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About the OECD 
 
 

The Organisation for Economic Co-operation and Development (OECD) is an intergovernmental 
organisation in which representatives of 30 industrialised countries in North America, Europe and the Asia 
and Pacific region, as well as the European Commission, meet to co-ordinate and harmonise policies, 
discuss issues of mutual concern, and work together to respond to international problems. Most of the 
OECD’s work is carried out by more than 200 specialised committees and working groups composed of 
member country delegates. Observers from several countries with special status at the OECD, and from 
interested international organisations, attend many of the OECD’s workshops and other meetings. 
Committees and working groups are served by the OECD Secretariat, located in Paris, France, which is 
organised into directorates and divisions. 
 
The Environment, Health and Safety Division publishes free-of-charge documents in ten different series: 
Testing and Assessment; Good Laboratory Practice and Compliance Monitoring; Pesticides and 
Biocides; Risk Management; Harmonisation of Regulatory Oversight in Biotechnology; Safety of 
Novel Foods and Feeds; Chemical Accidents; Pollutant Release and Transfer Registers; Emission 
Scenario Documents; and the Safety of Manufactured Nanomaterials. More information about the 
Environment, Health and Safety Programme and EHS publications is available on the OECD’s World 
Wide Web site (http://www.oecd.org/ehs/). 
 
 
This publication was produced within the framework of the Inter-Organisation Programme for the 
Sound Management of Chemicals (IOMC). 
 
 

The Inter-Organisation Programme for the Sound Management of Chemicals (IOMC) was 
established in 1995 following recommendations made by the 1992 UN Conference on 
Environment and Development to strengthen co-operation and increase international co-
ordination in the field of chemical safety.  The participating organisations are FAO, ILO, 
OECD, UNEP, UNIDO, UNITAR and WHO.  The World Bank and UNDP are observers.  The 
purpose of the IOMC is to promote co-ordination of the policies and activities pursued by the 
Participating Organisations, jointly or separately, to achieve the sound management of 
chemicals in relation to human health and the environment. 

 



 ENV/JM/MONO(2006)18 

 9

 
 
 

This publication is available electronically, at no charge. 
 

For this and many other Environment, 
Health and Safety publications, consult the OECD’s 

World Wide Web site (www.oecd.org/ehs/) 
 
 

or contact: 
 

OECD Environment Directorate, 
Environment, Health and Safety Division 

 
2 rue André-Pascal 

75775 Paris Cedex 16 
France 

 
Fax: (33-1) 44 30 61 80 

 
E-mail:  ehscont@oecd.org 

 
 



ENV/JM/MONO(2006)18 

 10

FOREWORD 

 In May 2000, the 12th Meeting of the Working Group of the National Coordinators of the Test 
Guidelines Programme (WNT) agreed that a Guidance Document describing the main statistical methods 
used for analysis of data from ecotoxicological studies should be developed. In 2000, an Expert Group was 
established for this project, consisting of experts nominated from seven member countries led by France 
(Institut National de l’Environnement Industriel et des Risques), as France was already taking the lead in 
an ISO Working Group that had been established earlier in the same year to develop a guidance document 
on the same subject. The Expert Group met in May 2001, and agreed that the Group should work together 
with the ISO Working Group to avoid duplication of work.  
 
 The OECD Expert Group and the ISO Working Group, meeting jointly in September 2001, May 2002 
and February 2003, developed a draft Guidance Document. In May 2003, the draft was circulated to the 
National Co-ordinators for their review. The same document was circulated to the ISO member bodies as a 
Committee Draft (ISO/CD20281) for comment. A number of member countries and stakeholders made 
comments. 
 
 The Expert Group had its last meeting in October 2003 to review these comments and discuss the 
revisions to the draft.  After reviewing all the comments at the meeting, the Expert Group revised the draft 
and continued discussion through e-mail communications following an agreed schedule. All the issues 
raised in this communication were taken into account. Best efforts were made to accommodate late 
comments. In March 2004, the chairperson of the Expert Group submitted the revised Draft Guidance 
Document for discussions at the 16th WNT in May 2004.  
 
 The WNT, while appreciating the efforts by the Expert Group, identified some rather fundamental 
issues relating to the document and the expectations of some of the member countries. Different countries 
expressed different opinions on how guidance on statistical analysis could be included in this document. 
The discussion at the WNT resulted in an agreement that the proposed document was valuable as an 
overview of current approaches for statistical analysis, but should not be called a Guidance Document, 
because this document did not provide specific guidance on the statistical methods that should be used for 
specific purposes or in particular circumstances. The 16th WNT agreed to have a further commenting 
period to finalise the document. France kindly agreed to receive further comments until the middle of July 
2004. 
 
 No further comments were received except for the expression of approval of the document. In line with 
the agreement at the 16th WNT meeting, the 17th WNT approved the document under the new title: 
“Current Approaches in the Statistical Analysis of Ecotoxicity Data: A Guidance to Application”.  

 

This document is published on the responsibility of the Joint Meeting of the Chemicals Committee 
and the Working Party on Chemicals, Pesticides and Biotechnology. 
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1. INTRODUCTION 

1.  Ecotoxicity tests are biological experiments performed to examine if either a potentially toxic 
compound, or an environmental sample (e.g. effluent, sediment or soil sample) causes a biologically 
important response in test organisms. If so, the goal is to determine the concentration that produces a given 
level of effects or produces an effect that cannot be distinguished from background variation.  

