian Reimsbach Kounatze, consultant, as part of the WPIE’s work on ICT’s and the environment under the overall direction of Graham Vickery, OECD Secretariat. It is a contribution to the OECD Conference on “ICTs, the environment and climate change”, Helsingør, Denmark, 27-28 May 2009 (www.oecd.org/sti/ict/green-ict). The report includes data collected until 30 April 2009.

© OECD/OCDE 2009
TABLE OF CONTENTS

FOREWORD

SUMMARY

TOWARDS GREEN ICT STRATEGIES: ASSESSING POLICIES AND PROGRAMMES ON ICT AND THE ENVIRONMENT

INTRODUCTION
- Definitions and approach

GOVERNMENT POLICIES AND PROGRAMMES
- Administration and co-ordination
- Policies
 - Stimulating R&D and innovation
 - Increasing Green ICT diffusion and ICT applications
 - Promoting environmental-related ICT skills and awareness
- Main objectives
 - Direct effects and enabling effects
 - Environmental impact categories
 - Life cycle phases
 - Focus areas
- Measurement and evaluation
- Objectives and targets
- Policy assessment and evaluation

INDUSTRY ASSOCIATION INITIATIVES
- Sector specific, cross-sector and standards associations
- Programmes
 - Encouraging R&D and innovation
 - Increasing Green ICT diffusion and ICT applications
 - Optimising ICT value chains
- Main objectives
 - Direct effects and enabling effects
 - Environmental impact categories
 - Life cycle phases
 - Focus areas
- Measurement and evaluation

CONCLUSION

REFERENCES

NOTES

ANNEX 1. GOVERNMENT POLICIES AND PROGRAMMES

ANNEX 2. INDUSTRY ASSOCIATION INITIATIVES
SUMMARY

Improving environmental performance, tackling global warming and enhancing resource management are high on the list of global challenges that must be urgently addressed. The information and communications technology (ICT) industry needs to further improve its environmental performance (it is responsible for around 2-3% of the global carbon footprint), and ICT applications have very large potential to enhance performance across the economy and society (the remaining 97-98%). Governments and business associations have introduced a range of programmes and initiatives on ICT and the environment to address environmental challenges, particularly global warming and energy use. Some government programmes also contribute to national targets set in the Kyoto Protocol (e.g. Denmark’s Action Plan for Green IT and Japan’s Green IT Initiative). Business associations have mainly developed initiatives to reduce energy costs and to demonstrate corporate social responsibility.

This survey analyses 92 government programmes and business initiatives across 22 OECD countries plus the European Commission. Fifty of these have been introduced by governments and the remaining 42 have been developed by business associations, mostly international. Over two-thirds of these focus on improving performance in the ICT industry. Only one third focus on using ICTs across the economy and society in areas where there is major potential to dramatically improve performance, for example in “smart” urban, transport and power distribution systems, despite the fact that this is where ICT have the greatest potential to improve environmental performance.

Government programmes and business initiatives concentrate on reducing energy consumption and CO₂ emissions during ICT use (close to two-thirds of the total). Reducing environmental impacts of ICT disposal, and using ICT applications to reduce energy consumption and CO₂ emission during distribution and use of non-ICT goods, are each the target of around one-quarter of the total. The high concentration of programmes and initiatives targeting energy consumption shows that many of them have both economic and environmental rationales. However with the global recession, energy prices have fallen sharply (in May 2009, oil prices were less than 40% of those in July 2008), capital and credit have tightened to choking point, and both public and private sectors may be less likely to invest in green ICTs and ICT applications. Other environmental impact categories such as biodiversity, water or land use are rarely targeted, despite ICT impacts (e.g. water consumption in ICT production, or the impact of dematerialisation on land use).

Government programmes cover the domains of R&D, ICT diffusion, and skills and awareness, with many having multiple objectives:

- **Stimulating R&D and innovation:** R&D programmes are the most common for governments, focussing on developing resource-efficient ICTs (e.g. Japan’s Green IT Project), but also resource saving applications such as smart homes, smart buildings, or smart transportation systems. This set of programmes also includes government Green ICT procurement often designed to increase innovation among ICT providers, encouraging co-operation between firms and academia, and they also include support for the internationalisation of R&D and innovation.

- **Increasing Green ICT diffusion and ICT applications:** This is the largest group overall and includes Green ICT diffusion to businesses, including sharing best practices and developing and using measuring tools, and eco labels and standards (with a total of over one-half of programmes). Governments also act as a lead user, as well as promoting the diffusion of ICT applications to individuals and households. Finally, governments are encouraging organisational change including promoting tele-working, e-government, and e-business.

4
• **Promoting environmental-related ICT skills and awareness:** These measures mainly include increasing awareness and knowledge of consumers and users of the environmental impact of ICTs as well as the advantages in using ICT applications such as smart metering. They also include increasing management skills through job-related training.

Initiatives of industry associations and consortia cover:

• **Encouraging R&D and innovation:** This is the largest group of initiatives and mainly includes but is not limited to encouraging innovation and exchange of knowledge about energy saving technologies (almost one-half of initiatives of industry associations – the most common initiative). They also include promoting design of resource-efficient ICTs e.g. the Climate Savers Computing Initiatives (one third).

• **Increasing Green ICT diffusion and ICT applications:** These include the development and promotion of Green ICT standards and labels indicating the resource efficiency of ICTs, and increasing energy cost transparency (e.g. the multi-stakeholder task force of the Global e-Sustainability Initiative, GeSI) (close to one-half of initiatives). They also include increasing energy efficiency of data centres through virtualisation for server consolidation and improved power and cooling systems (e.g. The Green Grid). Furthermore, they include green procurement of recyclable, reusable, and energy efficient ICT components. Green purchasing also applies to end-users (e.g. myGreenElectronics.org of the Consumer Electronics Association). A few initiatives promote ICT applications such as energy saving tools or tele-working.

• **Optimising ICT value chains:** Fewer initiatives focus on this area, and mainly cover reducing energy consumption and resource use in ICT supply chains, production and distribution (e.g. ICT Norway).

Only one-fifth of all government programmes and industry association initiatives have measurable targets and indicators to measure whether these targets are being achieved. Industry association initiatives have hard targets less frequently than government programmes (measurable targets are part of only two of 42 industry association initiatives). On the input side, most government R&D programmes have published R&D budgets. On the impact side, initiatives with measurable targets most frequently focus on CO2 emission and energy costs. Very few governments and industry associations measure the quality and impact of their policies and programmes. The Green ICT scorecard of the United Kingdom and GeSI’s GRI Telecom Supplement are rare, but promising, examples.

Overall, much more needs doing to develop and apply clear and measurable policies and initiatives to improve environmental performance of ICTs, and to apply ICTs across the economy to tackle the challenges of global warming and environmental degradation. In particular, policies and initiatives can encourage improvement of environmental performance along the entire ICT life cycle and promote ICT applications to make the life cycles of non-ICT sectors more resource efficient. “Smart” urban, transport and power distribution applications and systems are promising avenues to reduce pollution, and these areas could benefit greatly from increased ICT policy attention, particularly in the current economic setting of recession and low resource prices. Finally, government policies and industry initiatives could be better co-ordinated and implemented internationally.
TOWARDS GREEN ICT STRATEGIES: ASSESSING POLICIES AND PROGRAMMES ON ICT AND THE ENVIRONMENT

INTRODUCTION

Improving environmental performance, tackling global warming and improving resource management are high on the list of global challenges that need addressing urgently. The information and communications technology (ICT) industry needs to further improve its environmental performance (it is responsible for around 2-3% of the global carbon footprint), and ICT applications have very large potential to enhance performance across the economy and society (the remaining 97%).

To address these environmental challenges, governments and industry associations have introduced an increasing range of policies and initiatives on ICT and the environment. Governments as well as industry associations and consortia, and companies of the ICT sector, are the main initiator of large-scale programmes to reduce direct effects of ICTs and increase their enabling effects across the economy.

This report gives an overview of the main programmes and initiatives, but does not consider initiatives of single companies. It identifies the major actors and analyses their current objectives as well as their main policies and programmes. The term “Green ICT” refers to direct effects of ICTs, and the term “ICT application” to enabling effects of ICTs. Green ICT in the narrow sense refers to ICTs with low environmental burdens; using ICT as an enabler reduces environmental impacts across the economy outside of the ICT sector.

Definitions and approach

A total of 92 government programmes and industry initiatives on ICT and the environment across 22 OECD countries plus the European Union have been analysed. They are classified into policy areas and business activity areas adapted from the ICT policy framework of the Information Technology Outlook 2008 (OECD, 2008) and the Information Technology Outlook policy questionnaire. Policy areas cover: i) stimulating R&D and innovation for Green ICTs and ICT applications, ii) increasing Green ICT diffusion and ICT applications in public and private sectors, and iii) promoting environment related ICT skills and education. Industry association business activity areas comprise: i) encouraging R&D and innovation among member firms, ii) increasing Green ICT diffusion and ICT applications in the ICT and non-ICT sectors, and iii) optimising energy efficiency in ICT value chains.

An analytical matrix classifies programmes and initiatives by the following three criteria:

- Direct or enabling effects: Policies and programmes can focus on direct effects when targeting the environmental impacts of ICTs, or they can focus on enabling effects when using ICT applications to reduce environmental impacts across economic and social activities.

- Environmental impact category: The impact categories used follow the general scheme for Life Cycle Impact Assessments (LCIA) in compliance with ISO 14042: i) Global warming, ii)
primary energy use, iii) toxicity, iv) non-energy resource depletion, v) land use, vi) water use, vii) ozone layer depletion, and viii) biodiversity. This analysis focuses on the first two environmental impact categories, as they are part of most policies and programmes.

Life cycle phase: Goods and services go through different life cycle phases. Policies and programmes focusing on the direct environmental effects of ICTs can target one or more life cycle phases, ICT R&D and design, manufacturing, distribution, use or disposal. Policies and programmes can also focus on the enabling effects of ICTs at a specific life cycle phase. For example, they can promote ICT applications that make manufacturing, distribution or use of goods in non-ICT sectors more resource efficient. The life cycle approach is used to structure policies and programmes whether they focus on the direct or enabling effects of ICTs.

The matrix in Table 1 is used to classify policies and programmes for both direct and enabling effects of ICTs. Each cell within the matrix represents one potential target and shows where policies and programmes are concentrated.

<table>
<thead>
<tr>
<th>Env. Impact Categories</th>
<th>Life Cycle Phases</th>
<th>Direct / enabling Effects of ICTs</th>
<th>R&D and Design</th>
<th>Manufacturing</th>
<th>Distribution</th>
<th>Use</th>
<th>Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global Warming</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Energy Resource Depletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Land Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ozone Layer Depletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biodiversity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This survey is based on documents and information provided by governments and industry associations and on publicly available information. This approach does not provide information on how well governments and industry associations have implemented their policies and initiatives, and their outcomes, which would require follow-up study.

Structure

This report is divided into two parts, focussing on governments and industry associations and consortia, respectively. Each part is divided into four sections covering:

1. Administration and co-ordination.
2. Policy areas and business activity areas.
3. Whether policies and initiatives are targeted at direct or enabling effects, and their environmental impact categories and life cycle phases as shown in Table 1 above.
4. Whether programmes and initiatives have measurable targets and whether they are evaluated.
GOVERNMENT POLICIES AND PROGRAMMES

An increasing number of governments are seeing ICTs as an important part of their strategies for tackling environmental problems. Most OECD governments have established policies and programmes on ICT and the environment. However, despite some common focus points and targets, the administration of these policies and programmes, their targeted objectives and the quality of their assessment and evaluation differ significantly across countries.

Administration and co-ordination

There are several types of actors administering governmental policies and programmes on ICT and the environment. Most frequently, government policies and programmes have been established and managed within the central government by a single ministry or national agency. However, some are organised in a decentralised way by local administrations, and co-ordinated by a government-wide institution, usually a national board of Chief Information Officers (CIOs). Some policies and programmes are also organised through intergovernmental institutions.

Denmark, Japan and the United States are countries where policies and programmes are administered centrally, yet, with some differences. Denmark’s Action Plan for Green IT has been established by the Ministry of Science, Technology and Innovation (2008). Japan’s Green IT initiative has been created by the Ministry of Economy, Trade and Industry (METI, 2008). However, the Ministry of Internal Affairs and Communications (MIC, 2008) is also contributing to Japan’s efforts on improving the environmental impact of ICTs and by using ICT applications. In the United States, two national agencies have each initiated Green ICT-related measures. The US Department of Energy (DOE) has established the DOE Data Center Energy Efficiency Program (DOE, 2008), and the US Environmental Protection Agency (EPA) the ENERGY STAR label (see Box 3 for more details). DOE and EPA are also co-operating on energy efficiency (DOE and EPA, 2008; DOE and EPA, 2009).

In the United Kingdom and the United States, for instance, governmental programmes are organised in a decentralised way by departments or local administrations, and co-ordinated by a national board of e.g. CIOs of the public sector. In the United Kingdom, each government department is responsible for applying Green ICT. However, the Chief Information Officer (CIO) Council and the Chief Technology Officer (CTO) Council have established a government-wide Green ICT Strategy in order to co-ordinate the efforts of each department (Cabinet Office of the United Kingdom, 2008). A Green ICT Delivery group, which has been established by the Ministry of Defence (MOD), is supporting the implementation of the Green ICT Strategy across all departments. In the United States, as another example, the National Association of State CIOs (NASCIO) has created a Green IT Video Working Group (formerly Greening of IT Working Group) in order to co-ordinate the Green ICT-related efforts of state CIOs (NASCIO, 2008, 2008a).

The European Commission (EC) and the Asia-Pacific Economic Cooperation (APEC) are examples of intergovernmental institutions with programmes on ICT and the environment. The EC has formulated one of these in its Communication “Addressing the challenge of energy efficiency through ICTs” (EC, 2008). Another example is APEC’s Energy Standards Information System (APEC-ESIS), which provides information about energy efficiency standards in member countries (APEC, 2008).
Policies

Governments have adopted a range of ICT and the environment policies, covering R&D and innovation, Green ICT diffusion and ICT application and usage, and education on ICT and the environment. Figure 1 shows the main policy areas and the number of governments envisioning those areas by type of effect.

Figure 1. Number of government programmes by policy area and type of effect

1. Based on 50 policies and programmes of governments in a survey of 92 programmes and initiatives across 22 OECD countries plus the European Union (42 initiatives of industry associations).

Note: Direct effects of ICTs: Initiatives focussing on environmental impacts produced by ICTs themselves. Enabling effects of ICTs: Initiatives focussing on reducing environmental impacts by using ICT applications.

Government can focus on a single policy such as Australia’s Minimum Energy Performance Scheme, which includes mandatory eco standards enforced by the Australian government legislation. Others, such as Denmark’s Action Plan for Green IT, can include several policies (see Box 1).
Box 1. Denmark’s Action Plan for Green IT

Focus area 1, “Greener IT use”, includes four “initiatives” aiming at reducing the environmental impact of ICTs:

- The first aims at reducing the environmental impact of ICT usage within companies, mainly by promoting green ICTs to businesses.
- The second focuses on promoting greener ICT usage by children and young people through an information campaign.
- The third focuses on Green ICT guidelines for public authorities.
- The last initiative in focus area 1 aims at providing a “knowledge base for energy and CO₂ calculation”.

Focus area 2, “IT solutions for a sustainable future”, includes three initiatives aiming at reducing society’s impact on the environment.

- The first aims at R&D on Green ICT, pervasive computing and e-Government.
- The second focuses on the export of Green ICTs know-how and technology.
- The last initiative concerns international conferences on Green ICT hosted by Denmark.

Besides those two focus areas, in the eighth initiative of the Action Plan for Green IT, the Danish Ministry of Science, Technology and Innovation plans to take the lead in using Green ICT in its own activities, in particular reducing annual electricity consumption by 10%.

Source: Ministry of Science, Technology and Innovation, Denmark (2008).

Stimulating R&D and innovation

Reducing direct effects of ICTs or increasing enabling effects of ICTs necessitates the development of resource-efficient ICTs and ICT applications respectively. Most governments are stimulating R&D and innovation in energy-saving technologies. Increasing R&D spending on green technologies has also been a priority in recent economic stimulus packages of governments in OECD and major non-OECD countries (see Box 2).
Box 2. Green technologies in policy responses to the economic crisis and to underpin recovery

Governments in OECD and major non-OECD countries are launching economic stimulus packages to address the recession. Governments are also using their economic stimulus packages to help the greening of the economy and promote investment in green technologies. In most stimulus packages, investment in green technologies is an important part (after infrastructure investments, education, and R&D). Germany, for example, has dedicated EUR 5.7 billion to green technologies, Australia AUD 5.7 billion, and Canada CAD 2.8 billion.

In many cases these plans rely directly or indirectly on ICTs, e.g. the development of "intelligent" transport systems, smart buildings and smart electricity grids which will save energy. Substantial amounts of money are directed at green technology research areas. Promotion of energy-saving and new energy technologies (e.g. next-generation solar power) and tax measures that encourage green investment or the purchase of green products rank high in these plans. Performance requirements and measures to promote green products (including ICT products) are a priority.

Korea has focused its KRW 50 trillion stimulus package almost entirely on development and use of green technologies, many with an ICT component, for example using ICTs in green transportation systems. The U.S. American Recovery and Reinvestment Act of 2009 provides USD 59 billion for green technologies, including USD 11 billion for a smart electricity grid. This new interest partly makes up for the previously low frequency of policies to support green ICT applications.

The following measures have been adopted most frequently in government Green ICT policies.

R&D programmes

Programmes to increase R&D and innovation activities are the most common (15 of 50 government initiatives). This area especially includes R&D for energy efficient ICTs as well as ICT applications for increasing energy efficiency outside of the ICT sector.