2.  In a test, organisms are exposed to different concentrations or doses of a test substance or a test 
substrate (e.g. waste water, sludge, or a contaminated soil or sediment), sometimes diluted in a test 
medium. Typically, at least one group of test organisms (the control group) is not exposed to the test 
substance or substrate, but is otherwise treated in the same way as the exposed organisms 

3.  The endpoint(s) observed or measured in the different batches may be the number of surviving 
organisms, size or growth of organisms, number of eggs or offspring produced or any relevant biochemical 
or physiological variable that can be reliably quantified. Observations are made after one or several 
predefined exposure times. The endpoint’s relationship with the concentration of the tested chemical or 
substrate is examined. The way statistics are applied may have a considerable impact on the results and 
conclusions from ecotoxicity tests, and consequently on the associated policy decisions. Various 
documents (Williams, 1971, Piegorsch and Bailer, 1997; Tukey et al., 1985, Pack, 1993; Chapman et al., 
1995; Hoekstra, 1993; Kooijman & Bedaux, 1996; Laskowkj, 1995; Chapman, 1996; OECD, 1998; 
ASTM, 2000) exist on the use of available statistical methods, the limitations of these methods and how to 
cope with specific problematic data. Discussions of statistical principles and commonly used techniques 
are found in general references as Armitage and Berry (1987) [basic information on hypothesis testing and 
regression, transformations], Finney (1978) [analysis of quantal data, especially probit models], Hochberg 
and Tamhane (1987) [thorough treatment of multiple comparison methods], Newman (1994) [information 
related to biology based models, ECx], and Sparks (2000) [a collection of articles covering field and 
laboratory experiments, multivariate techniques, risk assessment, and environmental monitoring] .  

4.  When problematic data are encountered or critical decisions depend upon inferences from 
ecotoxicity tests, consultation with a qualified statistician is useful. [Note that statisticians should be 
consulted before beginning the experiment to ensure proper design, sample size, limitations, and to be sure 
that the study will actually be able to answer the research question that the experimenter poses.  Once bad 
data have been collected, there is little a statistician can do to rectify the problem.] 

5.  Chapter 8 contains a table listing all the existing ISO and OECD ecotoxicity standards/guidelines 
that could be analysed using this guidance document. For each standard/guideline, reference is made to the 
adapted chapters of this document. 

6.  Chapter 4 details the different statistical approaches that can be used for the analysis of ecotoxicity 
data, depending on the aim. In particular, it gives the assumptions made when using hypothesis testing 
methods, concentration -response modelling methods or biology based methods and their limitations. It 
also gives some indication on experimental design issues. Some general principles and advice are also 
given for the process of data analysis.  

7.  Chapter 5 deals with hypothesis testing, chapter 6 with dose response modelling and chapter 7 with 
biology based methods. 
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8.  There was an ISO resolution (ISO TC147/SC5/WG10 Antalya 3) as well as an OECD workshop 
recommendation (OECD, 1998) that the NOEC should be phased out from international standard. 

9.  However, the NOEC is still required in many regulatory standards from many countries and in 
some cases where a detailed determination of an ECx is not relevant and the alteration of the study design 
is too costly to fulfil the requirements for regression models. Therefore guidance will be provided on the 
statistical methods for the determination of the NOEC. 

10.  In the annexes, examples of analyses with the three main methods (hypothesis testing for NOEC 
estimation, dose response modelling and biology base modelling) of 4 different data sets are given. They 
concern: 

• Acute toxicity on Daphnia magna 

• Inhibition of algae growth 

• Reproduction of Daphnia magna 

• Fish growth 

2. SCOPE 

11.  This document is a description of statistical methods for the analysis of data of standardised 
ecotoxicity tests. It focuses on statistical methods for obtaining statistical estimates of parameters in current 
and future use, e.g. ECx (LCx), NOEC, NEC etc.  

12.  The methods described here are intended to cover laboratory ecotoxicity tests: aquatic, sediment or 
terrestrial tests, and may also be relevant for other toxicity tests.  

13.  The main objective of this document is to provide practical guidance on how to analyse the 
observations from ecotoxicity tests.  

14.  Hypothesis testing, concentration response modelling and biology based modelling will be 
discussed for the different data types (quantal, continuous and discrete data corresponding to mortality, 
growth or reproduction).  

15.  In addition, some guidance on experimental design will be given. Although the main focus is on 
giving assistance to the experimentalist, a secondary aim is to help those who are responsible for 
evaluating toxicity tests. And, finally, the document may be helpful in developing new toxicity tests 
guidelines by giving information on experimental design and statistical analysis issues. 
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3. DEFINITIONS 

16.  In this guidance document, the following definitions, sorted by alphabetical order, apply: 

Accuracy and Precision 

The quality of an estimated parameter from a set of data has two aspects: accuracy and precision. 
Accuracy is a measure of how close the estimate is to the ‘true value’ of the parameter (this true value is 
unknown). Precision is a measure of the amount of variability in the estimate (quantified by the standard 
error or the confidence interval of the estimate). Precision may be increased by using larger sample sizes or 
by reducing the experimental variation. However, as Figure 3.1 illustrates, an estimate being precise does 
not imply that it is also accurate.  

.

. .

.

inaccurate accurate

imprecise

precise

 

Figure 3.1 Conceptual illustration of accuracy and precision.  

The dot represents the true parameter value, the circle represents the confidence interval of the estimate, small circles 
indicate high precision and large circles indicate low precision. 

Concentration and Dose 

Concentration and dose both refer to the amount of test material to which the test organism is 
subjected. Concentrations are used to describe the amount of test material in the testing environment (e.g., 
mg/L in water, mg/kg in soil or mg/kg in food). Doses are used to describe the amount of test material 
administered to a subject (e.g., mg/kg-bodyweight in an avian bolus study). Statistical methods for both 
types of studies are identical; however, interpretations are different. Although “concentration” is used 
throughout this document, all the statistical methods presented here also apply to studies in which a dose is 
used. 