For example, Japan has established the Green IT Project as part of its Green IT initiative, in which energy efficient technologies will be developed in collaboration with industry and academia (see Box 3). As another example, Korea’s Comprehensive Program for Green ICT in the Communications Sector is promoting among others new communications technologies that enable energy saving in (non-ICT) sectors. As part of Korea’s New Growth Engine of the Broadcasting and Communication Industry, the Korea Communications Commission (KCC) has carried out research on ICT applications such as smart transportation applications (KCC, 2008).
Box 3. The Green IT Project of Japan

In addition to existing programmes, Japan’s Green IT Project, which is part of the Green IT Initiative, is promoting high energy efficient ICTs (with an annual budget of JPY 3 billion in fiscal year 2008). The Green IT Project will especially focus on three main research fields:

Networks: One objective of the Green IT Project is to reduce energy consumption of network components by more than 30%. Technologies for optimising router power consumption and traffic volume are promoted with funding of JPY 1.283 billion.

Data centres: The Green IT Project also aims at reducing the energy consumption of data centres, especially of servers and storage devices, by more than 30%. It is therefore promoting technologies like ultra-high density Hard Disk Drives (HDD) and high-efficiency cooling systems. JPY 909 million have been dedicated to this research.

Displays: The objective of the third research field is to reduce the power consumption of displays by 50%. Organic Light Emitting Diodes (OLED) are one of the technologies that will be promoted. The fund dedicated to displays is JPY 668 million.

Source: Ministry of Economy, Trade and Industry, Japan (2008) and Myoken (2008).

Some governments are targeting energy efficiency across other industries and households through intelligent ICT applications. The EC, for instance, has initiated several projects on “energy-smart” power grids, homes and buildings, some within its Seventh Research Framework Programme (FP7) (EC, 2008). Denmark, as another example, has established a DKK 36 million research fund for Green IT, pervasive computing and e-government, which is promoting “research in how the development of IT can contribute to a greener society”. It includes R&D on “alternative” hardware and software technologies improving tele-working and virtual meetings. Additionally, the funding can also “be used to promote research capable of contributing to global energy conservation” (Ministry of Science, Technology and Innovation, 2008).

Government Green ICT procurement

In many countries, governments are one of the largest purchasers of ICT products and services. Thus, by setting environmental requirements for ICT procurement, governments can not only reduce the environmental impact of their own ICTs, but they can also use their purchasing power to increase competition and innovation among ICT providers. In 11 of 50 cases, governments are implementing Green ICT procurement.

The Green ICT Strategy of the United Kingdom, for instance, stipulates the specification of environmental criteria for the procurement of ICTs in line with advice developed by the Centre of Expertise in Sustainable Procurement of the Office of Government Commerce (OGC). Hansel Ltd, the central procurement unit of the Finnish Government, together with the Finnish Environment Institute, has developed environmental criteria for its tendering procedures and framework agreements (Hansel, 2008). The Austrian federal government has also adopted quantitative and qualitative objectives for environmentally friendly purchases at the federal level. IT equipment is one of five priority product groups.

Innovation support

Some governments are stimulating innovation among firms directly, for example by encouraging cooperation between firms and the establishment of firm clusters and innovation networks as well as by providing access to finance and business support services (8 of 50 government programmes).
For instance, Intelligent Energy - Europe (IEE), a sub-programme of the EC’s Competitiveness and Innovation Framework Programme (CIP), is funding innovation projects focusing on topics like energy efficiency, new and renewable energy sources and new energy sources in transport. Small and medium-sized enterprises (SMEs) are the main targets. As another example, the Japanese government has initiated the foundation of the Green IT Promotion Council, to improve co-operation between academia, government and industry experts. The Action plan “Germany: Green IT Pioneer” of the German Federal Ministry of Economics and Technology places a high emphasis on co-operation between firms and firm clusters. For the e-Energy project, for instance, six model regions including several (local) firms and research institutes have been selected (e.g. EnBW, IBM Germany, SAP, and the Karlsruhe Institute of Technology in the Baden model region MEREGIO) (Federal Ministry of Economics and Technology, Germany, 2008a).

Internationalisation of R&D and innovation

Governments’ efforts to promote R&D and innovation are not only within their national borders. Some governments are also promoting R&D and innovation at international level, for instance, by supporting knowledge exchange between academia, industries and governments through international workshops, meetings, and conferences (8 of 50 government programmes). Increasing co-operation with international organisations is another example to promote the internationalisation of R&D and innovation on ICT and the environment.

Denmark and Japan, for instance, have both hosted international conferences on ICT and the environment. In 2008, Denmark, in co-operation with the OECD, organised a Workshop on ICTs and Environmental Challenges, attended by over 100 participants ranging from governments, national experts and scientists, representatives of international organisations, businesses and civil society (65 from outside of Denmark). An OECD Conference on ICTs, the Environment and Climate Change, which will be hosted by the Danish Ministry of Science, Technology and Innovation, will follow in May 2009, contributing to the United Nations Climate Change Conference in Copenhagen in 2009 (COP 15). Japan, as another example, hosted the Green IT International Symposium in May 2008, in which business representatives of multinational ICT firms have presented and discussed their efforts and experiences around Green ICT.

Government can also promote internationalisation of R&D and innovation by co-operating with national and international institutions in the public as well as private sector. The Portuguese Ministry of Science, Technology and Higher Education, for instance, is co-operating with the Massachusetts Institute of Technology (MIT) on R&D and post-graduate education programmes including ICT and the environment. Japan’s Green IT Promotion Council, as another example, has established a working relation with The Green Grid and the Climate Savers Computing Initiatives, focussing on information exchange and joint activities on Green ICTs.

Increasing Green ICT diffusion and ICT applications

Increasing the diffusion of both Green ICTs and ICT applications is the largest group of government programmes and policies on ICT and the environment. Governments are encouraging the usage of Green ICTs and ICT applications among businesses and households, applying Green ICT in public administration, and acting as a lead user as well as promoting eco-labels and standards.

Green ICT diffusion to businesses

Moving businesses to Green ICT is a major concern of governments and over one-half of governments have programmes in this area. Most governments developing these policies are encouraging businesses to apply Green ICT, essentially by providing best practices for the appropriate use of Green ICT.
and by providing measuring tools, which can increase the transparency of energy costs (26 of 50 government programmes included 13 standards and labels). Those policies are expected to increase transparency, identified as a major obstacle companies are facing during their path to Green ICT (Bouwer et alia, 2006; IDC 2008; Wikberg, 2008).

Best practice approaches include Denmark’s Action Plan for Green IT, which is accumulating information about the experience of Danish companies using Green ICT, which will be made available for other companies interested in greening their ICTs. Another example is the DOE Data Center Energy Efficiency Program of the United States, which provides metrics for overall data centre energy intensity as well as tools and guidelines to drive continuous improvement.

Furthermore, governments are encouraging businesses to apply Green ICT by increasing the transparency of ICT energy costs. This can be done by providing measuring tools or by disseminating information about the energy consumption of ICT equipment, for instance through eco labels (see Box 4). In the Save Energy Now initiative, the United States is providing measuring tools to increase energy cost transparency. The Data Center Energy Profiler, for instance, is a free software tool, which profiles the energy usage within data centres (DOE, 2008). EPA’s ENERGY STAR is one of the most popular eco-labels, certifying energy efficient electronic equipment (see Box 4).

Last, but not least, governments can encourage the usage of Green ICTs by rules that can be voluntary Codes of Conduct (CoC) or mandatory national laws. For example, the EC has formulated two CoCs of relevance for Green ICT: In the EU Codes of Conduct for Broadband equipment, companies commit to reduce energy consumption of broadband equipment (EC, 2008a). The EU Codes of Conduct for data centres sets energy efficiency goals and measures standards for data centre providers (EC, 2008b). The relatively small number of signatory companies of the EU Codes of Conduct for Broadband equipment, however, suggests that the CoCs have not yet been widely accepted. However, CoCs could be useful for non-signatory companies as they include best practices and standards. The WEEE and the ROHS directive of the EC are examples of mandatory rules regulating ICT disposal (EC, 2002, 2002a).
Box 4. Eco labels of governments

Eco labels are an instrument for certifying products and services regarding their environmental impacts. There are many different eco labels, only a minority of them established by governments alone. The following list describes some of those eco labels most used in OECD and non-OECD countries:

ENERGY STAR is the US standard for energy efficient electronic equipment. It was established in 1992 by the Environmental Protection Agency for computer equipment, but now includes other electronic equipment such as heating and cooling systems, office equipment, home electronics, etc. (EPA, 2003). According to the EPA, “Americans, with the help of ENERGY STAR, prevented 40 million metric tons of greenhouse gas emissions in 2007 alone […] and saved more than $16 billion on their utility bills”. In 2007, the EPA introduced ENERGY STAR 4.0, which has stricter requirements on workstations, desktop PCs and notebooks, especially because it does not only consider standby and soft-off modes, but also the on/idle mode. Additionally, it requires the usage of 80-Plus power supply units (PSUs) (see Box 6). In March 2009, the EPA finalised the ENERGY STAR 5.0 specification for displays, now including digital picture frames and large commercial displays. ENERGY STAR has been adopted by other countries and economies including Australia, Canada, Japan, New Zealand, Chinese Taipei and the European Union.

European Union Eco-label (Flower label) was established in 1992 by the Environment Directorate of the European Commission as part of its strategy to promote sustainable consumption and production (EC, 2006, 2006a). It is used in the European Union and in Norway, Liechtenstein and Iceland. The European Eco-label stipulates the environmental impact analysis of products or services throughout their complete life cycle, including raw material extraction, production, distribution and disposal.

Der Blaue Engel (The Blue Angel) is one of the oldest eco-labels. It was established on the initiative of the German Federal Ministry of the Interior and approved by the Ministers of the Environment of the German federal government and the German federal states in 1978. The Jury Umweltzeichen, a group of 13 persons across society, administrates Der Blaue Engel. This label has certified more than 3,600 products categories covering papers, oil burners, wall paints and ICT equipment. Criteria used for certification were the pollution and energy consumption associated with the goods and their recyclability. Until now, Der Blaue Engel has been used by more than 520 enterprises in more than 20 countries.

Governments as lead users

By applying Green ICT within public administration, governments can reduce the environmental impact of their own ICTs, and they can also encourage the usage of Green ICTs within the private sector. Government’s efforts include but are not limited to increasing energy efficiency of public ICTs, or applying Green ICT procurement. The influence of public procurement on Green ICT-related innovation has already been mentioned.

However, fewer governmental policies explicitly include the government’s role as a lead user (8 of 50 programmes). The *Green ICT Strategy* of the United Kingdom, for instance, defines measures to be taken by government departments, including procurement, configuration of ICT equipment, and e-waste. It sets a list of “immediate steps” for “the early implementation of some simple but high impact actions”, including use guidelines like “turning off PC’s overnight, at weekends and during holiday periods” or “ensuring peripheral equipment is switched off overnight”. The *Green ICT Strategy* also defines measures of a more strategic nature, such as increasing server and device consolidation by using virtualisation and dematerialisation amongst others.

Within Denmark’s *Action Plan for Green IT*, the Danish Ministry of Science, Technology and Innovation has committed itself to save 10% of its annual electricity consumption each year. In order to reach this objective, it is undertaking measures such as the prioritisation of energy-saving computers including laptops and thin clients. The Ministry is also using AutoPowerOff plug banks, which automatically turn off peripheral equipments when computers are turned off. Furthermore, it has also
introduced an internal competition for the department with the greatest energy reduction. Last but not least, the Action Plan for Green IT provides advice for public administrations.

ICT applications to individuals and households

Governments have widely acknowledged the important contribution of ICTs in reducing CO$_2$ emission and energy consumption in households. But only nine of 50 government programmes are promoting the diffusion of ICT applications to individuals and households. Using ICTs to disseminate environmental information is one of the most frequent ICT applications.

Ireland’s Workflow programme is based on a local wireless sensor network, which is used to measure the traffic around Dublin and to disseminate that information to households. Individuals are encouraged to use the traffic information to adjust their own behaviour and working conditions (Department of Communications, Energy and Natural Resources, Ireland, 2008). Australia’s Solar Cities Program is a large-scale trial project, in which distributed solar technologies are applied. ICTs are used to improve energy efficiency, load management, smart metering, and cost-reflective pricing. Smart meters will be installed in households, in order to monitor and plan energy consumption as well as for billing (Department of the Environment, Water, Heritage and the Arts, Australia, 2008).

Organisational change

ICT applications can reduce the environmental impact of organisations. This includes ICTs for new way of production and collaboration like tele-working and tele-conference applications, or moving businesses and governments to the Internet (e-government, e-business, e-commerce). Promoting tele-working and tele-conferences, however, are one of the less frequently adopted policies (6 of 50 programmes). This is probably because many governments have already implemented tele-working and tele-conference applications (OECD, 2008).

Norway’s Green ICT initiative, established by the Ministry of Government Administration and Reform, is promoting tele-conferencing and e-co-operation through the dissemination of best practices. Denmark’s Action Plan for Green IT, besides the promotion of tele-working, is also focussing on e-government, and the United Kingdom is also promoting tele-working and tele-conferences.

Promoting environmental-related ICT skills and awareness

Reducing the environmental impact of ICTs through ICT applications, makes considerable demands on management skills, as environmental skills are needed in addition to ICT-related skills. Furthermore, using ICT applications also necessitates a minimum awareness about the environmental implications of personal behaviour. Governments are engaged in increasing public knowledge about ICT and its effects on the environment, as well as supporting environment related ICT skills and education. This also includes using e-learning for increasing environmental understanding and awareness.

Consumer and user education

Intelligent ICT solutions such as smart homes will not reduce energy consumption if users continue to dissipate energy by not changing their behaviour patterns. Consumer and user education is thus an important complementary element to policies and programmes on ICT and the environment (see OECD, 2009 for OECD work on consumer education and sustainable consumption). Eight of 50 government policies are targeting consumer and user education.

Denmark’s Action Plan for Green IT, for instance, highlights children and young people as the largest group of private ICT consumers. It envisions increasing their environmental awareness by using their
favoured communication platforms such as online computer games or social networking sites. Additionally, Denmark’s Ministry of Science, Technology and Innovation will inform its employees about their everyday electricity consumption.

Japan’s Green IT initiative aims at increasing society’s environmental awareness through measurement and visualisation of the net impact of ICTs on the environment. Korea’s Ministry of Public Administration and Security (MOPAS), as another example, has established a task force for green informatisation, which is developing a comprehensive plan to supply information on greening government’s computing resources. Other examples include Hungary’s promotion of “environmental information technologies” in order to monitor and publish environmental data of public interest.

Energy management skills and expertise

The lack of energy management skills and expertise is a major obstacle companies face during their path to Green ICT (IDC, 2008; Wikberg, 2008). Besides the provision of best practices, a small number of governments are additionally providing Green ICT related training for managers and their employees (4 of 50 programmes).

Through its Save Energy Now initiative the United States is providing training to enhance energy management skills. The training is accompanied by regular publications about best practices and improvements in energy efficiency technologies. A different example is the Collaborative Labelling and Appliance Standards Program (CLASP), launched by the United States Agency for International Development (USAID) as a partnership between governmental institutions world-wide. CLASP is aiming at technical assistance for the national implementation of standards and labels to over 50 countries. This includes building the necessary skills and institutional capacity in those countries.

Main objectives

Governments have targeted different objectives in the policies presented above. The matrix in Table 1 is used to classify objectives according to the following criteria: type of effect, environmental impact category, and life cycle phase.

Direct effects and enabling effects

Government policies on ICT and the environment can be divided into three main groups regarding the type of effects they focus on. The first group focuses on reducing the environmental impact of ICTs (direct effects of ICTs) (26 of 50 government policies and programmes). The second group aims at using ICT applications to reduce society’s environmental impact (enabling effects of ICTs) (8 of 50 government policies and programmes). The last group aims at both the direct and enabling effects of ICTs (16 of 50 government policies and programmes). The group focussing on direct effects only is more than three times larger than that focussing on enabling effects only and almost twice as large as those considering both types of effects. When combined with that focussing on both types of effects, the group focussing on direct effects is still almost twice as large as the group focussing on enabling effects (see Figure 2).
In the United Kingdom and the United States some programmes are focussing on direct effects of ICTs. The United Kingdom, through its Green ICT Strategy, aims at reducing energy consumption and CO₂ emission of the government’s ICTs. In the United States, EPA’s ENERGY STAR label indicates the energy efficiency of ICT equipment.

In contrast, in Hungary and Ireland programmes are focussing on enabling effects. The Environment and Energy Operational Program of Hungary (2007) sets a high emphasis on “environmental information technologies” in its “priority axis” for “sustainable lifestyle and consumption patterns”. ICTs are considered as an enabler for “environmental democracy”, providing the basis for monitoring and publishing environmental data of public interest. Ireland’s Workflow programme, as another example, has been initiated by the Department of Communications, Energy and Natural Resources (2008) to measure traffic around Dublin through a local wireless sensor network. The collected information is made available, enabling households to adjust their behaviour and working conditions.

There are programmes considering both direct and enabling effects in Denmark, Japan and the United States. Denmark’s Action Plan for Green IT defines two “focus areas”: The first area is on “Greener IT use” in the private and public sector. The second focus area is on “IT solutions for a sustainable future” (see Box 1). Japan’s Green IT initiative also focuses on both aspects: “Saving energy of IT” and “Energy-efficient society by IT”. In the United States, DOE’s Save Energy Now initiative aims at increasing energy efficiency of industries. It provides among others a collection of software tools such as The Quick Plant Energy Profiler, which help diagnose how energy is used in industrial facilities (enabling effects). With its Data Center Energy Efficiency Program, it especially aims at increasing energy efficiency of data centres. DOE does not place any emphasis on ICT applications to improve energy efficiency, although it has proposed using some ICT applications such as energy management software. A distribution of programmes by type of effects and OECD member country is summarised in Annex 1 Table 2.

Among the 24 government programmes considering enabling effects of ICTs (either exclusively or together with direct effects), ICT applications used for the dissemination of environmental information have most frequently been promoted (10 of 24 government initiatives), followed by smart transportation, smart grids (including smart metering), and smart buildings. Smart engines (including smart manufacturing facilities) and software for energy optimisation have been promoted in fewer cases (see Figure 3).
Figure 3. Government programmes considering the enabling effects of ICTs\(^1\) by ICT application\(^2\)

1. **Enabling effects of ICTs**: Initiatives focusing on reducing environmental impacts by using ICT applications.

2. Based on 24 of 50 government initiatives in a survey of 92 initiatives across 22 OECD countries plus the European Union (42 initiatives of industry associations).

Environmental impact categories

As mentioned above, policies and programmes can target several categories of environmental impacts. However, governments have only considered a few environmental impact categories, on which the present section will focus. As Figure 4 shows, reducing *primary energy use* and *global warming* are the main objectives of policies and programmes focusing on both direct and enabling effects. Direct effects on *toxicity*, *non-energy resource depletion*, and *land use* have also been targeted quite frequently, mainly in conjunction with *ICT disposal* (see the next section on life cycle phases).

Figure 4. Number of times\(^1\) environmental impact categories has been targeted by governments\(^2\)

1. The number indicates how often initiatives or programmes have targeted an environmental impact category during the complete life cycle. Note that, for each initiative or programme, an environmental impact category could have been targeted five times at maximum, one time for each life cycle phase. For example, if *global warming* is targeted by an initiative in the *R&D and design*, *manufacturing*, *distribution*, *use*, and *disposal* phases, it will increase the value for *global warming* to “5”, thus better reflecting the impact of the initiative on *global warming* throughout the entire life cycle.

2. Based on 50 policies and programmes of governments in a survey of 92 programmes and initiatives across 22 OECD countries plus the European Union (42 initiatives of industry associations).

3. “Others” includes electromagnetic and noise emissions.

Note: **Direct effects of ICTs**: Initiatives focusing on environmental impacts produced by ICTs themselves.
Enabling effects of ICTs: Initiatives focusing on reducing environmental impacts by using ICT applications.
Other environmental impact categories such as *water use* have rarely been targeted, despite ICTs having direct effects on those categories (*e.g.* water consumption for cooling and semiconductor manufacturing), and being used as enablers (*e.g.* ICT applications optimising water consumption) (see ongoing OECD work on *Sensors, sensor networks and the environment: Technologies, applications and impacts*). Some other environmental impact categories have not been targeted, despite government programmes having implicit impacts on them, for example the impact of virtualisation and dematerialisation on land use.

Primary energy use

Governments have most frequently targeted the reduction of ICT and non-ICT related energy usage and increase energy efficiency. Although there is a correlation between the reduction of global warming and the reduction of energy usage, the objectives are not identical. This is because energy usage does not only include fossil energy sources, but also nuclear and renewable energy sources, which produce less CO\(_2\) emissions, at least during energy generation. The reduction of primary energy use, however, appears to have been driven mainly by high energy costs.

The *DOE Data Center Energy Efficiency Program* of the United States, for instance, aims at increasing energy efficiency of at least 1 500 “mid-tier and enterprise-class data centres” by 25% (on average) and of at least 200 “enterprise-class data centres” by 50% (on average) by 2011 (DOE, 2008). In Denmark’s *Action Plan for Green IT*, the Danish Ministry of Science, Technology and Innovation has committed itself to save 10% of its annual electricity consumption each year.

Global warming

The second most common area for policies and programmes is as a support to meet national targets set in the Kyoto Protocol. This is true for policies and programmes focussing on direct effects such as the *Green ICT Strategy* of the United Kingdom. *The Green ICT Strategy* is expected to contribute to the Sustainable Operations on the Government Estate (SOGE) targets, which are to reduce greenhouse gases (GHG) produced by the central government office estate by at least 30% by 2020 and by 60% or more by 2050. This also applies to policies and programmes considering enabling effects for example Japan’s *Green IT initiative* is to use ICTs for reducing national CO\(_2\) emissions by at least 50% by 2050.

Toxicity

Toxicity includes all kind of toxic degradation of air, water or soil, such as smog, eutrophication or acidification, having direct or indirect impacts on human health and biodiversity. As some ICT equipment contains hazardous substances such as flame retardant substances (*e.g.* plastic parts), mercury (*e.g.* LCD monitors), or cadmium (*e.g.* batteries), increased toxicity is an important direct effect of ICTs (EC, 2006, 2006a).

Some government programmes are focussing on reducing toxicity produced by ICTs, especially during ICT manufacturing and disposal. This is especially the case with *eco-labels* such as the *European Union Eco-Label (Flower label)* for PCs and laptops (EC, 2006, 2006a, see Box 4). Government programmes focussing on *ICT disposal* are presented in more detail in the next section on life cycle phases.

Non-energy resource depletion

Environmental damage can also be related to the depletion of natural non-renewable (non-energy) resources such as lead, tin or copper; scarce resources which are being used, for example, for solder and printed circuit boards. According to Hauschild and Wenzel (1998) (derived from the Ministry of the Environment, Denmark, 2006), the supply horizon for lead is expected to be only 20 years, for tin 27 years,
and for copper 36 years. Subsequently, the price of these resources can be expected to increase dramatically (Ministry of the Environment, Denmark, 2006).9

Government initiatives stipulating recycling, maintainability and upgrading of ICT products are reducing the direct effect of ICTs on non-energy resource depletion. Here again, eco-labels as well as government initiatives focussing on ICT disposal (see next section on life cycle phases) have most frequently considered non-energy resource depletion as an environmental impact category.

Land use

Land use describes impacts made on the environment through land occupation and transformation, leading to a reduction of available soil and localised surfaces (Scholz, 2007). This especially includes the reduction of land surfaces caused by waste. ICTs can have direct effects on land use when, for instance, ICT equipments are being disposed of, leading to the occurrence of electronic waste (e-waste). Most governments targeting land use have done so in connection with ICT disposal (see next section on life cycle phases).

Data centre facilities occupy large areas which can reach more than 300 000 square feet (around 28 000 square meters) per facility (Brodkin, 2007). However, additional land use can be reduced thanks to virtualisation techniques substituting physical servers with software applications simulating those servers. As multiple virtualised servers can be run on a single physical machine, there is less need for building new data centre facilities. Yet, no government has targeted reducing land use explicitly, even though they are encouraging virtualisation.

Water use

Water consumed by the ICT sector can be significant. Almost 1 500 kg are used, for instance, for the production of a single PC (Williams, 2003). The ICT sector is estimated to be one of the six most water-consuming industries and water consumption in the semiconductor industry in Chinese Taipei has increased from nearby 100 000 tons a day in 2002 to over 150 000 tons a day in 2006 (Lin et al., 2006). In some regions, the semiconductor industry has had problems getting additional water needed for expanding production or building new fabrication plants (Donovan, 2002).

Despite water scarcity and water management being one (underestimated) major environmental problem in the future (Harvey, 2008), few governments have considered direct or enabling effects of ICTs on water use. Hungary, for instance, is developing and harmonising its databases for involving and informing the public in the implementation of the Water Framework Directive (WFD).

Life cycle phases

Environmental impacts occur during the use of ICTs, but higher environmental impacts often occur before and after the use phase, and environmental impacts need to be considered along the complete life cycle. For instance, Greenhouse Gas (GHG) emissions of California’s residential and commercial PCs in 2005 were estimated to be 4.18 Mt CO₂ a year in the manufacturing phase10, 1.72 Mt CO₂ a year in the use phase, and 0.004 Mt CO₂ a year in the disposal phase (California Energy Commission, 2005). See also the ongoing OECD work on Reducing Environmental Impacts in the Life Cycle of ICT Goods.

The life cycle is used in order to structure both policies and programmes aiming at direct as well as enabling effects of ICTs. As can be seen in Figure 5, governments are focussing more on use than on other life cycle phases, whether they are considering both direct or enabling effects.
1. The number indicates how often initiatives or programmes have targeted an environmental impact category within each life cycle phase. Note that for each initiative or programme a life cycle phase can be targeted 10 times at maximum, one time for each environmental category. For example, an initiative, which targets all environmental impact categories considered in this paper (e.g. i) global warming, ii) primary energy use, iii) toxicity, iv) non-energy resource depletion, v) land use, vi) water use, vii) ozone layer depletion, viii) biodiversity, ix) electromagnetic emissions, and x) noise emissions) in the use phase, would increase its value to "10".

2. Based on 50 policies and programmes of governments in a survey of 92 programmes and initiatives across 22 OECD countries plus the European Union (42 initiatives of industry associations).

Direct effects

Only a minority of policies or programmes are targeting all life cycle phases of ICT goods: ICT R&D and design, ICT manufacturing, ICT distribution, ICT use, and ICT disposal.

All main life cycle phases

Denmark’s Action Plan for Green IT and the Green ICT Strategy of the United Kingdom are among the few taking all of the main life cycle phases of ICTs at least into consideration. Denmark is promoting through its Action Plan for Green IT R&D activities on “sustainable development of IT”, “sustainable production of IT”, “sustainable use of IT”, and “sustainable disposal of IT”. The United Kingdom’s Green ICT Strategy aims to make Government ICT carbon neutral across its lifecycle by 2020. “This will cover carbon neutrality and sustainable processes for use of materials, water, accommodation and transport, in the manufacture, use and disposal of ICT” (Cabinet Office of the United Kingdom, 2008).

ICT use

ICT use is the most frequently targeted life cycle phase, and most initiatives focussing on direct effects primarily aim at reducing CO₂ emissions and energy consumption of ICT use. The DOE Data Center Energy Efficiency Program of the United States, for example, aims at reducing energy consumption of data centres. As another example, the Equipment Energy Efficiency (E3) Program of Australia and New Zealand sets mandatory energy performance standards for the use of ICT equipment (also see the ENERGY STAR initiative of the United States).

ICT disposal

ICT disposal is another phase targeted frequently overall. However, the disposal phase is rarely considered in initiatives administered centrally. This is probably because electronic waste (e-waste) is often targeted by central government measures outside initiatives on ICT and the environment.

Japan and the EC, for instance, are not considering e-waste within their initiatives on ICT and the environment. However, Japan’s New Action Plan towards a Global Zero Waste Society is tackling e-

In contrast, some initiatives aiming at “greening” governments’ ICTs have placed a high emphasis on ICT disposal. The United Kingdom has one of the largest Government Disposal Services Authorities (DSA), which is an integral part of MOD’s Defence Equipment & Support (DE&S, 2007). The DSA is responsible for the re-use, resale and recycling of ICT equipment as well as other goods such as buildings, vehicles, furniture, and textiles, across 61 government bodies. The DSA also runs its own e-auction platform, in which government second-hand equipment is directly sold to the public.11 DSA’s e-auction platform is one of the few ICT applications aiming at the disposal phase (see Figure 5).

Enabling effects

No governmental programme surveyed has promoted reducing the environmental impact across the complete life cycle of ICT applications outside of the ICT sector. Governments focus on single ICT applications, which are expected to improve the environmental impact of specific life cycle phases. ICT applications having an impact on the use phase and the distribution phase are most frequently promoted. Fewer initiatives are promoting ICT application for manufacturing (also see ongoing OECD work on Sensors, sensor networks and the environment: Technologies, applications and impacts).

ICT applications in the use phase

The EC, for instance, is promoting ICT applications having an impact on the use phase by stimulating R&D on intelligent energy management solutions for buildings in its FP7 programme. ICT applications include, for instance, smart metering, which analyses and visualises the real-time energy consumption, helping businesses and households to increase their energy efficiency.

ICT applications in the distribution phase

Regarding the distribution phase, the Korea Communications Commission (KCC, 2008) is promoting Intelligent Transportation Systems (ITS) a Global Positioning System (GPS)-based application as part of its New Growth Engine of the Broadcasting and Communications Industry to reduce traffic congestion. As another example, the EC is promoting intelligent energy distribution networks through its Intelligent Energy - Europe (IEE) programme.

ICT applications in the manufacturing phase

Smart metering is also applied to improve energy generation, as examples in Australia and Germany show. Through its Solar Cities Program, Australia is applying smart metering for improving monitoring and forecasting of households’ energy consumption. The forecast is mainly used to optimise energy generation (Department of the Environment, Water, Heritage and the Arts, Australia, 2008). Germany’s “flagship project” E-Energy under the Action Plan “Germany: Green IT Pioneer” also aims at optimising energy supply through ICT-based systems. This includes digital interconnection of e.g. smart meters, intelligent energy management systems, and electronic energy markets (Federal Ministry of Economics and Technology, Germany, 2008a).

Governments have also promoted ICT applications for energy saving manufacturing of (non-ICT) goods. Italy’s Energy Efficiency programme, for instance, is part of the Industry 2015 initiative of Italy’s Ministry of Economic Development (2008). Its objectives are to increase energy savings in production processes and end-use as well as using renewable energy sources in order to improve energy security.
Some of the research projects funded by the programme are focussing on ICTs (e.g. the research projects led by Telecom Italia or Enel Produzione) (Fortina, 2009).

Direct effects of ICT applications

It should be noted that ICT application themselves not only generate enabling effects, but also have direct effects. For instance, deploying wireless sensors networks in order to reduce traffic congestion is accompanied by an increase in ICT manufacturing, ICT distribution, ICT usage, and ICT disposal, including all the related environmental impacts. However, no governmental initiative so far is addressing the net impact of their promoted ICT applications.

Focus areas

Finally, focus areas of governments can be identified by classifying policy and programme objectives according to the criteria life cycle phase and environmental impact category simultaneously (see Figure 6 and Figure 7).

Direct effects

The high concentration of initiatives focused on energy use and global warming during the use phase of ICTs is clearly seen (Figure 6, see also Figure 4 and Figure 5). Toxicity, non-energy resource depletion, and land use are primarily in the disposal phase of ICTs. There are also areas of modest concentration of initiatives (e.g. direct effects of ICTs on global warming, energy use and toxicity during ICT manufacturing). Most striking, however, is the large “empty” area with no initiatives (e.g. biodiversity, ozone layer depletion and water use during ICT R&D and design, ICT manufacturing and ICT distribution) (see upper left corner in Figure 6).

Enabling effects

The high concentration of initiatives considering energy use and global warming during the manufacturing, the distribution and the use phase outside the ICT sector can also be observed (Figure 7, see also Figure 4 and Figure 5). Figure 7 also confirms that initiatives have not considered other areas for ICT applications to be promoted, despite the need for ICT applications in these areas (e.g. water consumption during manufacturing).
Figure 6. Number of government programmes focussing on direct effects\(^1\) of ICTs by life cycle phase and environmental impact category\(^2\)

1. Direct effects of ICTs: Initiatives focussing on environmental impacts produced by ICTs themselves.

2. Based on 50 policies and programmes of governments in a survey of 92 programmes and initiatives across 22 OECD countries plus the European Union (42 initiatives of industry associations).

Figure 7. Number of government programmes focussing on enabling effects\(^1\) of ICTs by life cycle phase and environmental impact category\(^2\)

1. Enabling effects of ICTs: Initiatives focussing on reducing environmental impacts by using ICT applications.

2. Based on 50 policies and programmes of governments in a survey of 92 programmes and initiatives across 22 OECD countries plus the European Union (42 initiatives of industry associations).
Measurement and evaluation

Monitoring government policies and evaluating their outcomes are important for policy accountability and success. This necessitates linking policy objectives to measurable output targets and defining indicators to monitor inputs and evaluate outputs (see OECD and Eurostat, 1999).

Objectives and targets

All governments have formulated objectives for their initiatives, but only 17 of 50 government initiatives have measurable targets. As mentioned above, reduction of global warming and increasing energy efficiency are targeted most frequently. Initiatives in which targets are defined have most frequently used CO₂ emission and energy costs as an indicator.

For example, Japan’s Green IT initiative has as a target the reduction of national CO₂ emissions by at least 50% by 2050. The United Kingdom through its Green ICT Strategy is targeting the reduction of GHG produced by the central government office estate by at least 30% by 2020 and by 60% or more by 2050. Denmark’s Action Plan for Green IT has targeted the reduction of electricity costs for public administration by DKK 150 million over a three-year period. An overview on all government initiatives with their objectives and targets is presented in Annex 1 Table 3.

Policy assessment and evaluation

Only a minority of government policies have formalised assessment and evaluation (10 of 50 programmes). In the United Kingdom the CIO/CTO Council has developed a Green ICT Scorecard for benchmarking “organisational behaviour, policy, governance, procurement, energy efficiency, labelling and disposals, in both internal and out-source structures” as part of the Green ICT Strategy (see Box 5).

Box 5. The Green ICT Scorecard

The Green ICT Scorecard is an instrument used by organisations for benchmarking the environmental impact of their ICTs. The current version was developed in 2008 in conjunction with the CIO/CTO Council of the United Kingdom. Best practices of the UK Ministry of Defence were integrated within the scorecard. Currently, several UK departments are applying the scorecard within a pan-governmental pilot project.

The scorecard is based on a collection of Green ICT-related questions (currently 301 questions), which are structured in three different categories:

- The first category of questions aims at determining the sustainable development and corporate social responsibility of organisations. It includes questions on, for example, the sustainability of buildings, corporate sponsorship of Green initiatives, or the compliance with “Green” standards such as the EC directive on Waste Electrical and Electronic Equipment (WEEE).