Confidence interval 

A rough definition could be: An x% confidence interval for a parameter is an interval of values that 
theoretically covers the true value of the estimated parameter with x% confidence. Standard confidence 
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intervals are based on the assumption that the underlying mathematical model is correct. It does not capture 
model uncertainty. 

A more  precise definition is the following: interval estimator  (T0 , T1 ) for the parameter  θ with the 
statistics  T0 and T1 as interval limits and for which it holds that P[ T0  <  θ  < T1 ] ≥ 1 - α   [ISO 3534-11)].   

NOTE 1: Associated with this confidence interval is the confidence level 100(1 – α)% where α is 
generally a small number. The confidence level is typically 90% or 95%. The inequality P[ T0  <  θ  < T1 ] 
≥ 1 - α holds for any specific but unknown population value of θ.  

NOTE 2: A confidence interval does not reflect the probability that the observed interval contains the 
true value of the parameter (it either does or does not contain it). The confidence reflects the proportion of 
cases that the confidence interval would contain the true parameter value in a long series of repeated 
random samples under identical conditions.  

Data types 

Quantal/binary data  

Quantal (binary) data arise when a particular property is recorded to be present or absent in each 
individual (e.g. an individual shows an effect or it does not show an effect). Therefore, these data can 
exhibit only two states. Typically, quantal data are presented as the number of individuals showing the 
property (e.g., mortality) out of a total number of individuals observed in each experimental unit. Although 
this can be expressed as a fraction, it should be noted that the total number of individuals cannot be 
omitted. 

Continuous data 

Data are continuous when they can (theoretically) take any value in an open interval, for instance any 
positive number. Examples include measurements of length, body weight, etc. Due to practical reasons the 
measured resolution depends on the quality of the measurement device. For example, if test units are 
observed once per day then ‘time to hatch’ can only be recorded in whole days; however, the underlying 
distribution of ‘time to hatch’ is continuous. Typically, continuous data have a dimension (e.g. grams, 
moles/litre). 

Discrete data 

Discrete data are data that have a finite or countable number of values. There are three classes of 
discrete data: nominal, ordinal and interval. Nominal data express qualitative attributes that do not form a 
natural order (e.g. colours). Ordinal data reflect the relative magnitude from low to high (e.g. an individual 
shows no effect, minimal effect, moderate effect or high effect). These data cannot be interpreted with 
regard to relative scale (i.e., an ordinal variable with a value of ‘4’ can be interpreted as being higher then 
the value of ‘2’, but not twice as high). Ordinal data can often be reduced to quantal data. Interval data 
(e.g., number of eggs or offspring per parent) allows the ranking of the items that are measured, and the 
differences between individuals and groups can be quantified. Often, interval data can be analysed as if the 
data were continuous. The analyses for interval discrete data are presented in this document; analyses of 
nominal and ordinal data are not included but will be addressed in a future revision 

Effect 

                                                      
1 In preparation 
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An effect is a change in the response variable under consideration compared to a control. For quantal 
endpoints, an effect is usually described in terms of a change in the percentage of individuals affected. For 
continuous endpoints, it is typically described in terms of a percent change in the mean values of the 
endpoint, but it can also be described in terms of absolute change. 

Effect Concentrations 

Quantal LCx/ECx (LDx/EDx) 

The quantal ‘Effective Concentration’ or ‘Effective Dose’ is the concentration of test material in 
water, soil, or sediment (e.g., mg/L or mg/kg) or dose of test material (e.g., mg/kg-bodyweight in an avian 
bolus study) that causes x% change in response (e.g., mortality, immobility) during a specified time 
interval. This corresponds to an effect predicted on x% of the test organisms at a given concentration. This 
parameter is estimated by concentration-response modelling. An example of a concentration-response 
relationship and its associated estimates of EC10 and EC50, are illustrated in Figure 3.2. When the effect is 
mortality, LCx or LDx are the abbreviations used. 

Continuous ECx (EDx) 

The continuous ‘Effective Concentration’ or ‘Effective Dose’ is the concentration of test material in 
water, soil, or sediment (e.g., mg/L or mg/kg) or dose of test material (e.g., mg/kg-bodyweight in an avian 
bolus study) that causes x% in the size of the endpoint during a specified time interval. This parameter is 
also estimated by dose-response modelling.  

Endpoint (or Response variable) 

The endpoint is the biological parameter observed, e.g. survival, number of eggs, size or growth, 
enzyme level. An ecotoxicological study can have one or many endpoints. 

Observed effect

EC10 EC50

NOEC

LOEC
100%

0%
Concentration

control

50%

 

Figure 3.2 Illustration of a concentration-response relationship and of the estimates of the ECx and 
NOEC/LOEC.  

The order of the parameters given in this figure has been taken at random. 
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ETx (LTx) 

The ETx ‘Effective Time’ or LTx ‘Lethal Time’ is the time at which an effect of x% is expected at a 
specified test concentration when the test organisms are exposed to a given concentration of material in 
water or sediment or soil). An LTx is estimated when the response of interest is mortality. ETx (LTx) is 
estimated by modelling a time-response relationship. 

Experimental unit/replicate/sampling unit 

The experimental unit (replicate) is the smallest unit of experimental material to which a treatment 
can be allocated independently of all other units. By definition, experimental units (e.g., aquariums, 
beakers, or plant pots) must be able to receive different treatments. Each experimental unit may contain 
multiple sampling units (e.g. fish, daphnia or plants) on which measurements are taken. Within each 
experimental unit, sampling units may not be independent. However, in some special case situations, 
individual organisms (housed in common units) can be treated as the experimental units: these special 
cases require some proof or strong argument of independence of organisms. 