- The second category is related to technology optimisation within organisations. It includes questions on power consumption per end user, the Power Usage Efficiency (PUE) of data centres, or the ratio of ICT staff to PC users. Technology optimisation has the highest weight within the scorecard.

- The third and last category focuses on organisations’ Green ICT policies. It includes questions on the usage of environmental impact assessment of ICT equipment, Green ICT procurement practices, and Waste Management.

All answers are weighted depending on question categories and aggregated to a single value, which is then compared with the values of other organisations in the database. The scorecard thus shows how green organisations are in comparison to each other, and helps identify strengths and weaknesses in Green ICT strategies and their implementation.

R&D and innovation

Most governments envisioning R&D activities have published their R&D budget related to their initiatives (9 of the 15 initiatives with a R&D programme). Japan’s *Green IT project* has dedicated JPY 3 billion (fiscal year 2008) for its three main research pillars on Green ICT, which are networks (JPY 1 283 million), data centres (JPY 909 million), and large OLED (JPY 668 million) (see Box 3). However, no governmental Green ICT initiative surveyed so far, has published any indicators measuring the impacts or success of their Green ICT related R&D policies.

ICT diffusion and usage

The diffusion of *ICT applications* to households seems to be better monitored and evaluated by governments. Seven of nine initiatives envisioning ICT diffusion to individuals and households have defined hard targets and five of nine have established a monitoring and evaluation process. This is probably because the diffusion to households still is in an experimental stage in the majority of cases and governments are planning to scale up the experimental results (see Ireland’s *Workflow programme*, Australia’s *Solar Cities Program*, and the FP7 ICT Work Programme of the EC).

The provision of best cases and measuring tools to businesses does not seem to be monitored and evaluated by government. Governments, however, are monitoring the number of products and services using their eco labels, which enable them to estimate their impacts (see EPA’s *ENERGY STAR* label). However, eco label initiatives have rarely defined measurable targets.

Green ICT-related skill and education

No governmental initiative surveyed so far is monitoring and evaluating their policies on environmental-related ICT skills and education. This may be because evaluating policies on environmental related ICT skills and education is difficult. First, a long-term evaluation would be necessary and, second, indicators measuring environmental awareness are difficult to develop.
Industry associations and industry consortia are major developers of large-scale initiatives on ICT and the environment. These industry initiatives have the potential to reduce the environmental impact of large parts of the ICT sector. Industry associations differ in the type of their members, and therefore in their programmes and objectives and overall impacts.

Sector specific, cross-sector and standards associations

Three different types of industry associations have been identified as having established large-scale initiatives on ICT and the environment: *Sector specific* industry associations, which only include companies within a specific sector. Examples are the Consumer Electronics Association (CEA), the European Telecommunications Network Operators’ association (ETNO), or the Silicon Valley Leadership Group. Industry associations can be international like ETNO or national like CEA.

The second type of industry associations are *non-sector specific* industry associations, consisting of companies across multiple sectors, which have mainly come together to establish their initiative on ICT and the environment. Some examples are the Climate Savers Computing Initiatives, the Green Grid and the Global e-Sustainability Initiative (GeSI). Most non-sector specific industry associations are operating globally.

The third and last type of industry associations have been established to promote standardisation among members. Examples are the Alliance for Telecommunications Industry Solutions (ATIS), The European Telecommunications Standards Institute (ETSI), and the Institute of Electrical and Electronics Engineers (IEEE).

Some industry associations’ initiatives have also been conducted in partnership with governments. The Green IT Promotion Council, for instance, was initiated by METI in co-operation with several Japanese industry associations in the ICT sector. Another example is the web portal www.ITK-beschaffung.de that has been established in partnership between the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, the German Federal Environment Agency and the German Association for Information Technology, Telecommunications and New Media (BITKOM).

Programmes

Industry associations’ initiatives have adopted a range of programmes covering R&D and innovation, Green ICT diffusion and ICT application, and ICT value chain optimisation in order to fulfil their environmental objectives. Figure 8 lists main business activity areas and the number of industry associations envisioning those areas by type of effects.
Figure 8. Number of initiatives of industry associations by business activity area and type of effect

<table>
<thead>
<tr>
<th>Area</th>
<th>Direct effects</th>
<th>Enabling effects</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D and innovation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Innovation support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design of resource efficient ICT goods</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green ICT diffusion and ICT applications</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards & labels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy efficient data centres</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green ICT procurement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICT applications to members</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficiency of ICT value chains</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Based on 42 initiatives of industry associations in a survey of 92 policies and initiatives across 22 OECD countries plus the European Union (50 policies of governments).

Note: Direct effects of ICTs: Initiatives focussing on environmental impacts produced by ICTs themselves. Enabling effects of ICTs: Initiatives focussing on reducing environmental impacts by using ICT applications.

Encouraging R&D and innovation

As energy and material efficiency become more important purchase criteria, producers of ICT goods are motivated to increase the energy and material efficiency of their products and services. Regulation and Corporate Social Responsibility (CSR) are other factors, which also motivate increasing energy and material efficiency.

Innovation support

Innovation support is one of the most frequent activities of industry associations. Twenty of 42 industry associations are stimulating innovation among their members, strengthening co-operation and exchange of information and knowledge between their members.

For instance, Intellect through its *Consumer Electronics Energy Efficiency Group* is identifying best low carbon technologies among its members and promoting their development. As another example, the Energy Efficiency Inter-Operator Collaboration Group (EE IOCG) is sharing information on “energy critical issues” of ICT equipment and networks.
Design of resource-efficient ICT goods

Product design is an essential stage of production for improving energy and material efficiency of ICTs. This also includes R&D on energy and material efficient ICTs and ICT components. Fourteen of 42 initiatives of industry associations are promoting the design of resource efficient ICTs and components.

For instance, members of the Climate Savers Computing Initiatives have to commit to “develop products that meet or exceed the Initiative’s Program Criteria”. For desktops, laptops and workstation computers, the Program Criteria equal the ENERGY STAR 4.0 specifications. The European Information and Communication Technology Industry Association (EICTA), as another example, is promoting the “integration of environmental considerations at the stage of product design with the aim of reducing all relevant potential environmental impacts over its entire life cycle”.

Increasing Green ICT diffusion and ICT applications

Industry associations have acknowledged the potential of saving energy costs throughout their sector, and are increasing the diffusion and usage of both Green ICT and ICT applications for reducing environmental impacts. This includes Green ICT standards and labels, Green procurement, and ICT applications such as energy saving tools as well as tele-working applications for reducing travelling.

Green ICT standards and labels

One continuing barrier to Green ICT is the lack of standardised instruments for monitoring and evaluating energy cost of ICTs (IDC 2008; Wikberg, 2008). Instruments can consist of eco-labels, which indicate energy and material efficiency of ICTs (see Boxes 4 and 6) or measurement and accounting tools.

<table>
<thead>
<tr>
<th>Box 6. Eco labels established by non-government organisations</th>
</tr>
</thead>
<tbody>
<tr>
<td>More eco labels have been established by industry associations or by single companies and non-profit organisations than by governments alone. The following describes some established by the private sector:</td>
</tr>
<tr>
<td>80-Plus is an initiative established in 2004 by Ecos, a US consulting company. 80-Pluscertifies energy efficient PSUs. It requires PSUs to have a minimum efficiency rate of 80% at 20%, 50% and 100% load rate. This means, at a load rate of 20%, 50% and 100%, 20% at maximum of the power consumed by PSUs is wasted. In 2008, Bronze, Silver, and Gold 80-Plus were introduced to distinguish between various levels of efficiency. Thirty-eight companies used 80-Plus for labelling their PSUs in 2007.</td>
</tr>
<tr>
<td>The Electronic Product Environmental Assessment Tool (EPEAT) is a system for supporting green procurement of desktop computers, notebooks and computer displays. It was developed in 2007 in compliance with the IEEE 1680-2006 standard by the Zero Waste Alliance, a non-profit organisation including universities, government and industry. EPEAT is based on environmental criteria including “reduction/elimination of environmentally sensitive materials”, the usage of recyclable and biodegradable material, and “product longevity / life cycle extension”. Like 80-Plus, EPEAT also differentiates between three quality tiers, EPEAT Bronze, Silver, and Gold, depending on the fulfilment of optional criteria.</td>
</tr>
<tr>
<td>The PC Green Label was developed in 2004 by Japan’s PC3R Promotion Center. Its goal is to develop principles to reduce, reuse and recycle (3Rs) of computers and computer displays as in the Japanese “Law for Promotion of Effective Utilization of Resources”. It considers all main life cycle phases: R&D and Design, Manufacturing, Use, and Disposal, and also focuses on the energy efficiency of computers and computer displays.</td>
</tr>
<tr>
<td>The TCO Certification for ICT and office equipment has been established by TCO Development, a non-profit organisation of the Swedish Confederation of Professional Employees. TCO Certification was first introduced in 1992 (TCO’92) for certifying low electromagnetic emissions of computer displays. Now it is available for a wide range of ICT and office equipment, for instance, headsets (TCO’07), media displays (TCO’06), desktop computers (TCO’05), notebooks (TCO’05), office furniture (TCO’04), and mobile phones (TCO’01). Besides energy efficiency and environmental criteria, TCO Certification also includes ergonomic criteria.</td>
</tr>
</tbody>
</table>
Eighteen of 42 industry associations are promoting Green ICT standards and labels, including measurement and accounting tools, as well as guidelines used for improving the accountability of energy costs. GeSI, for instance, is developing a reporting guideline within its multi-stakeholder task force.

Energy efficient data centres

Data centres have shown to be one of the most energy hungry ICT applications. As the quantity of data to be stored and managed is continuing to increase dramatically, more data centres will be used in the future (Chaize, 2008; Hasson, 2009; Brodkin, 2009). Six of 42 initiatives of industry associations have focussed their activities on improving data centres in terms of energy efficiency.

As well as the consolidation of physical servers through virtualisation, industry association are promoting the optimisation of power supply and cooling systems within data centre facilities. For instance, the Telecommunications Infrastructure Standard for Data Centers of the Telecommunications Industry Association (TIA) specifies standards for data centre facilities, including “site space and layout, cabling, tiered reliability and environmental considerations”. Its new project, Addendum 2, will also include wider ranges of temperature and humidity, “permitting lower power consumption and reducing of Heating, Ventilating and Air Conditioning (HVAC)”.

Green ICT procurement

Green procurement is another activity increasing the diffusion of Green ICTs. It encompasses the purchase of recyclable, reusable, and energy efficient components, which are necessary for the production of energy and material efficient products. Additionally, green procurement is available for households. Five of 42 initiatives are promoting green ICT procurement.

The Consumer Electronics Association (CEA), for instance, has developed a website (myGreenElectronics.org), where “‘Green products’ can be registered for free exposure”. It is aimed at supporting the purchase of energy efficient ICT products by households and businesses.

ICT applications to members

Three of 42 initiatives of industry associations are also encouraging the use of Green ICT by their members. This includes energy saving tools such as power management applications, but also changing the organisation of work and production through applications such as tele-working and tele-conferencing.

The Climate Savers Computing Initiatives, for instance, stipulate the use of improved power management applications on personal computers for all members. ICT Norway, as another example, is proposing tele-working applications to all its members in order to reduce travelling.

Some industry associations such as the CEA are also promoting applications focussing on ICT disposal. The CEA is providing a web service called “recycler locator”, used to inform consumers about the nearest local recycler. CEA invites companies to host the “recycler locator” on their website, in order to “brand […] as environmentally friendly”.

Optimising ICT value chains

Industry association are also focussing on increasing efficiency throughout their value chain, in order to reduce the ecological footprint of the ICT sector. Nine of 42 initiatives are therefore aiming optimising ICT supply chains, as well as production and distribution networks in terms of energy consumption.
The Green IT project of the Norwegian ICT industry association, for instance, is promoting joint transportation of goods in order to reduce transport costs. As another example, the Voluntary Action Plan on Global Warming Prevention of the Liaison Group of Japanese Electrical and Electronic Industries for Global Warming Prevention encourages improving production capacity in order to reduce CO₂ emissions per basic unit of production.

Main objectives

Industry associations through their programmes presented above have targeted several objectives, which differ significantly. Those objectives are analysed using the following criteria: Type of effect, environmental impact category, and life cycle phases.

Direct effects and enabling effects

As is the case with governmental initiatives, industry association initiative can be divided into three main groups regarding the focus of their programmes. The first group of initiatives is mainly focussing on direct effects of ICTs (27 of 42 initiatives). The next large group is focussing on both direct and enabling effects of ICTs (12 of 42 initiatives). Only a minority of initiatives focus on enabling effects (see Figure 9).

Figure 9. Number of initiatives of industry associations by type of effect¹

1. Based on 42 initiatives of industry associations in a survey of 92 policies and initiatives across 22 OECD countries plus the European Union (50 policies of governments).

Note: Direct effects of ICTs: Initiatives focussing on environmental impacts produced by ICTs themselves. Enabling effects of ICTs: Initiatives focussing on reducing environmental impacts by using ICT applications.

For instance, the EICTA, the Korean Telecommunications Technology Association (TTA) and the Silicon Valley Leadership Group are focussing on direct effects of ICTs. EICTA, through its Environment Policy Group (EPG) is identifying and promoting best practice low-carbon ICTs and accelerating their development and implementation between its members. TTA is promoting standards for mobile telephone chargers including end-of-life management. The Silicon Valley Leadership Group through its Clean & Green Energy Action Plan is encouraging the increase of energy efficient data centres.

In contrast, industry associations like Global e-Sustainability Initiative (GeSI, 2008) and the UK Centre for Economic and Environmental Development (UK CEED) are industry associations considering reducing direct and enabling impacts of ICTs. GeSI is promoting sustainable development in the ICT sector. This includes, for instance, the promotion of programmes to reuse and recycle ICT equipment, as well as the promotion of ICT applications such as smart buildings and smart transportation systems. UK CEED through its SustainIT initiative is also promoting the development and usage of ICT applications for sustainable development including green ICTs. ICT Norway is promoting joint transportation of goods in order to reduce energy costs of its members, as well as encouraging the usage of tele-working applications.
Among the few industry association initiatives considering enabling effects of ICTs (15 initiatives), software for energy optimisation has most frequently been promoted (5 of 15 industry association initiatives), followed by smart transportation, smart grids (including smart metering), and environmental information systems. Smart buildings and smart engines (including smart manufacturing facilities) have been promoted in fewer cases (see Figure 10).

Figure 10. Industry association initiatives considering the enabling effects of ICTs\(^1\) by ICT application\(^2\)

![Graph showing the distribution of initiatives by ICT application](image)

1. Based on 42 initiatives of industry associations in a survey of 92 policies and initiatives across 22 OECD countries plus the European Union (50 policies of governments).
2. **Enabling effects of ICTs**: Initiatives focussing on reducing environmental impacts by using ICT applications.

Environmental impact categories

As is the case for governments, industry associations have mainly focused their initiatives on reducing the direct effects of ICTs on *global warming* and *primary energy use* (see Figure 11). *Toxic waste* has most frequently been targeted by eco label initiatives, as is the case with governments. Other environmental impact categories have rarely been targeted, although industry associations through their initiatives may have an impact on those categories as well (see the impact of virtualisation on land use described in the section on government initiatives).
Figure 11. Number of times environmental impact categories have been targeted by industry associations

1. The number indicates how often initiatives or programmes have targeted an environmental impact category during the complete life cycle. Note that, for each initiative or programme, an environmental impact category could have been targeted five times at maximum, once for each life cycle phase. For example, if global warming is targeted by an initiative in the R&D and design, manufacturing, distribution, use and disposal phases, it will in increase the value for global warming to “5”, thus better reflecting the impact of the initiative on global warming throughout the entire life cycle.

2. Based on 42 initiatives of industry associations in a survey of 92 policies and initiatives across 22 OECD countries plus the European Union (50 government policies).

3. “Others” includes electromagnetic and noise emissions.

Note: Direct effects of ICTs: Initiatives focussing on environmental impacts produced by ICTs themselves.
Enabling effects of ICTs: Initiatives focussing on reducing environmental impacts by using ICT applications.

Primary energy use

Industry associations have most frequently targeted the reduction of ICT related energy usage within their initiatives. This goes hand in hand with their effort to increase energy efficiency. Here again the reduction of primary energy use appears to be driven mainly by the high energy costs in the past.

The objective of the Green Grid initiative, for instance, is to develop “user-centric models and metrics”, which will be used to increase energy efficiency within data centres. The Efficient-Server initiative, as another example, is an international consortium co-ordinated by the Austrian Energy Agency and including companies such as IBM and SUN, which aims at demonstrating the energy saving potential due to efficient server technology.

Global warming

Most industry associations targeting direct effects of ICTs on energy use are also considering the direct effects of ICTs on global warming explicitly (24 of 30 initiatives focussing on primary energy use). The objective of the Climate Savers Computing Initiatives, for instance, is to reduce global CO₂ emissions from the operation of computers by 54 million tons per year by 2010. It thus expects that members will save a total of USD 5.5 billion in energy costs. As another example, the GSMA Development Fund through its Green Power for Mobile (GPM) initiative aims at reducing the need for diesel consumption for powering off-grid base stations, for instance, by using renewable energy sources. This is expected to reduce CO₂ emissions.

The reduction of global warming and primary energy use seem to be motivated by firms’ consideration for CSR, in addition to the high energy prices in recent years. ETNO, for instance, has formulated the Sustainability Charter of the European Telecommunications Network Operators’
Association, in which signatory members (21 of 43 members) commit to the “sustainable provision of products and services with significant environmental, social and economic benefits” as part of their CSR.

Life cycle phases

The life cycle approach is used in order to structure both programmes aiming at direct and enabling effects of ICTs. Like governmental initiatives, industry associations are focussing more on some specific phases of the life cycle than on others, independent of whether they are considering direct or enabling effects. As can be seen in Figure 12, industry associations have most frequently targeted the direct effects of ICTs during the use phase and the disposal phase, while the enabling effects of ICTs have rarely been considered along the complete life cycle.