Extrapolation / Interpolation 

Extrapolation refers to predicting the value of variates outside the range of observations. 
Extrapolation may not lead to a reliable estimate (see e.g. section 6.4). 

Interpolation refers to predicting the value of variates within the range of observations. For example, 
when an ECx estimated from a fitted concentration-response function is lower than the lowest nonzero 
concentration tested in the study or higher than the highest concentration tested in the study, it is obtained 
by extrapolation. When the ECx is between two consecutive nonzero test concentrations, it is said to be 
obtained by interpolation. 

Hormesis  

Hormesis is an effect where the tested substance is a stimulant in small concentrations, but it is 
inhibitory in large concentrations. The result is a biphasic (or U-shaped) concentration-response 
relationship. This observed stimulatory effect may be due to the tested substance, but it could also be due 
to an experimental artefact (e.g., solvent effect, non-random allocation of treatments to experimental units, 
experimental error). Models incorporating hormesis are not detailed in this document; analysis approaches 
will be addressed more fully in future documents. Two issues of Critical Reviews in Toxicology (2001, 
volume 31, issues 4 and 5, pages 351-694) and other journal articles discuss to the issues concerning 
hormesis. Some discussion can be found in Environment Canada (2003) 

LOEC and NOEC 

The Lowest Observed Effect Concentration is the lowest concentration out of the tested 
concentrations at which a statistically significant difference from the control group is observed. The No 
Observed Effect Concentration is the tested concentration just below the LOEC. They are obtained by 
hypothesis testing. . An example of NOEC and LOEC are illustrated in Figure 3.2. 

Monotonic and Non-monotonic concentration-responses 

In a monotonic concentration-response relationship, the true, underlying concentration-response 
relationship exhibits an increase or a decrease over the range of concentrations in the study. If the 
concentration-response is monotone and non-increasing, the location parameters (mean or median) would 
exhibit the following relationship: γ0 ≥ γ1 ≥ γ2 ≥ γ3 ≥. . . ≥ γk, where γ is the location parameter and 0, 1, 2, 
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…, k are the concentration groups. If the monotone relationship is non-decreasing, the inequalities are 
reversed. In a non-monotonic concentration-response relationship, the inequalities are not consistent across 
the concentrations.  

NEC 

The No Effect Concentration is a parameter in some concentration-response model. When these 
models are used, it has the interpretation of being the highest concentration in which the compound does 
not affect the endpoint, even after very long exposure to the compound. So the NEC equals the EC0 at 
infinite time. 

Response 

A response corresponds to an observed value of any endpoint. 

Parametric and Non-parametric methods 

Parametric methods assume that all the properties of the model are specified, except for the values of 
the parameters. For example, in classical analysis of variance (ANOVA) the residuals are assumed to 
follow a normal distribution with a mean of zero and some unknown variance (will be estimated). In 
Poisson regression, the response variable is assumed to follow a Poisson distribution (parameters to be 
estimated in the fitting process).  Non-parametric methods make weaker assumptions2 about the shape of 
the distribution of the residuals, and the analysis is often based on ranks of the observations. For example, 
the non-parametric analogue to a two-sample t-test is the Mann-Whitney test, and non-parametric 
regression is often conducted using a variety of smoothing techniques. 

Parsimony principle 

The parsimony principle says that data should be described with as few parameters as possible. A 
common decision criterion of including more parameters in the model is the observation that such leads to 
a significantly better description of these data.   

Systematic errors 

The term systematic error is used for the situation that a single concentration (dose) groups differs 
from the others not only with respect to the intended treatment (i.e. the concentration or dose) but also with 
respect to some unintended experimental factor. For instance, containers housing the animals may differ by 
themselves, and in a design with few or only one container per dose group a deviating container may lead 
to a systematic error in that group. The factor of time may underly systematic errors in various ways, e.g. 
time of feeding, time of observation. The problem of systematic errors is that thay may be wrongly 
interpreted as an effect of the intended treatment.  

Statistical significance 

In hypothesis testing, a result is statistically significant at the chosen level α if the test statistic falls in 
the rejection region. The finding of statistical significance implies that the observed deviation from what 
was expected under the null hypothesis is unlikely to be attributable to chance variation. In this document, 
the α-level will be 0.05 unless otherwise stated.  

                                                      
2 with fewer constraints 
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4. GENERAL STATISTICAL PRINCIPLES 

4.1. Different statistical approaches 

17.  For each of the three analysis methods introduced below, it is necessary to obtain data from a 
designed experiment with replications of controls and concentration groups. All three classes of analysis 
methods (hypothesis testing, concentration-response modelling, and biology-based methods) are suitable 
for data from toxicity tests as currently standardised by several OECD and ISO guidelines. However, 
designs for each of these studies can be optimised with respect to cost-effectiveness and the selected 
analysis approach. The number and spacing of the concentrations will depend on the study being 
conducted and the type of data analysis to be utilised. 

18.  For each of the three approaches introduced below, the following is provided: 

• A brief description of the use of each method in ecotoxicity tests. 

• A brief outline of specific analysis methods presented in the later Chapters of this document. 

• A listing of some major assumptions and limitations for each approach. 

4.1.1. Hypothesis-testing methods 

19.  Hypothesis testing is a statistical inference technique used to compare the responses among two or 
more test groups. Hypothesis testing has many uses in ecotoxicology, ranging from detecting whether there 
is a significant difference in the measured response between the control and a given concentration, to 
establishing a LOEC and a NOEC. Discussion in this document focuses on use in determining LOECs and 
NOECs, the most frequent use of hypothesis testing in OECD guidelines.  

20.  Methods discussed in Chapter 5 include analyses for quantal data and continuous data. For both 
type of data, parametric approaches (when an underlying distribution e.g.: normal, lognormal is 
characterised) and non-parametric approaches (when weaker assumptions are made regarding the 
distribution) are presented. In chapter 5, assessment is limited to conducting data analysis separately at 
each time point, though this is not a limitation of the method.  Three terms often used when discussing 
hypothesis tests are Type I errors, Type II errors, and power (Table 4.1). Type I errors (false positives) 
occur when the null hypothesis is the truth but the hypothesis test results in a rejection of the null 
hypothesis in favour of the alternative hypothesis. The probability of a making a Type I error is often 
referred to as α and is usually specified by the data analyst – often at 0.05, or 5%. Type II errors (false 
negatives) occur when the alternative hypothesis is true but the test fails to reject the null hypothesis (i.e., 
there is insufficient evidence to support the alternative hypothesis). The probability of a making a Type II 
error is often referred to as β (1 – power). Power is the probability of rejecting the null hypothesis (HO) in 
favour of the alternative hypothesis (HA), given that the alternative hypothesis is the true. Power of a test 
varies with sample size, variance of the measured response, the size of an effect that it is of interest to 
detect, and the choice of statistical test. Power to detect differences can be increased by increasing the 
sample size and/or reducing variation in the measured responses. Thus, if a test has low power to detect an 
effect of a given size, this is equivalent to saying that the test has a low probability of detecting an effect of 
that size. 
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Table 4.1 Probabilities of finding a significant or non-significant test outcome, given that the null hypothesis is 
true or not.   

  State of the world 

  HO true  HA true 

not 
significant 

 
1- α 

Type II error 

β Result of 
hypothesis test 

significant 
Type I error 
α 

 
1 - β = power 

 

21.  Several assumptions made when conducting hypothesis tests to determine the NOEC are:   

• Concentration-response relationship may or may not be assumed depending on the specific 
statistical tests used. 

• This approach makes only weak assumptions about the mechanisms of the toxicant or the biology 
of the organism. 

22.  Several limitations of using hypothesis testing to determine the NOEC are: 

• Since the NOEC (or NOEL) does not estimate a model parameter, a confidence interval cannot 
be assessed. 

• The value of the NOEC is limited to being one of the tested concentrations (i.e., if different 
values were chosen for the tested concentrations, the value of the NOEC would be different). 

• If power is low (due to high variability in the measured response and/or small sample size), the 
biologically important differences between the control and treatment groups may not be 
identified as significantly different. If power is high, it may occur that biologically unimportant 
differences are found to be statistically significantly different. 

4.1.2. Concentration-response modelling methods 

23.  Regression methods are used to determine the relationship between a set of independent variables 
and a dependent variable. For designed experiments in ecotoxicology, the main independent variable is the 
concentration of the test substance and the dependent variable is the measured response (e.g., percent 
survival, fish length, growth rate). Regression methods fit a concentration-response curve to the data and 
use this curve to estimate an Effective Concentration (ECx) at a given time point. The mathematical model 
used may be any convenient function that is able to describe the data; however, some models are more 
frequently used and accepted within the ecotoxicity testing literature. Several methods are available for 
model fitting and parameter estimation. 

24.  Methods discussed in Chapter 6 include analyses for quantal data and continuous data. Parametric 
approaches (when a specific underlying distribution is assumed) are presented. Although non-parametric 
methods have been developed for fitting concentration-response curves and estimating an ECx, they are 
not presented in this document. Sources on non-parametric regression include Green and Silverman (1994), 
Easton and Peto, Fan and Gibjels (1996), Hardle, W. (1991), Azzalini and Bowman (1997), Silverman, B. 
(1985), Akritas and. Van Keilegom (2001), Carroll, et al (1999), Smith-Warner et al (1998). Software for 
non-parametric regression can be found, for example, at http://wwwstat.mathematik.uni-
essen.de/~kovac/ftnonpar.html. 
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25.  The effect of exposure time is also considered in chapter 6. 

26.  Although power is typically only discussed when hypothesis tests are conducted, both sample size 
and variation in the response variable within groups affect the inferences of concentration-response models 
as well. Small sample sizes and high variability in the response within groups will increase the width of the 
confidence interval of the parameters of interest (e.g., ECx), and the fitted model may not reflect the true 
concentration-response relationship. To increase the level of confidence in the parameter estimate, the 
number of replicates can be increased and measures to minimise unexplained variability could be taken. 
The width of the confidence interval also depends on the experimental design (i.e., the location and number 
of concentrations chosen). Finally, in addition to precision, accuracy of the estimated parameter is just as 
important. To enhance accuracy, concentrations should be chosen such that various different response 
levels are observed. 

27.  These specific properties of the experimental design, the number and spacing of doses and the 
number of replicates, are related to the value of X of interest in the particular experiment. Different designs 
may be employed to estimate an EC50, as opposed to an EC05. Further guidance for the design of 
experiments of this type is discussed in Chapter 6.  

28.  Several assumptions of concentration-response modelling are:  

• The models discussed in this document assume the response have a monotonic concentration-
response relationship.  

• The fitted curve is close to the true concentration-response relationship. 

• This is an empirical model and does not make strong assumptions about the mechanisms of the 
toxicant or the biology of the organism. 

29.  Several limitations of concentration-response modelling are: 

• Estimation of ECx values outside the concentration range introduces a great deal of uncertainty 
(i.e., extrapolation outside the range of the data). 