![Figure 12. Number of times life cycle phases have been targeted by industry associations](chart)

1. The number indicates how often initiatives or programmes have targeted an environmental impact category within each life cycle phase. Note that for each initiative or programme a life cycle phase can be targeted 10 times at maximum, one time for each environmental category. For example, an initiative, which targets all environmental impact categories considered in this paper (e.g. (i) global warming, (ii) primary energy use, (iii) toxicity, (iv) non-energy resource depletion, (v) land use, (vi) water use, (vii) ozone layer depletion, (viii) biodiversity, (ix) electromagnetic emissions, and (x) noise emissions) in the use phase, would increase its value to “10”.

2. Based on 42 initiatives of industry associations in a survey of 92 policies and initiatives across 22 OECD countries plus the European Union (50 policies of governments).

Direct effects

All main life cycle phases

A minority of industry associations are considering the complete life cycle of ICTs within their initiatives. The Environment Policy Group (EPG) of the European Information and Communication Technology Industry Association (EICTA), for instance, is encouraging “environmental considerations at the stage of product design with the aim of reducing all relevant potential environmental impacts over its entire life cycle”. The Voluntary Action Plan on Global Warming Prevention of the Liaison Group of Japanese Electrical and Electronic Industries for Global Warning Prevention envisions “considering all stages of the product lifecycle”.

ICT usage

ICT usage is the life cycle phase most frequently targeted by industry associations’ initiatives. Members of the Climate Savers Computing Initiative (such as the Intel Corporation, Google, Dell, and
EDS) commit to (i) develop products that meet or exceed the ENERGY STAR 4.0 criteria; (ii) purchase “high-efficiency systems for a majority of [their] corporate personal computer and volume server computer”; and (iii) educate “end-users about the benefits of energy-efficient computers and power-management tools for business and home use”. All those commitments are mainly targeting the use phase of ICTs.

ICT disposal

ICT disposal has also been considered frequently within initiatives of industry associations. GeSI, for instance, is working with the Mobile Phone Partnership Initiative (MPPI, Basel Convention, 2003), in order to reduce the environmental impact of mobile phones at their end-of-life. Environmentally sound management of used and discarded mobile phones is being promoted. However, most initiatives targeting ICT disposal as an objective are eco label initiatives like the Electronic Product Environmental Assessment Tool (EPEAT) (see Box 6).

Enabling effects

No industry association’s initiative has promoted ICT applications reducing the environmental impact across the complete life cycle. The few initiatives considering ICT applications mostly focus on specific life cycle phases. The manufacturing phase, distribution phase and use phase have most frequently been promoted, as is the case with government initiatives.

For instance, the Gridwise Architecture Council in the United States is promoting communications architecture and standards, which would enable the use of smart grids (manufacturing phase). In its current report, GeSI (2008) has highlighted a wide range of applications, which could save ca. 7.8 gigatonne of CO₂ emissions. Smart motor systems, smart buildings, and smart grids are examples for ICT applications targeting the use phase within non-ICT sectors. In addition, smart logistics are targeting the distribution phase.

Focus areas

Finally, by classifying programme objectives according to the criteria life cycle phase and environmental impact category simultaneously, areas in which industry associations are focussing can be identified depending on whether they are considering direct or enabling effects of ICTs (see Figure 13 and Figure 14).

Direct effects

As with governments, a high concentration of initiatives considering energy use and global warming during the use phase of ICTs can be observed (compare Figure 13 with Figure 11 and Figure 12). Toxicity, non-energy resource depletion, and land use, also show up as primarily related with the disposal phase of ICTs. Areas of low concentration of initiatives (e.g. direct effects of ICTs on global warming, energy use and toxicity during ICT manufacturing) can also be observed, as well as a large “empty” area with no initiatives (e.g. biodiversity and water use during ICT R&D and design, ICT manufacturing and ICT distribution) (see upper left corner in Figure 13).

Enabling effects

As already shown in Figure 11 and Figure 12, industry associations have barely considered the enabling effects of ICTs. Moreover, as is the case for government initiatives, those few industry associations considering enabling effects mainly concentrate on energy use and global warming during the manufacturing, distribution and use phases (see Figure 14).
Figure 13. Number of initiatives of industry associations focusing on direct effects\(^1\) of ICTs by life cycle phase and environmental impact category\(^2\)

1. Direct effects of ICTs: Initiatives focusing on environmental impacts produced by ICTs themselves.
2. Based on 42 initiatives of industry associations in a survey of 92 policies and initiatives across 22 OECD countries plus the European Union (50 policies of governments).

Figure 14. Number of initiatives of industry associations focusing on enabling effects\(^1\) of ICTs by life cycle phase and environmental impact category\(^2\)

1. Enabling effects of ICTs: Initiatives focusing on reducing environmental impacts by using ICT applications.
2. Based on 42 initiatives of industry associations in a survey of 92 policies and initiatives across 22 OECD countries plus the European Union (50 policies of governments).
Measurement and evaluation

Monitoring industry associations’ programmes and evaluating their outcomes are as important for industry associations as for governments. However, only a minority of industry association initiatives surveyed so far have defined measurable targets within their initiatives. Measurable indicators for monitoring the programmes and measuring their outputs are rarely available.

Nevertheless, there are an increasing number of initiatives measuring energy efficiency improvements or accounting for energy costs of ICTs. Examples are GeSI’s Supply Chain Working Group (SCWG), which is developing a “set of tools and processes to measure, monitor and improve supply chain and social corporate responsibility performance across the ICT sector”. Another example is the Green Grid initiative that is developing “user-centric models and metrics”, to be used for the development of energy efficient standards and processes within data centres.

Finally, this analysis on initiatives of industry associations indicates that Green ICT strategies may be weakly implemented within companies as well. This trend is confirmed by recent surveys, such as the survey for the Green IT Index\(^5\) of the Swedish IT and Telecom Industries (also see Ceres, 2008; Socitm, 2007). According to this survey, 50% of the nearly 1 000 CIOs in both the private and public sectors in Sweden have integrated Green ICT as part of their environmental strategy. However, only 4% of those CIOs integrating Green ICT fully comply with their own strategies, 34% said they comply quite well, and 40% admitted to comply only to a certain extent or not at all. One explanation for the low share of CIOs fully complying with their own strategies is that clear goals have been set in only one in four green ICT strategies (Wikberg, 2008). The survey also confirmed that the public sector has progressed further than the private sector.
CONCLUSION

This survey analyses 92 programmes and initiatives on ICT and the environment across 22 OECD countries plus the European Union. Of these, 50 were established by governments and 42 by industry associations.

Governments have mainly focused on policies stimulating R&D and innovation on Green ICTs and ICT applications, increasing Green ICT diffusion and ICT applications in the public and private sectors, and promoting environment-related ICT skills and education. Industry associations were additionally promoting optimizing ICT value chains in the ICT sector, but rarely focused on environment-related ICT skills and education.

The objectives of policies and programmes on ICT and the environment are classified by three criteria: type of effect (direct or enabling), environmental impact category, and life cycle phase. The high concentration of government programmes and industry initiatives targeting energy efficiency in the direct use of ICTs and in enabling applications is particularly notable. This may be a cause for concern if the continuing global recession and low energy prices make investments in Green ICTs and ICT applications uneconomic on cost grounds.

The measurement and evaluation of initiatives on ICT and the environment are included in only a minority of programmes and initiatives, with governments more frequently using measurable indicators to track inputs and impacts than industry associations. However, some governments and industry associations are developing and promoting instruments for measuring and analysing the quality of their programmes and initiatives. This study does not provide information on how well governments and industry associations have implemented their programmes and initiatives, and what the impacts and outcomes are. More work is needed to analyse these impacts and outcomes.

Finally, programmes and initiatives focussing on ICT and the environment are not the only ones harnessing ICTs to tackle environmental burdens. A wide range of environmental and agricultural policies and programmes also apply ICT applications, such as the Digital Green (DG) research project in India, which aims at disseminating “agricultural information to small and marginal farmers in India through digital video”. Follow-up work on policies and programmes on ICT and the environment should also cover such applications.
REFERENCES

NOTES

1 Initiatives on ICT and the environment of non-profit organisations such as consumer associations, labour unions, research institutes and universities have not been included. However, some of these data have been collected and could be used in a follow-up study: The GreenICT foundation (NGO, Netherlands), 80 PLUS by Ecos (consulting company, United States), CECP certification by CECP (NGO, China), TCO Certification by TCO Development. Research institutions include: The ICT Environmental Sustainable Group of the Australian Computer Society (ACS), the Working Group “Computer and Environment” of the International Federation for Information Processing (IFIP) and the International Institute for Sustainable Development (IISD). International organisations have not been included either, e.g. the ISO standards of the International Standard Organisation (ISO).

2 Government programmes and industry initiatives can be composed of sub-programmes and sub-initiatives. Some governmental bodies and industry associations have a number of small programmes and initiatives, which are not directly comparable with large ones. In order to make these programmes and initiatives more comparable, they have been regrouped by the body that initiated them. In other words, programmes and initiatives of the same government body or industry association are treated as one programme or initiative.

3 Programmes and initiatives on ICT and the environment of governments and industry associations cover: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Hungary, Iceland, Ireland, Italy, Japan, Korea, the Netherlands, New Zealand, Norway, Portugal, Slovak Republic, Sweden, the United Kingdom, and the United States. Switzerland announced the development of its national initiatives on ICT and the environment at the beginning of 2009.

4 This includes degradation of air, water and soil for instance, through smog, eutrophication, and acidification.

5 Some initiatives also target other environmental impact categories such as electromagnetic and noise emissions, which have not been included.

6 In some life cycle approaches, material extraction and packaging are separate life cycle phases. In order to keep the life cycle as simple as possible, these are included in the manufacturing and distribution phases respectively. It should also be noted that in other life cycle approaches distribution is part of the manufacturing phase.

7 High-level OECD Conference on “ICTs, the Environment and Climate Change” (www.oecd.org/sti/ict/green-ict).

8 The following public and non-profit organisations participate in the CLASP: The United States Agency for International Development; the United Nations Foundation; the Australian Department of the Environment, Water, Heritage and the Arts; the Energy Foundation; Energy Efficiency Conservation Authority of New Zealand; Enova of Norway; the International Copper Association; the Ministry of Economy, Trade and Industry of Japan; Renewable Energy and Energy Efficiency Partnership; the United Nations Development Program; the United Nations Department of Economic and Social Affairs; the US Department of Energy; the US Department of State; the US Environmental Protection Agency and the World Bank.

9 Resource depletion (as well as land and water use) can also become an issue in terms of security. According to the United Nations Environment Programme (UNEP), “forty percent of all intrastate conflicts
are related to natural resources” (UNEP, 2009). For example, minerals such as tin, tungsten, tantalum and lithium, which are essential for the manufacturing of many ICT devices (e.g. mobile phones and battery technologies), have originated from conflict regions such as the eastern Democratic Republic of Congo (Global Witness, 2009; Prendergast, 2009).

10 The \textit{manufacturing phase} does not include transportation of ICT equipment.

11 DSA’s e-auction platform (www.edisposals.com) has been awarded the \textit{E-Government Awards for 2008} by the Cabinet Office’ in the category for “Excellence in Shared Services pan-Government”.

12 The Green IT Promotion Council includes the following industry associations: Japan Electronics and Information Technology Industries Association (JETA); Japan Electrical Manufacturers’ Association (JEMA); Japan Electric Measuring Instruments Manufacturers’ Association (JEMIMA); Communications and Information network Association of Japan (CIAJ); Japan Business Machine and Information System Industries Association (JBMIA); Japan Information Technology Services Industry Association (JISA) and Japan Users Association of Information Systems (JUSA).

13 The \textit{Green IT Index}, is based on a survey in which nearly 1 000 Swedish private and public sector managers responded to questions about how they see IT’s environmental impact and how they are working to take advantage of IT. The index measures (i) insight and awareness of Green IT, (ii) action plans, policies and strategies, (iii) implementation and realisation, and (iv) follow up and evaluation.
ANNEX 1. GOVERNMENT POLICIES AND PROGRAMMES

Table 2. Government policies and programmes on ICT and the environment by type of effect

<table>
<thead>
<tr>
<th>OECD Countries</th>
<th>Governments</th>
<th>Direct effects</th>
<th>Enabling effects</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Austria</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Czech Republic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Finland</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Greece</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hungary</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Iceland</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ireland</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Italy</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Japan</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Korea</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Luxembourg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Norway</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Poland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Switzerland</td>
<td>(X)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>United States</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Total OECD countries</td>
<td>21</td>
<td>14</td>
<td>7</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: (X) Switzerland announced the development of its national initiatives on ICT and the environment at the beginning of 2009.
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Origin</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>COAG has agreed to develop a National Strategy for Energy Efficiency to assist households and businesses prepare for the Australian Government's Carbon Pollution Reduction scheme. COAG has also agreed to develop national legislation for energy standards, including labelling, for appliances as part of the National Strategy for Energy Efficiency.</td>
<td>Council of Australian Governments (COAG)</td>
<td>Australia</td>
<td>First order effects</td>
<td>To assist households and businesses to prepare for the Australian Government's Carbon Pollution Reduction scheme.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Energy Performance Scheme (MEPS) are mandatory standards enforced by state government legislation. Electrical goods manufactured and imported into Australia must meet the standards. MEPS for monitors and computers are currently under consideration with implementation due by October 2009.</td>
<td>State governments</td>
<td>Australia</td>
<td>First order effects</td>
<td>To build in a minimum level of energy performance in equipment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ministerial Council on Energy has agreed that smart meters will be rolled out under a national framework. The Council includes representatives of the Australian Government and all Australian state governments. The Australian Government is demonstrating the potential of smart metering through the Solar Cities Program.</td>
<td>Ministerial Council on Energy</td>
<td>Australia</td>
<td>Second order effects</td>
<td>Ministers committed to development of a consistent national framework for smart meters in the National Electricity Market, supporting distributors to be responsible for the roll-out of smart meters. Ministers noted there continue to be some uncertainties about the costs and benefits of smart meters in some jurisdictions and that different staged approaches are being taken to support the further development of smart meters.</td>
<td>Support the further development of smart meters.</td>
<td>Smart meters are to be rolled out in Victoria and NSW, with over 5 million smart meters expected to be deployed before 2017. Queensland and some other states and territories will undertake extensive pilots and business cases prior to a further national review of deployment timelines in 2012.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automatic Shutdown of PCs In June 2008 the Department of Defence commenced mandatory log-off and shut down of PCs.</td>
<td>Department of Defence</td>
<td>Australia</td>
<td>First order effects</td>
<td>Reduce carbon dioxide emissions through PCs being shutdown when not in use.</td>
<td>Electricity savings from this initiative are expected to exceed AUD 5 million annually.</td>
<td>Approximately 50 000 PCs affected, saving 30 000 tonnes of CO₂ per year or equivalent to 7 500 cars being taken off the road permanently.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>Equipment Energy Efficiency Program (E3)</td>
<td>Australian Government, state governments, New Zealand Government</td>
<td>Australia & New Zealand</td>
<td>First order effects</td>
<td>To co-ordinate energy efficiency programs between Australia and New Zealand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green public procurement including the procurement of Green ICTs.</td>
<td>Austria</td>
<td>First order effects</td>
<td>Green public procurement is considered as an instrument to tackle environmental protection and climate change as the public sector procures about 16% of the annual GNP.</td>
<td>In 2007 the Austrian federal government adopted quantitative and qualitative objectives for environmentally-friendly purchases at the federal level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Austrian Eco-Label</td>
<td>Austrian Ministry of Environment</td>
<td>Austria</td>
<td>First order effects</td>
<td>Provides information on environmental impact of production, use and waste disposal of products and presents the environment friendly product alternatives to consumers.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan 2009</td>
<td>Commission Inter-départementale de Développement durable (CIDD)</td>
<td>Belgium</td>
<td>Second order effects</td>
<td>Repositioning of two websites, namely www.info-durable.be for stakeholders and others www.developpementdurable.be, for the general public. Website will be established to present a simulation module</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>RETScreen Clean Energy Project Analysis Software</td>
<td>Natural Resources Canada (NRCan)</td>
<td>Canada</td>
<td>Second order effects</td>
<td>The expected outcome of this work is that by the end of 2012, an estimated 300 000 planners, professionals and decision-makers will have been empowered to make better energy decisions as a result of the knowledge transferred and by the subsequent use of the improved decision-making tools.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada’s Action on Standby Power</td>
<td>Natural Resources Canada and the ElectroFederation of Canada</td>
<td>Canada</td>
<td>First order effects</td>
<td>Reduce power consumption by setting minimum performance standards for a new series of products and to make existing standards even more stringent. These regulations include, for the first time, standards for the amount of standby power some products are allowed to use.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EcoLogo</td>
<td>TerraChoice on behalf of the Government of Canada</td>
<td>Canada</td>
<td>First order effects</td>
<td>"provides customers - public, corporate and consumer – with assurance that the products and services bearing the logo meet stringent environmental standards that have been verified by a third party auditor".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accountability

RETScreen Clean Energy Project Analysis Software

Analysis Software provided free-of-charge and can be used worldwide to evaluate the energy production and savings, costs, emission reductions, financial viability and risk for various types of Renewable-energy and Energy-efficient Technologies (RETs). The software also includes product, project, hydrology and climate databases, a detailed user manual, and a case study based college/university-level training course, including an engineering e-textbook.

Canada’s Action on Standby Power

Development of standards requiring standby limits for consumer electronics. Two phase implementation: 2008 and more stringent standards will follow in 2010. The new standby limits are equivalent to those in the State of California’s energy legislation.