• Once the experiment has been performed, the resulting concentration-response data may not be 
suitable for the estimation of parameters of a concentration-response model. In particular, when 
the gaps between consecutive response levels are so large that many different concentration-
response models would fit equally well to the observed data, interpolation would not be 
warranted. 

4.1.3. Biology-based methods 

30.  The biology-based methods presented in this guidance provide models for exploring the effect of 
the test chemical over time as well as incorporating a toxicokinetic model for the behaviour of the 
chemical. By modelling concentration and exposure time simultaneously, these methods fit response 
surfaces to response data to estimate an ECx as a function of exposure time, rather than fitting separate 
response curves at each time point.  

31.  Methods discussed in Chapter 7 include analyses for quantal data and continuous data for several 
aquatic toxicity tests (acute and chronic tests on survival/immobility for daphnids and fish, fish growth test, 
daphnia reproduction test, and alga growth inhibition test). The models presented in this document utilise 
dynamic energy budget theory (see Chapter 7 for details and associated references). This theory provides a 
quantitative description for the processes of feeding, digestion, storage, maintenance, growth, 
development, reproduction and ageing and their interrelationships. As with concentration-response 
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modelling, the level of confidence in the parameter estimates (as evidenced by the width of the confidence 
interval) is a function of sample size and inherent variation in the response. 

32.  Because of additional assumptions regarding the toxicokinetic behaviour of the chemical and the 
biological behaviour of the organism in the system, it is sometimes possible to carry out additional 
extrapolation from the toxicity test. The assumptions are endpoint-specific; therefore, for each type of test, 
these assumptions need to be defined. The definition of these assumptions usually involves eco-
physiological background-research prior to the specification of the test. However, if these additional 
assumptions can be made, an example of additional outcomes this method can predict are: chronic 
responses from acute responses,  responses to time-varying concentrations using responses to constant 
concentrations, and responses by a species using responses to a conspecific or physiologically related 
species of a different body size for given test compound. 

33.  Several general assumptions made when using biology-based methods are: 

• The models discussed in this document assume the response has a monotonic concentration-
response relationship. 

• This analysis method incorporates mechanistic models for toxicokinetics and physiology.  

34.  Several limitations of biology-based methods are: 

• Estimation of parameter values (e.g., ECx and NEC) outside the concentration range introduces a 
great deal of uncertainty (i.e., extrapolation outside the range of the data).  

• When the gaps between consecutive response levels are so large that different biology-based 
models would fit equally well to the observed data, NEC estimation would not be warranted, if 
they differ substantially between the models.  

• To date, models have been developed for some of the common aquatic toxicity tests (acute and 
chronic tests on survival/immobility for daphnids and fish, fish growth test, daphnia reproduction 
test, and alga growth inhibition test). Nevertheless, these models can be applied to any test 
species. 

4.2. Experimental design issues 

35.  The usual factors (independent variables) studied in ecotoxicity tests are concentration of the tested 
substance and duration of exposure. For the estimation of the effect at a given condition it is necessary to 
replicate these conditions, to control experimental variation (see section 4.2.2) 

36.  The experimental design will, amongst others, specify the tested concentrations of the substance, 
the number of replicates and number of containers per tested concentration as well as the times of 
observation. 

NOEC, NEC or ECx: implications for design. 

37.  The estimation of an ECx puts different demands on the study design than does the assessment of a 
NOEC. When the aim is to assess a NOEC, an important demand is that the study warrants sufficient 
statistical power. To that end, the concentration (dose) groups need a sufficient number of replicates 
(possibly at the expense of the number of dose groups). Many test guidelines are based on this principle. 
When the aim is, however, to provide an estimate of an ECx, the primary demand on the study design is to 
have a sufficient number of concentration (dose) groups. This may be at the expense of the number of 
replicates per group (e.g. keeping the total size of the experiment the same), since the precision of the 
estimated ECx depends more on the number and spacing of concentrations rather than on the sample size 
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per concentration or dose group. The demands for study designs aimed at estimating a NOEC or an ECx 
are further discussed in sections 5.1.6 and 6.5, respectively. 

38.  Therefore, the choice between assessing a NOEC and estimating an ECx should actually be made 
before designing the study. If one wishes (or is required) to assess both, a compromise between the two 
opposing demands must be made, i.e. a design with both a sufficient number of dose groups and a 
sufficient number of replicates in each group. The number of replications per group needed for assessing a 
NOEC depends on the desired power of the statistical test involved (see section 4.1.1). For assessing an 
ECx three concentration groups, next to the control group, is an absolute (theoretical) minimum. However, 
when just one dose group appeared to have been unluckily chosen, the assessment of an ECx would 
probably fail, and more concentration groups are therefore required in practice. Design recommendations 
for experiments using a biologically based model include those for ECx. Additional recommendations are 
discussed in section 7.8.3.  

4.2.1. Randomisation  

39.  Variability is inherent in any biological data set. This variability is directly visible in continuous 
and discrete data. Although the following discussion holds for any type of data, it is easiest to use 
continuous data as an example. In analysing concentration-response data by statistical methods, the 
observed scatter is sometimes called noise or variation, but when designing experiments and interpreting 
results it is good to understand the reasons for the noise. The following factors may play a role: 

• the variation between the individual animals, due to genetic differences, 

• the differences in the conditions under which the animals grew up prior to the experiment, 
resulting in epigenetic differences between animals, 

• the heterogeneity of the experimental conditions among the animals during the experiment, 

• variation within subjects (i.e., fluctuations in time, such as female hormones, which may be 
substantial for some endpoints), and 

• measurement errors. 

40.  Randomisation processes are used in designed experiments to eliminate bias in estimates of 
treatment effects, and to ensure independence of error terms in statistical models. Ideally, randomisation 
should be used at every stage of the experimental process, from selection of experimental material and 
application of treatments, to measurement of responses. To minimise the effects of the first two factors, 
animals need to be randomly distributed into concentration groups. To minimise the effects of the third 
factor (both intended and unintended, such as location in the room), application of treatments should be 
randomised as much as possible. To minimise the effects of the fourth factor, the measurement of 
responses should be randomised in time (e.g., although all responses will be recorded at 24 hrs, the order in 
which the experimental units are measured should be randomised). With good scientific methods, 
measurement errors can be minimised.  

41.  In some circumstances it may be difficult, or expensive, to randomise at every stage in an 
experiment.  If any experimental processes are carried out in a non-random way, then statistical analysis of 
the experimental data should include a phase in which the potential effect of not randomising on the 
experimental results is examined.  

4.2.2. Replication 

42.  As discussed above, noise cannot be avoided, and therefore it is necessary to assign a certain 
number of replicates (experimental units) to each treatment group and control group. The number of 
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replicates influences the power in hypothesis testing and the confidence limits of parameter estimates. A 
standard assumption of all methods is that replicates are independent. Treating observations as independent 
replicates whereas in fact they are not, represents an error called pseudoreplication (Hurlbert , 1984). This 
issue becomes important when animals are housed together, as in a tank or beaker. There are two types of 
housing effects:  

• containers may differ from each other in some (usually unknown) sense 

• the organisms within a container affect each other’s responses. 

43.  Both effects result in non-independence (or pseudoreplication) of the individual organisms’ 
responses. The first effect may result in different mean responses between containers (at a given 
concentration). This type of non-independence can be addressed by taking the variation between containers 
into account in the statistical model. For instance, with continuous data this may be done using a nested 
ANOVA, where the individual observations are nested within the container. The second effect might 
distort the distribution of the observations related to the individual organisms. For instance, with quantal 
data the assumption of binomial distribution may not hold. In an example with continuous data when there 
is competition among individuals in the same container, the responses of the individual organisms may 
appear bimodal. See Chapter 5 and 6 for a more detailed discussion. 

4.2.3. Multiple controls included in the experimental design 

44.  It is common in aquatic and certain other types of experiments that the chemical under 
investigation cannot be administered successfully without the addition of a solvent or vehicle. In such 
experiments, it is customary to include two control groups. One of these control groups receives only what 
is in the natural laboratory environment (e.g., dilution water), while the other group receives the dilution 
water with added solvent but no test chemical. In ecotoxicity experiments, these are often termed negative 
or dilution water (non-solvent) and solvent controls. OECD recommends limiting the use of solvents 
(OECD, 2000); however, appropriate use of solvents should be evaluated on a case-by-case basis. Details 
regarding the use of solvents (e.g., recommended chemicals, maximum concentrations) are discussed in the 
relevant guideline documents for a specific ecotoxicity test. In addition, regulatory guidelines must be 
followed by both controls with regard to the range of acceptable values (e.g., minimum acceptable percent 
survival or mean oyster shell deposition rate). Multiple control groups can be utilised regardless of whether 
the experiment was intended for hypothesis testing (i.e., determination of a NOEC), regression analysis 
(i.e., determination of an ECx), or biology-based methods. The focus of this section is to present data 
analysis methodology for experiments in which a solvent is used.  

45.  Data from the two control groups are analysed to determine if the solvent had a statistically 
significant effect on the measured response. If there was a statistically significant difference between the 
negative and solvent control groups, any conclusions and inferences based on this study could be impacted 
due to presence of a solvent effect. If there are no significant differences in the means (or proportions for 
quantal data or medians for non-parametric data) between the negative and the solvent controls, then it is 
concluded that there is insufficient evidence to detect a difference between the controls. 

46.  The solvent control group is the appropriate control group for comparisons with treated groups. 
Each group must have the same solvent concentration as the control. For a toxicity test in which a solvent 
is used in conjunction with the test chemical, the assumptions are that the solvent had no effect on the 
responses of interest and there was no interaction between the test chemical and the solvent. With the 
addition of a negative control (as is required in all experiments using a solvent), the assumption regarding a 
solvent effect can be tested. However, unless the chemical is also tested in absence of a solvent, the 
assumption of no interaction between the solvent and the test chemical cannot be evaluated.  
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47.  Some practitioners consider combining the data into one ‘pooled control’ for comparison to the 
treated groups when no statistically significant differences between the solvent and negative control were 
identified. However, this does not take into account the fact that the differences between the two controls 
might not have been detected with a statistical test because the sample sizes are too small (i.e., low power) 
or that it combines two sources of variability.  

48.  The methods used for statistical comparison of negative and solvent controls vary depending on the 
type of data and the assumptions regarding distribution of the data. Methods and mathematical details for 
carrying out these tests are found in Chapter 5 and its associated Annexes. 

4.3. Process of data analysis 

49.  A typical data analysis more or less follows a general pattern, usually constituting the following 
steps. First, the data are plotted and visually inspected. Then, a suitable type of analysis is chosen, based on 
particular assumptions that appear reasonable for the data at hand. After the analysis the underlying 
assumptions are checked. If necessary, an adjusted analysis is performed. And finally, the results are 
reported by making plots and/or tables.  