EcoLogo

"Setting standards and certifying products in more than 120 categories, EcoLogo helps you identify, trust, buy, and sell environmentally preferable ("green") goods and services. On this website, you’ll find more than 7,000 EcoLogo-certified products from hundreds of manufacturers."

"It is the only North American standard approved by the Global Ecolabeling Network as meeting the international ISO 14024 standard for environmental labels."
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Origin</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Plan for Green IT:</td>
<td></td>
<td></td>
<td></td>
<td>While IT might be responsible for 2% of global CO₂ emissions, it can also help limit the other 98%.</td>
<td>Positioning Denmark on the forefront of Green IT, partly by bringing about a greener lifecycle for IT solutions [...] and partly by strengthening research and the development of solutions applying IT to reduce our environmental footprint.</td>
<td>Save DKK 150 million on electricity use over a three-year period via the purchase of energy-saving equipment. Save 10% of its annual electricity consumption at the Ministry of Science, Technology and Innovation.</td>
<td>DKK 36 million for research on Green IT, pervasive computing and eGovernment</td>
<td></td>
</tr>
<tr>
<td>1) Catalog of best practice focussing on companies;</td>
<td>Ministry of Science, Technology and Innovation</td>
<td>Denmark</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2) Targeted information on green IT through computer games and digital communities;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Guidelines to green IT in public authorities;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4) Guidelines for how to calculate CO₂ consumption;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5) Research in green IT;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6) Export of Green IT know-how and technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7) International conference on green IT;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8) GreenIT in the Ministry of Science, Technology and Innovation.</td>
<td>Ministry of Science, Technology and Innovation</td>
<td>Denmark</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nordic Ecolabel</td>
<td>Nordic Council of Ministers</td>
<td>Denmark, Finland, Iceland, Norway and Sweden</td>
<td>First order effects</td>
<td>A voluntary license system where the applicant agrees to follow a certain criteria set outlined by the Nordic Ecolabelling in co-operation with stakeholders. These criteria include environmental, quality and health arguments. The criteria levels promote products and services belonging to the most environmentally sound and take into account factors such as free trade and proportionality (cost vs. benefits).</td>
<td>Promote products and services amongst the most environmentally sound.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public procurement and the environment</td>
<td>Hansel Ltd (the Finnish Government’s central procurement unit)</td>
<td>Finland</td>
<td>First order effects</td>
<td>Hansel takes environmental criteria into consideration in the tendering procedures and in framework agreements. During 2007, Hansel with the Finnish Environment Institute has tested the use of environmental criteria in the putting out to tender of tendering projects and is now using those</td>
<td>Hansel’s objective is to create savings for the Government by making the procurement processes of the public administration more efficient. The company also promotes the procurement of high</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Accountability

<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Origin</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>criteria regularly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expert group “Green IT” will be responsible for formulating proposals to make ICT cleaner and to encourage their use in companies.</td>
<td>Ministry of Economy, Industry and Employment</td>
<td>France</td>
<td>Both</td>
<td>Encourage the development of eco-solutions in action plans of the industrial sector and to obtain commitments focused on product design; Assist in the adoption of proposed solutions by businesses and in particular by SMEs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action Plan “Germany: Green IT Pioneer” It includes “green IT solutions” such as optimisation of energy supply (“e-Energy flagship project”), energy storage and logistics through the usage of ICT applications. It also includes “using ICT in an energy- and resource-efficient manner” within Federal Government and the ICT sector, with a high emphasis on data centres as well.</td>
<td>German Federal Ministry of Economics and Technology</td>
<td>Germany</td>
<td>Both</td>
<td>Providing cross-sectoral solutions, especially in areas where [...] energy saving would be particularly significant or easy to achieve. Increase transparency in the area of product usage while simultaneously identifying potential savings - in both economic and environmental terms.</td>
<td>Provide over EUR 400 million in funding for Green IT projects, Reduce energy consumption of federal government’s data centres by 40% by the year 2013 (compared to 2009) Reduce energy consumption of Data Centres by 20% and more.</td>
<td>The Green IT alliance will ensure that the contributions of ICT companies operating in Germany are included in the national monitoring process.</td>
<td>The Federal Ministry of Economics and Technology will assess whether energy efficiency targets are being met.</td>
<td></td>
</tr>
<tr>
<td>Der blaue Engel (The Blue Angel): The Blue Angel is the first and most well-known eco-label worldwide. More than 3 600 products of more than 520 enterprises like Cherry, Dell, Fujitsu, HP, Konica, Samsung have received this label to date, including ICT devices. It is used in more than 20 countries.</td>
<td>Federal Minister of the Interior and approved by the Ministers of the Environment of the German federal government and the German federal states</td>
<td>Germany</td>
<td>First order effects</td>
<td>Promote eco-friendly products in the market.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study opportunities for using resource optimised ICT facilities within the Federal Ministry of Environment</td>
<td>Federal Ministry of Environment and BITKOM, the German IT industry association</td>
<td>Germany</td>
<td>First order effects</td>
<td>Minimise ICT-related energy consumption through the use of energy saving technologies and innovative forms of organisation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Sustainability in the Information and Communication Technologies (NIK: Nachhaltigkeit in der Informations- und Kommunikationstechnik):</td>
<td>German Federal Ministry of Education and Research (BMBF)</td>
<td>Germany</td>
<td>First order effects</td>
<td>Integration of the concept of sustainability into the development and application of information and communication technologies.</td>
<td>"Show industry how the economic potential of information and communication technologies (ICT) can be brought into harmony with the ecological and social requirements of sustainable development."</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment and Energy Operational Program includes developments targeting e-environmental protection</td>
<td>Government of the Republic of Hungary</td>
<td>Hungary</td>
<td>Second order effects</td>
<td>"The successful implementation of the New Hungary Development Plan is inconceivable without strengthening environment protection."</td>
<td>Exploit the opportunities lying in ICT tools to the fullest, in order to support the shift towards sustainable development. Contribute to the reduction of currently existing deficits in the field of environmental democracy by publishing environmental data of public interest electronically and enhancing accessibility to information related services. Development and harmonisation of databases related to the implementation of the Water Framework Directive (WFD).</td>
<td>Budget: HUF 6.8 billion in the programming period 2007-2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Workflow programme: a local wireless network will be used for measuring the traffic and disseminating that information to households. Individuals are expected to use the traffic information to adjust their own behaviour and working conditions.</td>
<td>Department of Communications, Energy and Natural Resources</td>
<td>Ireland</td>
<td>Second order effects</td>
<td>Reduce the traffic around Dublin.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry 2015 - Efficienza Energetica: funding 30 research projects and innovation on energy efficiency of 234 companies (including ICT firms) and 160 research institutes</td>
<td>Ministry of Economic Development</td>
<td>Italy</td>
<td>Second order effects</td>
<td>Relaunch the competitiveness of the industrial system, improving the energy efficiency of the country, e.g. by implementing energy savings in production processes and end-use. Promote the development of new products and innovative technology solutions to meet the needs for mobility and transport of people and goods.</td>
<td>About EUR 500 million investment in research and development Contributing EUR 180 million for investing in projects on sustainable mobility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry 2015 - Mobilità Sostenibile: financing 25 projects on sustainable mobility of 250 companies and 100 research institutes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green IT initiative: 1) Promoting R&D on energy-saving technologies like ultra-high density HDD(^1), Large OLED(^2) and Green Network Systems. 2) Fostering visualisation of environmental impacts of ICT. 3) Encouraging education, environmental management and IT management. 4) Co-Foundation of the "Green IT Promotion Council" consisting of academic, government and industry experts (January 08).</td>
<td>Ministry of Economy, Trade and Industry</td>
<td>Japan</td>
<td>Both</td>
<td>by the year 2025, the amount of data traffic on the internet will be 100-200 times its present value. Electricity consumption of IT equipment in Japan in 2025 will be five times that of 2006 Reducing global warming and energy consumption of ICTs and by using ICTs. "Reduction of CO(_2) emissions to a level approximately the same as that observed in 1990 through use of potential technologies pursued by green IT projects and next-generation vehicles."</td>
<td>JPY 3 billion (May 2008) for research: Networks: JPY 1 283 million; Data Centres: JPY 909 million; Display: JPY 668 million;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Group on ICT Policy for Addressing Global Warming: study how the ICT sector should respond to the issue of global warming.</td>
<td>Ministry of Internal Affairs and Communications</td>
<td>Japan</td>
<td>Both</td>
<td>Kyoto Protocol Estimation of possible effects of ICTs on CO(_2) emissions and power consumption Deliberation on ways</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>--------</td>
<td>----------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Program for Green ICT in the Communications Sector</td>
<td>Korea Communications Commission (KCC)</td>
<td>Korea</td>
<td>Both</td>
<td>“During the OECD Ministerial Meeting held in Seoul in June 2008, participants agreed to utilise the potential of the Internet to resolve global issues including improving energy efficiency and responding to climate change”. “The broadcasting and communications industry has high energy efficiency and rarely requires fossil fuel, thus the Commission is determined to contribute to building eco-friendly society by building infrastructure with green IT technology and saving energy.”</td>
<td>i) Reduction of energy use in the communications sector ii) Reduction of energy use in other sectors utilising communications networks and services iii) Development of eco-friendly industries and creation of new markets on the foundation of communications infrastructure.</td>
<td>Creating 280 000 jobs for the next 5 years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>“Standby Korea 2010” Products that comply with the one-watt regulation can have energy-saving labels while ones that do not meet standby power standards have to have warning labels. Include 22 products including PCs, monitors, printers, fax machines, multi-function printers, TVs, video/DVD players, set-top boxes, home gateways, modems, fixed/wireless telephones, and cell phone chargers. The first stage (2005-2007) is for voluntary one-watt policy. The second stage (2008-2009) is for preparation for transition to mandatory implementation and applying mandatory regulation to some products. In the third stage (2010), the policy will be implemented mandatorily.</td>
<td>Ministry of Knowledge Economy (MKE)</td>
<td>Korea</td>
<td>First order effects</td>
<td>Improving energy efficiency of home appliances by reducing standby power consumption to one watt. Improve energy efficiency of IT devices.</td>
<td>----</td>
<td>Reduction of 20% by 2012. Investment of KWN 200 billion for the development of energy-efficiency enhancing technologies over the next five years.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>‘New IT Strategy’ Set a goal to improve energy efficiency of IT devices to 20% by 2012 and announced it would invest a total of KWN 200 billion in supporting the development of energy-efficiency enhancing technologies over the next five years.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green IDC (Internet Data Center) task force Developed plans include: - energy-saving schemes adequate to the data center, - an energy audit by specialised organisations and - withdrawal of idle equipment. Task force for green informatisation Develop a comprehensive plan to inform about greening government's computing resources.</td>
<td>Ministry of Public Administration and Security (MOPAS)</td>
<td>Korea</td>
<td>First order effects</td>
<td>Make the National Computing and Information Agency eco-friendly. Develop new tasks and a package of plans to promote energy savings. Realise a green government, and Raise awareness of the population.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>“Norway’s green ICT initiatives:**</td>
<td>Ministry of Government Administration and Reform</td>
<td>Norway</td>
<td>Both</td>
<td>Promotion of energy efficiency of cooling of data centres. Promotion of Videoconferencing/e-co-operation through best practice. Green certification for IT-services and Green procurement (Eco-Lighthouse). Support of projects regarding foresight studies to foster IT-enabled, environmentally sound business models.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D and post-graduate education programs: MIT-Portugal Program, a large-scale international collaboration involving the MIT and government, academia, and industry in Portugal.</td>
<td>Portugal</td>
<td>Both</td>
<td></td>
<td>Fostering education and research programs with a special emphasis in future sustainable energy systems enabled by ICT. Speeding up the promotion of renewable energies, energy efficiency and networks for transport of energy. Improve energy efficiency of public buildings. Anticipation of the investment plan on the energy interconnection infrastructure. Stimulating the activity of suppliers in the industries of cables, metal products, electric equipment and construction.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measures for public procurement in 2009-2010</td>
<td></td>
<td></td>
<td></td>
<td>The installation during 2009 of solar panels (300 000 m2) and micro-generation units (12 500 units), particularly mini-wind turbines. Investment in energy metering networks in order to endow 10% of domestic consumers with intelligent metering systems and allow optimisation of energy use.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| **Energy labeling** | Ministry of Economy of the Slovak Republic | Slovak Republic | First order effects | To increase the use of environmental related electric and electronic devices by setting-up legislative conditions and technical standards for energy labeling of electric and electronic appliances, marking their energy efficiency and to stimulate research and development in energy saving technologies. | Implemented ongoing actions:
- Co-operation with consumer protection associations.
- Co-operation with testing laboratories (appliance certifications).
- Co-operation with advising centres for efficient use of energy sources (NGO Energetické centrum, Slovenské elektrárne/ENEL, NGO Ekopolis, Ekoconsult, etc.).
- Co-operation with the Office of Standardisation, Metrology and Testing and with the Slovak Institute for Technical Standardisation (issuing technical standards). |
| **Energy, IT and Design** | Energimyndigheten - The Swedish Energy Agency | Sweden | Second order effects | Produce attractive IT-solutions which give detailed and useful information, facilitating people’s control of their energy use to increase energy efficiency in every day life.
Help the Swedish industry become leader in energy-efficient products and services. | |
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Origin</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>The EnergyCoach</td>
<td>Vinnova - The Swedish Governmental Agency for Innovation Systems</td>
<td>Sweden</td>
<td>Both</td>
<td>Create a service that makes it easier for energy users to control their energy consumption</td>
<td>Make energy consumption of Government ICT on the office estate carbon neutral by 2012. By 2020 Government ICT will be carbon neutral across its lifecycle. Reduce greenhouse gases by 30% or more by 2020 and by at least 60% by 2050.</td>
<td>A Green ICT Scorecard that benchmarks organisational behaviour, policy, governance, procurement, energy efficiency, labelling and disposals is being used.</td>
<td>A Green ICT Scorecard that benchmarks organisational behaviour, policy, governance, procurement, energy efficiency, labelling and disposals is being used.</td>
<td></td>
</tr>
<tr>
<td>Saber</td>
<td>Chief Information Officer / Chief Technology Officer Council</td>
<td>United Kingdom</td>
<td>First order effects</td>
<td>As Britain’s largest purchaser of ICT, Government wants to set an example in the sustainable use and disposal of computers, servers and printers.</td>
<td>Reduce energy consumption and CO₂ emission of Government ICT</td>
<td>A Green ICT Scorecard that benchmarks organisational behaviour, policy, governance, procurement, energy efficiency, labelling and disposals is being used.</td>
<td>A Green ICT Scorecard that benchmarks organisational behaviour, policy, governance, procurement, energy efficiency, labelling and disposals is being used.</td>
<td></td>
</tr>
<tr>
<td>Greening Government ICT – the Green ICT Strategy The strategy includes immediate action, with simple steps like: "turning off PC’s overnight, at weekends and during holiday periods" or "ensuring peripheral equipment is switched off overnight". It also includes procurement, configuration of ICT equipments, and e-waste. A Green ICT Scorecard is used for benchmarking Green ICT policies across departments. The Green ICT Delivery Group “GDU” has been established by the MOD supported by both the CIO and CTO Councils to increase awareness of best practice to improve green ICT and to provide support and advice to departments in its implementation.</td>
<td>Ministry of Defence (MOD) - Defence Equipment and Support (DE&S)</td>
<td>United Kingdom</td>
<td>Both</td>
<td>Worldwide PC disposals 160 million in 2007 or 460 000 per day</td>
<td>Delivering sustainability via resale & recycling</td>
<td>Delivering sustainability via resale & recycling</td>
<td>Delivering sustainability via resale & recycling</td>
<td></td>
</tr>
<tr>
<td>Save Energy Now: DOE Data Center Energy Efficiency Program 1) No-cost energy assessment performed by a DOE Energy Expert. 2) Partnerships with Computer Data Centers, national supply chain and US Department on Energy (Industrial Technologies Program)</td>
<td>US Department on Energy (Industrial Technologies Program)</td>
<td>United States</td>
<td>Both</td>
<td>Reduce energy consumption</td>
<td>Annual assessment of energy savings realised</td>
<td>Annual assessment of energy savings realised</td>
<td>Annual assessment of energy savings realised</td>
<td></td>
</tr>
</tbody>
</table>

First order effects

As Britain’s largest purchaser of ICT, Government wants to set an example in the sustainable use and disposal of computers, servers and printers.

Reduce energy consumption and CO₂ emission of Government ICT

Make energy consumption of Government ICT on the office estate carbon neutral by 2012. By 2020 Government ICT will be carbon neutral across its lifecycle. Reduce greenhouse gases by 30% or more by 2020 and by at least 60% by 2050.

A Green ICT Scorecard that benchmarks organisational behaviour, policy, governance, procurement, energy efficiency, labelling and disposals is being used.

A Green ICT Scorecard that benchmarks organisational behaviour, policy, governance, procurement, energy efficiency, labelling and disposals is being used.

By 2017: - 25% reduction in industrial energy intensity. By 2011: - 3 000 data centers

Annual assessment of energy savings realised

Annual assessment of energy savings realised
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Origin</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>trade associations, state and local agencies, and others. 3) Provision of system-specific software tools to analyse energy use. 4) Provision of information & case studies. Data Center specific activities: 1) Establish metrics for overall data center energy intensity 2) Create technologies, tools and guidelines to drive continuous improvement. 3) Support third-party certification process to validate energy intensity improvement and Best-in-Class. 4) Provide recognition for data centers that achieve a certain level of energy savings.</td>
<td>Energy Star: “U.S. standard for energy efficient electronic equipment” US Environmental Protection Agency United States First order effects Global climate change has emerged as one of the world’s most significant environmental challenges. Save energy costs</td>
<td>(DCs) will have completed awareness training. - 1 500 mid-tier and enterprise-class DCs will have applied the Assessment Protocols and Tools to improve DC energy efficiency by 25% (on average). - 200 enterprise-class DCs will have improved their energy efficiency by 50% (on average). - 200 Qualified Specialists will be certified to assist DCs.</td>
<td>Annually “Americans. with the help of ENERGY STAR, prevented 40 million metric tons of greenhouse gas emissions in 2007 alone […] and saved more than $16 billion on their utility bills.”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greening of IT Working Group. Topics for the Working Group to examine may include: A call to action to raise awareness of the CIO’s role in “green IT” Policies, business and procurement strategies, and emerging best practices for state CIOs to “green” state IT</td>
<td>National Association of State CIOs (NASCIO) United States First order effects “As ‘green’ becomes the moral imperative of the 21st century, the role of the state CIO will become increasingly relevant.” “Explore the role that CIOs can play in their states to preserve the environment while providing the technology that enables state government operations.”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action Plan for Energy Saving: The action plan outlines a framework of policies and measures designed to realise the estimated savings potential of over 20% of the EU’s annual primary energy consumption by 2020, compared with the business-as-usual scenario. The plan also looks to reinforce Europe’s position as a world leader in energy efficiency. It intends to mobilise the general public, market actors and policy makers, transforming the EU</td>
<td>European Commission, DG for Energy and Transport European Community Both Increased dependence on energy imports. Concerns about supplies of fossil fuels and the effects of climate change. Road traffic congestion is estimated to affect 10% of the road network, and yearly costs amount to 0.9-1.5% of the EU GDP. Road transport accounts for 72% of all transport-related</td>
<td>Reduction of greenhouse gas emissions from energy consumption. Increasing the use of renewables to 20% of total energy consumption by 2020. Increasing energy efficiency should ensure total energy consumption is 20% lower than current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>----------------</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Action Plan for the Deployment of Intelligent Transport Systems in Europe (2008)</td>
<td>European Commission, DG for Enterprise and Industry</td>
<td>European Communi ty</td>
<td>First order effects</td>
<td>CO₂ emissions, which increased by 32% (1990-2005). Whilst road fatalities are in regression (-24% since 2000 in EU27) their number (42,953 fatalities in 2006) is still 6,000 above the intended target of a 50% reduction in fatalities in the period 2001-2010. There are many untapped opportunities to save energy and encourage the use of renewable energy sources in Europe, but market conditions do not always help.</td>
<td>projections for 2020. Transport and travel to become: cleaner, more efficient, including energy efficient, safer and more secure. Save 20% of energy consumption by 2020 by: Fostering energy efficiency and the rational use of energy sources. Promoting new and renewable energy sources and energy diversification. Promoting energy efficiency and new energy sources in transport.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy-using Product Directive (EuP)</td>
<td>European Commission, DG for Enterprise and Industry</td>
<td>European Communi ty</td>
<td>First order effects</td>
<td>Sets standards to reduce the environmental burdens of energy consuming products, while considering the complete life cycle.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication of the European Communities "Addressing the challenge of energy efficiency through ICTs"</td>
<td>European Commission, DG for Information Society and Media</td>
<td>European Communi ty</td>
<td>Both</td>
<td>European governments have adopted an energy and climate package to guide the EU towards a competitive and secure energy economy while promoting energy savings and climate-friendly energy sources.</td>
<td>Reducing the carbon footprint of ICTs. ICTs as an enabler to improve energy efficiency across the economy. Increasing the visibility and improving the understanding of ICTs. All future buildings should become at least energy-neutral from 2015 onwards and pave the way for new ICT-supported approaches to produce, distribute and trade energy</td>
<td>EUR 159 million for R&D. ICT for the intelligent vehicles and mobility services: EUR 57 million. ICT for Co-operative Systems: EUR 48 million.</td>
<td>R&D programmes are evaluated on a regular basis</td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>ICT for Environmental Management (Smart Monitoring, Collaborative Information Systems, Dynamic Chaining of Services)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICT for Disaster and Risk Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICT for Energy Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intelligent Car Initiative</td>
<td></td>
<td></td>
<td></td>
<td>Ever-increasing road traffic generates serious social problems: congestion of road networks and urban areas, damage to the environment and to public health, energy waste and, above all, accidents. 40,000 people die every year on Europe's roads and many more are injured.</td>
<td>for energy efficiency. Building consensus among all the key players involved: citizens, Member States, service providers and the car industry. Removing legal and institutional barriers. Stimulating consumer demand for the new onboard technologies. Support public authorities in addressing the problems of providing information for monitoring and reporting environmental impacts and threats.</td>
<td></td>
<td>ICT for Environmental Management and Energy Efficiency: EUR 54 million.</td>
<td></td>
</tr>
<tr>
<td>NESIS - A Network to enhance a European Environmental Shared and Interoperable Information System:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU Codes of Conduct - Broadband equipment:</td>
<td>European Commission, DG Joint Research Centre (JRC)</td>
<td>European Community</td>
<td>First order effects</td>
<td>“Broadband equipment will contribute to the electricity consumption in European Community depending on the penetration level, the specifications of the equipment and the requirements of the service provider, a total European consumption of up to 50 TWh per year can be estimated for the year 2015.” *No EU regulatory or voluntary initiatives addressing the energy efficiency of data centres. This creates a risk of confusion, mixed messages and uncoordinated activities. Need for independent</td>
<td>Reduction of energy consumption of broadband equipments. Increasing energy efficiency of data centres.</td>
<td>“The (maximum) electricity consumption could be limited to 25 TWh per year, this is equivalent to 5.5 Million tons of oil equivalent (TOE) and to total saving of about EUR 7.5 Billions per year.”</td>
<td>Annually</td>
<td></td>
</tr>
<tr>
<td>EU Codes of Conduct - Data Centres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Data centres” of all sizes. Server rooms to dedicated buildings both existing and new. IT power and Facility power. Equipment procurement and system design. Participants: Data centre owners and operators. Endorsers: Vendors, consultants, industry associations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Union Eco-label: A voluntary scheme designed to encourage businesses to market products and services that are kinder to the environment and for European consumers - including public and private purchasers - to easily identify them. The Flower is found throughout the European Union as well as in Norway, Liechtenstein and Iceland. The European Eco-label is part of a broader strategy aimed at promoting sustainable consumption and production.</td>
<td>European Commission, DG Environment</td>
<td>European Community</td>
<td>Both</td>
<td>assessment and co-ordination - tailored to European conditions such as the climate and energy markets regulation.</td>
<td>Improve the availability and quality of information needed to design and implement Community environment policy. Reduce administrative burden on Member States and EU institutions and modernise reporting. Foster the development of information services and applications that all stakeholders can use and profit from.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared environmental information service</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Origin</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Energy Standards Information System (APEC-ESIS):</td>
<td>Asia-Pacific Economic Co-operation</td>
<td>Asia-Pacific</td>
<td>Second order effects</td>
<td>Rising energy costs</td>
<td>Provision of information about appliance and equipment energy standards and regulations.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides up-to-date information about appliance and equipment energy standards and regulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides links to experts and information related to standards and regulations being used by APEC and other economies.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides a regular newsletter with news updates and a listing of new and proposed standards in the region (APEC Standards Notification Procedure).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides Key Contacts in APEC economies to review the listing of standards for their economies so that they can be updated systematically, and on a regular basis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Provides “Communities of Practice” for experts and officials to discuss efforts to harmonise and rationalise the testing, labeling, and minimum energy standards for specific appliances and equipment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **Buildings and Appliances Task Force** | Asia-Pacific Partnership on Clean Development & Climate | Australia, Canada, China, India, Japan, Korea, United States | Both | The buildings sector uses between 20% and 40% of total primary energy for all sectors. Buildings account for an even larger share of total electricity use among the Partner countries, ranging from 25% to 60%. | Use co-operative mechanisms to support the further uptake of increasingly more energy efficient appliances. Promote best practice and demonstrate technologies and building design principles to increase energy efficiency in buildings. Support the integration of appropriate mechanisms to increase the uptake of energy-efficient buildings and appliances. Systematically identify and respond to the range of barriers that | The BATF will be considering whether it is feasible and appropriate to establish “aspirational goals” for energy and carbon savings as of a specified date, expressed either in percentage or absolute terms (GWh saved or avoided tons of CO₂). | Assess impact of policies and programmes and track progress toward greater efficiencies. | |
Focus Group (FG) on ICTs and Climate Change

It will identify, from the standardisation viewpoint, the impact of ICTs on Climate Change, in particular the reduction of ICT’s own emissions over their entire lifecycle (direct impact), the mitigation that follows through the adoption of ICTs in other relevant sectors (indirect impact), and facilitate the monitoring of relevant climate parameters.

Initiator: International Telecommunication Union (ITU)

Origin: Global

Focus: Both

Rationale: “It is estimated that ICTs contribute around 2-2.5 per cent of global greenhouse gas (GHG) emissions. These percentages are likely to grow as ICTs become more widely available. At the same time, ICTs can be a major linchpin in efforts to combat climate change and serve as a potent, cross-cutting tool to limit and ultimately reduce GHG emissions across economic and social sectors, in particular by the introduction and development of more energy efficient devices, applications and networks, as well as their environmentally sound disposal.”

Objectives: The FG should analyse and identify gaps in the areas of definitions, general principles, methodology and appropriate tools to characterise the impact of ICTs on Climate Change and support the development of appropriate international standards.

Hard Target:

Monitoring:

Evaluation:

Collaborative Labelling and Appliance Standards Programme (CLASP):

"Standards and Labels (S&L) for the energy efficiency of appliances, equipment, and lighting products". "CLASP has provided S&L technical assistance with national implementation to over 50 countries. Since 1999, CLASP has assisted with the implementation of 24 standards and/or labels."

Initiator: United States Agency for International Development (USAID)

Origin: Global

Focus: First order effects

Rationale: “Energy efficiency standards and labels (S&L) for appliances, equipment, and lighting products are an especially cost-effective policy for conserving energy.”

Objectives: Save energy costs

Hard Target: Save over 115 terawatt hours (TWh) of electricity and 30 mega tonnes of CO₂ (Mt CO₂) annually by 2020.

Monitoring:

Evaluation:

Mobile Phone Partnership Initiative (MPPI):

At the sixth meeting of the Conference of the Parties in 2003 the Mobile Phone Partnership Initiative (MPPI) was established as a sustainable partnership on the environmentally sound management of used and end-of-life mobile telephones.

Initiator: Basel Convention on the Control of Transboundary Movements of Hazardous Wastes

Origin: Global

Focus: First order effects

Rationale: Increase in global trade in hazardous wastes

Objectives: "Ensure environmentally sound management of used and end-of-life mobile telephones" by providing guidance documents

Hard Target:

Monitoring:

Evaluation:

Partnership for Action on Computing Equipment (PACE):

Initiator: Basel Convention on the Control of

Origin: Global

Focus: First order effects

Rationale: Increase in global trade in hazardous wastes

Objectives: "The environmentally sound management of
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Origin</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>is a multi-stakeholder partnership between industry, government, academia and civil society to address the environmentally sound management of used and end-of-life personal computers.</td>
<td>Transboundary Movements of Hazardous Wastes</td>
<td></td>
<td></td>
<td></td>
<td>used and end-of-life personal computers. by providing guidance documents</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANNEX 2. INDUSTRY ASSOCIATION INITIATIVES

Table 4. Industry association initiatives on ICT and the environment

<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Region</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byteback</td>
<td>Australian Information Industry Association together with Sustainability Victoria, a Victorian Government agency</td>
<td>Australia</td>
<td>First order effects</td>
<td>Keep old computers out of landfill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Information and Communications Technology Standards Advisory Council of Canada (ISACC):</td>
<td>Members of ISACC include all ICT-related Standards Development Organisations in Canada, related industry associations and a wide representation of private industry, consumer and government interests.</td>
<td>Canada</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tips for reducing ICT-related energy consumption</td>
<td>BITKOM German Association for Information Technology, Telecommunications and New Media</td>
<td>Germany</td>
<td>First order effects</td>
<td>Minimise ICT-related energy consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Byteback**: a computer take-back programme to help people dispose of unwanted computer equipment responsibly.
- **Information and Communications Technology Standards Advisory Council of Canada (ISACC)**: works on energy efficiency metrics and recycling harmonisation. They propose a new GSC Resolution on ICTs and the Environment and have provided draft text.
- **The Garantiesystem Altgeräte (WEEE Guarantee System)**: The first such system to be granted official recognition by the EAR foundation, and now has over 900 subscribers from manufacturers in the electrical and electronic equipment sector. It covers all types of equipment from MP3 players to refrigerators, and all sizes of companies with guaranteed sums ranging from just a few cents to several million Euro. Many foreign companies too have opted for the Garantiesystem Altgeräte System. This solution from Bitkom Servicegesellschaft is available to all industry sectors.
Initiatives / Projects

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Region</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Development of an "Energy Check for Data Centers" in co-operation with the Federal Ministry of Economics and Technology, in conjunction with the IT-Summit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organisation of the joint Annual Conferences of the Federal Ministry for the Environment, the Federal Environment Agency and BITKOM in 2006 (Dessau), 2008 (Berlin – www.dialogprozess-konsum.de/itk-konferenz) and the planning of the same for 2009 (CeBIT Hannover).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expert events for ICT providers and users (e.g. BITKOM user forum „IT infrastructure and energy efficiency in November 2007).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The ECO-LEAF environmental label</td>
<td>JEMA Japan</td>
<td>First order effects</td>
<td>Present information about the environmental impact of a product or service without making any judgment about whether the product or service meets any environmental quality standard. It is up to users of products and services to make that judgment on the basis of the information presented. By encouraging companies to provide this information, the ECO-LEAF programme aims to encourage them to introduce eco-conscious products and services.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Region</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>PC Green Label</td>
<td>PC 3R Promotion Center (JEITA)</td>
<td>Japan</td>
<td>First</td>
<td>order effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"The PC 3R Promotion Center was established in May 2004, for the purpose of manufacturers and import retailers of PCs and PC displays promoting the 3Rs (reduce, reuse and recycle) based on the "Law for Promotion of Effective Utilisation of Resources."</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental (Asia-Pacific) standards and environment-related (ICT’s) businesses for economic growth in developing countries. Discussion of deployment of standards for ICTs and Climate Change and their dissemination.</td>
<td>Telecommunication Technology Committee (TTC)</td>
<td>Japan</td>
<td>Second order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voluntary Action Plan on Global Warming Prevention: Voluntary reduction of CO₂ emissions per basic unit of production, while improving production capacity. Considering all stages of the product lifecycle. Reduction of CO₂ by promoting nuclear energy and expanding the use of renewable energy. Encourage the use of energy efficient products. Promoting energy-saving appliances and Green IT. "Energy Conservation for IT and Energy Conservation Through IT". Contributing to technological innovation around the world.</td>
<td>The Liaison Group of Japanese Electrical and Electronic Industries for Global Warning Prevention</td>
<td>Japan</td>
<td>Both</td>
<td>Global Warming Prevention</td>
<td>Reduce global CO₂ emissions and energy costs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard for chargers for mobile telephones: "In 2001, TTA developed a standard for chargers for mobile telephones with a view to reducing problems of disposing of unwanted and scrap chargers. In 2007, it revised the specification to better accommodate multimedia functions."</td>
<td>Telecommunications Technology Association of Korea (TTA)</td>
<td>Korea</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIP Sustainable Information Technology "Facilitate the sustainable use of ICT, initiating and advising on scientific research and various forms of communication such as information, lectures and workshops."</td>
<td>ICT Innovation Plattform (IIP)</td>
<td>Netherlands</td>
<td>Both</td>
<td></td>
<td></td>
<td>Encouraging and promoting sustainability in and through information and communication technology.</td>
<td></td>
</tr>
<tr>
<td>Green IT: A project initiated by the Norwegian ICT industry association to promote environmentally sustainable practices among members and to promote the potential of ICTs in tackling climate change across all sectors of the economy.</td>
<td>ICT Norway</td>
<td>Norway</td>
<td>Both</td>
<td></td>
<td></td>
<td>(1) Joint transportation of goods. (2) "Environmental IT service off-shoring". (3) "Joint environmental research". (4) Increasing de-materialisation and video conferencing.</td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Region</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Green IT:</td>
<td>Swedish IT and Telecom Industries</td>
<td>Sweden</td>
<td>First order effects</td>
<td>1) Raising awareness among decision makers in the private and public sectors about Green IT as a business strategic issue. 2) Show how Green IT works. 3) Learning how Green IT can be implemented in its own activities 4) Contribute to a long-term sustainable social development by increasing the share of business with elements of Green IT</td>
<td>The Green IT Index is used as a monitoring tool.</td>
<td>Annual reports</td>
<td></td>
</tr>
</tbody>
</table>
Accountability

<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Region</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Electronics Energy Efficiency Group</td>
<td>Intellect</td>
<td>United Kingdom</td>
<td>Both</td>
<td></td>
<td>(1) Monitor and measure the emissions generated by our own products and services, (2) Improve environmental performance throughout our own supply chain by sharing best practice, (3) Stimulate and encourage behavioural change, (4) Identify and accelerate the development of the best low carbon technologies.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"The Energy Efficiency Group discuss all aspects of energy efficiency in CE products. The discussions include promotion of the most efficient devices and the application where appropriate of product subsidies for energy smart designs."</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy and Environment Working Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"explore how the technology sector can help bring about a low carbon economy, highlight the good work already being done across our industry and identify areas for improvement. The group produced a substantial report: 'High Tech: Low Carbon - the role of the technology sector in tackling climate change'."</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy and Environment Leadership Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"This is effectively an advisory group to the President and Director General which sets the strategic direction for Intellect's energy and environment programme."</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health, Safety & Environment Co-ordinating Committee</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Intellect's Health, Safety and Environment Co-ordinating Committee (HSECC) meets on a regular basis to discuss strategic policy on national, European and international legislation, both proposed and enacted, on the environment as well as health and safety matters."</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SustainIT:</td>
<td>UK CEED (The UK Centre for Economic and Environmental Development)</td>
<td>United Kingdom</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"The programme's activities focus on the role of ICT within the following themes: Digital Inclusion, Environmental Efficiency, Improved Public Services, Better Ways of Working"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental IT Leadership Team (EILT)</td>
<td>United Kingdom</td>
<td></td>
<td>First order effects</td>
<td></td>
<td>Increase understanding of IT’s environmental impact. Promote solutions that help IT user organisations reduce cost and cut carbon emissions. Inform and assist policy-makers in making decisions on environmental IT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"The Environmental IT Leadership Team (EILT) is a unique panel of major ICT users from a range of different sectors who are committed to taking practical action to cut carbon dioxide emissions from the ICT sector."</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Region</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Committee on Network Interface, Power, and Protection (NIPP): ATIS, through its Committee on Network Interface, Power, and Protection (NIPP), is working on a standardised assessment of equipment energy requirements. This is intended to reduce power consumption of selected equipment and the Restriction of use of Hazardous Substances (RoHS). Its Energy Reporting Metrics (ERM) Ad Hoc Committee is developing measures to compare product energy use for equipment purchase and network planning decisions. ATIS held a Green Workshop in late July 2008.</td>
<td>Alliance for Telecommunications Industry Solutions (ATIS)</td>
<td>United States</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>myGreenElectronics.org: Website “about responsible purchasing, enjoyment and disposal of electronics”. CEA suggests to host the “recycler locator” on the website of companies, who want to “brand [...] As Environmentally Friendly”. “Green products” can also be registered for free exposure on the site”. myGreenElectronics.org provides: A database of the latest eco-friendly electronics. Electronics recycling programs searchable by zip code. An energy-consumption calculator to learn how much power your products use and what this means for your wallet. A repair-versus-replace decision tree. Corporate recycling and donation options. Energy-saving and life-extending tips for the products you enjoy every day.</td>
<td>Consumer Electronics Association (CEA)</td>
<td>United States</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy Efficiency of Consumer Electronics: CEA-2013-A (ANSI): CEA-2013 defines maximum background mode (SLEEP state) energy consumption of basic digital set top boxes (STBs), whose primary function is video reception and delivery. CEA-2022 (ANSI): CEA-2022 defines a method for measuring power consumption of a digital set top box (STB) whose primary function is video reception and delivery when operating in an active (ON) state.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications architecture and standards to promote the use of smart grid technologies in the United States.</td>
<td>Gridwise Architecture Council</td>
<td>United States</td>
<td>Second order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telecommunications Infrastructure Standard for Data Centers: “Specifies site space and layout, cabling, tiered</td>
<td>Telecommunications Industry Association (TIA)</td>
<td>United States</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Region</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Clean & Green Energy Action Plan</td>
<td>The Silicon Valley Leadership Group</td>
<td>United States</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Product Environmental Assessment Tool (EPEAT)</td>
<td>Zero Waste Alliance</td>
<td>United States</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Addendum 2, a future project, will expand the standard to allow for wider ranges of temperature and humidity, permitting lower power consumption and reducing of Heating, Ventilating and Air Conditioning (HVAC)." EATRACK: "Delivers information on product-oriented environmental compliance for the electronics sector. The EATRACK Team is made up of legal and technical partners that cut across the disciplines of law, environmental policy and science. Compliance issues are tracked through subject updates and reports across global jurisdictions."

Cle & Green Energy Action Plan encompasses several projects for reducing CO₂ emissions like: Efficient Data Centers: survey about the energy efficiency of existing data centres compared to best-case scenarios (svlg.net/campaigns/datacenter). The result in brief: "Existing data operators can achieve nearly the same efficiency as new commissions."

Electronic Product Environmental Assessment Tool (EPEAT) "EPEAT is a system to help purchasers in the public and private sectors evaluate, compare and select desktop computers, notebooks and monitors based on their environmental attributes. EPEAT also provides a clear and consistent set of performance criteria for the design of products, and provides an opportunity for manufacturers to secure market recognition for efforts to reduce the environmental impact of its products." The EPEAT Registry on this website includes products that have been declared by their manufacturers to be in conformance with the environmental performance standard for electronic products - IEEE 1680-2006.
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Region</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Accountability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficient-Server:</td>
<td>Austrian Energy Agency, Ademe, IBM, Sun, University of Karlsruhe (TH)</td>
<td>Europe</td>
<td>First order effects</td>
<td>The worldwide energy consumption of servers amounts to roughly 123 TWh/year (1). According to forecasts for the German market the electricity consumption of servers will increase by 50% between 2005 and 2010 (2). It is expected that energy costs for the operation of servers will exceed the costs for server hardware by 2015.</td>
<td>The project Efficient Servers conducted within the EU programme Intelligent Energy Europe aims at demonstrating the high saving potentials due to efficient server technology in practice and at supporting the development of the market for energy efficient servers.</td>
<td></td>
</tr>
<tr>
<td>The Sustainability Charter of the European Telecommunications Network Operators’ Association:</td>
<td>ETNO (European Telecommunications Network Operators’ Association)</td>
<td>Europe</td>
<td>Both</td>
<td>Sustainable development is a global strategic goal, which seeks to achieve economic growth that promotes a fair and just society while conserving the natural environment and the world’s scarce, non-renewable resources for future generations.” Corporate Social Responsibility is the business contribution to making sustainable development happen, through the proactive management of a company’s environmental, social and economic impacts.</td>
<td>A sustainable provision of products and services with significant environmental, social and economic benefits. A determined effort to integrate our business activities with environmental, social, and economic responsibilities — minimising, where practicable, any negative impact these activities may generate.</td>
<td></td>
</tr>
<tr>
<td>ELECTRA:</td>
<td>EU’s electrical and electronic engineering industry and the European Commission</td>
<td>Europe</td>
<td>First order effects</td>
<td>Reduce global CO₂ emissions and increase energy efficiency.</td>
<td>20% increase in energy efficiency 20% reduction in CO₂ emissions 20% share of renewables in the EU’s overall energy consumption by 2020.</td>
<td></td>
</tr>
<tr>
<td>Environment Policy Group (EPG)</td>
<td>European Information and Communication Technology Industry Association (EICTA)</td>
<td>Europe</td>
<td>First order effects</td>
<td>Integration of environmental considerations at the stage of product design with the aim of reducing all relevant potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Region</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------</td>
<td>--------</td>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Committee on Sustainable Development Fiber (SUDEFIB):</td>
<td>FTTH Council</td>
<td>Europe</td>
<td></td>
<td>"Published a pamphlet arguing that FTTH network solutions are sustainable and contribute to a greener Europe"</td>
<td>"The central strategic impact of the project is the increase of the share of energy-efficient procurement procedures on European level."</td>
<td></td>
</tr>
<tr>
<td>GreenLabelsPurchase: Support of the procurement process in public authorities by using energy labels</td>
<td>GreenLabelsPurchase</td>
<td>Europe</td>
<td></td>
<td>"The support of local, regional, national and European-wide initiatives for Greener public procurement will support the implementation of energy efficient procurement procedures in a higher share of administrations and for a higher share of purchases."</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate Savers Computing Initiatives:</td>
<td>Climate Savers Computing Initiatives</td>
<td>Global</td>
<td></td>
<td>"By 2010, about half of the Forbes Global 2000 companies will spend more on energy than on computing hardware such as PCs and servers."</td>
<td>Reduce global CO₂ emissions and energy costs.</td>
<td>(1) Reduce global CO₂ emissions from the operation of computers by 54 million tons per year by 2010. (2) Committed participants are expected to collectively save USD 5.5 billion in energy costs.</td>
</tr>
<tr>
<td>ECMA-341 3rd edition:</td>
<td>Ecma (Ecma International)</td>
<td>Global</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECMA-370 2nd edition (The Eco Declaration - TED):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accountability

- Environmental impacts over its entire life cycle.
Initiatives / Projects

<table>
<thead>
<tr>
<th>Initiator</th>
<th>Region</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Efficiency Inter-Operator Collaboration Group (EE IOCG)</td>
<td>Global</td>
<td>First order effects</td>
<td>The electrical energy consumption of the EE IOCG members networks is equivalent to the National consumption of Switzerland.</td>
<td>Share energy critical issues and agree on common goals.</td>
<td>Define high level strategic actions and co-ordinated guidance towards - Standardisation and - Equipment suppliers (both network and user side) in order to speed up the availability of Energy Efficient equipment and networks, helping vendors towards investments optimisation.</td>
<td>Finalise high level analysis to support Operator’s strategy: - Evaluation of energy consumption trends for different FTTx scenarios - Definition of a set of KPI to monitor the action implemented.</td>
<td></td>
</tr>
</tbody>
</table>

Action Points:

1. xDSL: Reduce energy consumption in full power state according to CoC BB. Introduce power saving methods when little or no traffic.
2. Environmental Conditions: Extend temperature ranges for DC rooms to enable more efficient cooling.
3. IT Equipment Efficiency: Extend temperature ranges of ICT equipment towards Class 3.1 of ETSI Standard EN 300 019-1-3. Define common target values in RFQs and KPIs for efficient IT equipment.
4. Switches and routers: Energy optimised IP and LAN.
5. DSL NT/ONT: Define common target values in RFQs for DSL NT/ONT. Define power saving mechanisms when little or no traffic.
6. STB and End User Equipment: Define common target values in RFQs for STB. Define power saving mechanisms / architectures.
7. Cooling @ CO/IDC: Extend fresh air cooling and define KPIs (COP) for efficient cooling.

GeSI (Global e-Sustainability Initiative):

“GeSI fosters global and open co-operation, informs the public of its members’ voluntary actions to improve their sustainability performance, and promotes technologies that foster sustainable development. In alliance with GeSI’s Secretariat, the United Nations Environment Programme (UNEP) and the International Telecommunication Union (ITU), GeSI supports companies and institutions across the ICT industry, including manufacturers, network operators, service providers, trade associations and associate organisations connected to the industry.”

GeSI (Global e-Sustainability Initiative) | Global | Both | In 2000, 189 countries signed up to the Millennium Development Goals. These goals outlined action on matters as diverse as climate change and poverty elevation. The rapidly converging Information and Communications Technology Sector (ICT) recognised that addressing these issues would need an effective, industry-wide response. | Create an open and global forum for the improvement and promotion of products, services and access to ICT for the benefit of human development and sustainable development. Stimulate international and multi-stakeholder co-operation for the ICT sector. Encourage continual |
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Region</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Ecolabelling Network: Voluntary Ecolabelling of product and services according to ISO 14021 Type I; Information exchange and harmonisation regarding ecolabelling standards among it members; ICT goods and services are subsumed under category number 2000.</td>
<td>Global Ecolabelling Network: public organisations that operate ecolabelling programmes/scheme s are members of GEN</td>
<td>Global</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The GIIC Tokyo Declaration: Recommendations: (1) "Lowering electricity consumption of ICT [...] by identifying and replacing power-hungry components, and adding sustainability to selection criteria for equipment and services. Both industry and government should strive to promote innovative technology development toward next generation low-power IT products". (2) "Responsible Internet Use to combat Spam". (3) "ICT for measurement and Compliance" promoting sensor technologies. (4) Introduction of a framework for an organisation/company to be evaluated, by visualising the ICT contribution to the environment, so that environmental friendly organisations and activities can be recognised fairly".</td>
<td>Global Information Infrastructure Commission (GIIC)</td>
<td>Global</td>
<td>Both</td>
<td>(1) "These worthwhile efforts, such as Green Grid, Climate Savers, and the Green IT Promotion Council of Japan must be matched with appropriate outreach strategies to be accepted by consumers". (2) "ICT solutions should be more clearly explained to capitalise on the environmental benefits of the transition to an information society". (3) "Policy makers could benefit from the informed and expert opinions and experience of the private sector even as they contemplate the correct policies to address climate change". (4) The ICT sector should inform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accountability:
- Improve in sustainability management and share best practice.
- Encourage companies in developing countries to join and share benefits of GeSI.
- Promote and support partner regional initiatives and liaise with other international activities.
- Promote and support greater awareness, accountability and transparency.
- Reduce the burdens of ITC products and services by introducing environmental friendly design and innovation.
<table>
<thead>
<tr>
<th>Initiatives / Projects</th>
<th>Initiator</th>
<th>Region</th>
<th>Focus</th>
<th>Rationale</th>
<th>Objectives</th>
<th>Hard Target</th>
<th>Monitoring</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Power for Mobile (GPM):</td>
<td>GSMA Development Fund</td>
<td>Global</td>
<td>First order</td>
<td>“The Green Power for Mobile programme aims to drive usage of renewable energy by operators in the developing world for the powering of off-grid base stations, and in doing so connect the unconnected and systematically reduce the reliance on diesel consumption by operators.” The expansion of mobile networks into regions currently lacking coverage – to bring coverage to the unconnected. The systematic reduction of reliance on diesel consumption by operators.</td>
<td>1) The expansion of mobile networks into regions currently lacking coverage – to bring coverage to the unconnected. 2) The systematic reduction of reliance on diesel consumption by operators.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy task force:</td>
<td>Home Gateway Initiative (HGI)</td>
<td>Global</td>
<td>First order</td>
<td>“In May 2008, the HGI announced work on a set of specifications for energy saving solutions, based on the EU Code of Conduct on Energy Consumption of Broadband Equipment. The HGI also works closely with ITU-T and ETSI.”</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardisation work and publications on energy efficient electronic technology</td>
<td>Institute of Electrical and Electronics Engineers (IEEE)</td>
<td>Global</td>
<td>First order</td>
<td>“In May 2008, the HGI announced work on a set of specifications for energy saving solutions, based on the EU Code of Conduct on Energy Consumption of Broadband Equipment. The HGI also works closely with ITU-T and ETSI.”</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standards and recommendations related to electrical energy efficiency and renewable energy</td>
<td>International Electrotechnical Commission (IEC)</td>
<td>Global</td>
<td>Both</td>
<td>“IEC 62087 Ed. 2.0: *IEC 62087:2008(E) specifies methods of measurement for the power consumption of television sets, video recording equipment, Set Top Boxes (STBs), audio equipment and multi-function equipment for consumer use.” Technical Committee 100 works on audio, video and multimedia systems and equipment. WattWatt is a Web 2.0 site created by the IEC for those concerned with energy efficiency.</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 62087 Ed. 2.0:</td>
<td>International Electrotechnical Commission (IEC)</td>
<td>Global</td>
<td>First order</td>
<td>“IEC 62087:2008(E) specifies methods of measurement for the power consumption of television sets, video recording equipment, Set Top Boxes (STBs), audio equipment and multi-function equipment for consumer use.” Technical Committee 100 works on audio, video and multimedia systems and equipment. WattWatt is a Web 2.0 site created by the IEC for those concerned with energy efficiency.</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETSI Green Agenda:</td>
<td>The European Telecommunications Standards Institute (ETSI)</td>
<td>Global</td>
<td>Both</td>
<td>2008 strategy about the implementation of the ISO 14001:2004 and 14004:2004 standards for the internal standardisation process and activities.</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETSI technical committee Environmental Engineering (EE):</td>
<td>EN 300 019 series:</td>
<td></td>
<td></td>
<td>The European Telecommunications Standards Institute (ETSI)</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initiatives / Projects</td>
<td>Initiator</td>
<td>Region</td>
<td>Focus</td>
<td>Rationale</td>
<td>Objectives</td>
<td>Hard Target</td>
<td>Monitoring</td>
<td>Evaluation</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>Environmental conditions and environmental tests for telecommunications equipment. EN 300 132: Power supply interface at the input to telecommunications equipment. EN 300 119: European telecommunication standard for equipment practice. EN 300 235: Earthing and bonding of telecommunication equipment in telecommunication centres.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Green Grid: The goal is to develop and promote the energy efficiency for data centers and information service by: (1) "Defining meaningful, user-centric models and metrics" (2) "Developing standards, measurement methods, processes and new technologies to improve performance against the defined metrics" (3) "Promoting the adoption of energy efficient standards, processes, measurements and technologies".</td>
<td>The Green Grid</td>
<td>Global</td>
<td>First order effects</td>
<td>Developing and promoting energy efficiency for data centers and information service delivery.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task Force on ICT for a Green Economy</td>
<td>Business Application Software Developers Association (BASDA)</td>
<td>Global</td>
<td>Both</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECpower_ssj2008 benchmarking standard: Benchmarks "the power and performance characteristics of volume server class computers. The initial benchmark addresses the performance of server-side Java, and additional workloads are planned."</td>
<td>The Standard Performance Evaluation Corporation (SPEC)</td>
<td>Global</td>
<td>First order effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Greenhouse Gas Protocol (GHG Protocol) Initiative: "Serves as the foundation for nearly every GHG standard and programme in the world - from the International Standards Organisation to The Climate Registry - as well as hundreds of GHG inventories prepared by individual companies." The GHG Protocol Initiative has provided sector-specific toolsets for the semiconductor industry among others.</td>
<td>World Resources Institute (WRI) and the World Business Council for Sustainable Development (WBCSD)</td>
<td>Global</td>
<td>Both</td>
<td>"The GHG Protocol Initiative arose when WRI and WBCSD recognised that an international standard for corporate GHG accounting and reporting would be necessary in light of evolving climate change policy."</td>
<td>Provide "international accounting tool for government and business leaders to understand, quantify, and manage greenhouse gas emissions".</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>