4.3.1. Data inspection and outliers 

50.  A useful first step in analysing dose-response data is to visually inspect the data. For continuous 
data, the individual responses (together with the group means) may be plotted as a function of dose. For 
quantal data, one may plot the observed frequencies of response as a function of dose. These plots are 
useful to assess whether the data show a dose-response relationship. Further, these plots may indicate any 
peculiarities in the data. In particular, the observed data may show outliers, i.e. data points far away from 
intuitive expectation, or from the general pattern shown by the data. In continuous data one may detect 
both outliers that relate to the individual organism (or, more generally, the biological system serving as the 
experimental unit), and outliers that relate to a whole treatment group. In quantal data, outliers always 
relate to a treatment group, since a deviating individual cannot be detected based on a “yes” or “no” 
response.  

51.  Outliers that relate to a whole treatment group may arise due to the fact that a treatment group 
differed systematically from the other groups by some (usually unknown) experimental factor(s). For 
instance, the organisms in the various dose groups were held in different aquaria, and one of them 
contained an infection. Or, the organisms in the different dose groups were treated in a specific order (with 
respect to feeding, time of observation, etc). Detection of this type of outliers typically cannot be enforced 
by any formal statistical method, and one has to rely on visual inspection, judgement and experience.  

52.  Obviously, treatment group outliers are highly undesirable, since they directly interfere with the 
effect that one wishes to measure, thereby increasing the probability of both false positive and false 
negative results. For example, a NOEC may be assessed at a level where substantial effects do occur, or a 
LOEC may be assessed at a level without real effects (i.e. from the chemical). The only way to prevent 
outliers at the group level is a design that is perfectly randomised with respect to all experimental actions 
that may potentially influence the (observed response of) the biological system. In practical biological 
studies, however, perfect randomisation is hard to realise, and it is not feasible to reduce the probability of 
getting group outliers to nil. Therefore, it is paramount to make the study design relatively insensitive to 
potential outliers, i.e., by randomised replicated dose groups, and/or by increasing the number of different 
doses (followed by dose-response modelling, see chapter 6).  

53.  Outliers at the individual level can only be detected in continuous data. When a particular 
distribution is assumed for the scatter in the data, the judgement of outliers may be based on a specific, 
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small probability that any single data point could occur. This implies that the judgement of outliers can 
depend quite strongly on the assumed distribution. For example, values that appear to be extremely high 
when assuming a normal distribution may be judged as non-extreme when assuming a lognormal 
distribution. Vice versa, low values may be judged as extremes when assuming a lognormal distribution, 
but not so when a normal distribution is assumed. 

54.  The statistical analysis of the data is sensitive to individual outliers, although less dramatically than 
to group outliers. On the one hand, individual outliers may result in biased estimates of the effect (either 
too small or too large). On the other hand, the estimate of the residual variance (the “noise”) will be 
increased, implying that statistical tests tend to be less powerful, and estimated parameters (e.g. ECx) less 
precise. Therefore, if reasons can be found explaining the outliers, it is favourable to delete them from the 
analysis.  

55.  Although non-detectable, individual outliers can also occur in quantal data and affect the analysis. 
For example, when just one of the individuals in the controls shows a response, but is in fact an outlier, this 
outlier may have quite an impact on the statistical analysis. Being non-detectable, individual outliers are a 
larger problem in quantal than in continuous data.  

56.  In conclusion, outliers can have dramatic effects on the statistical analysis and the conclusions 
drawn. Therefore, it is very important to reduce their impact by using designs that are relatively insensitive 
to them, i.e. by utilising replicated dose groups and/or multiple dose groups. More information can be 
found in Atkinson (1985), Belsey et al. (1980) and Cook and Weisberg (1982). 

4.3.2. Data inspection and assumptions 

57.  Visual inspection may also be used to explore the general pattern of the scatter around (continuous) 
data. Thus, one may find out if the scatter around the mean response appears to be symmetrical or skew, 
and if the scatter is more or less homogenous. Heterogeneity of variance (scatter) may have a biological 
basis i.e. the individual organisms (units) respond differently to the chemical. However, an apparent 
increase of decrease in the scatter may also be related to the statistical distribution of the data, e.g. the 
scatter increases with the mean response. This distinction is important, both for the analysis, and for the 
interpretation of results, and some further clarification is given below. 

Heterogeneous variances and distribution 

58.  When the plotted data show scatter that is correlated with the mean response, such pattern may be 
related to the underlying distribution of the data. Some examples will illustrate this. 

59.  In lognormally distributed data, it may be theoretically expected that the standard deviation 
increases proportionally with the mean (or, equivalently, the Coefficient of Variation, CV, is homogenous). 
Also, for the gamma distribution, the CV is expected to be homogenous. When a particular dataset (such as 
weights, concentrations) show scatter that increases with the mean, one may plot such data on the log-
scale, which usually makes the scatter independent from the means. In addition, when the scatter is 
relatively large (say, CV larger than 20%), the scatter may be skewed on the original scale, but not on the 
log-scale. The latter would confirm that the pattern in the scatter is a result from the underlying 
distribution. 

60.  As another example, counts may follow a Poisson distribution. Here, the variances are expected to 
be equal to the means (or, proportional to them). Such a pattern should vanish when the data are plotted on 
square root scale.  
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61.  Finally, in quantal data with replicated dose groups, it can be also be expected a priori that the 
scatter between the replicates depends on the mean response (this follows directly from the properties of 
frequencies). Here, one may plot the frequencies after the transformation arcsin(√p), where p is the 
observed frequency (fraction). This transformation is able to remove the (theoretical) relationship between 
the variance and the mean frequency (assuming a binomial distribution). 

Heterogeneous variances and true variation in response 

62.  Heterogeneity in the scatter might also be caused by the treatment (the applied chemical) itself, i.e. 
some individuals respond stronger to the chemical than others. This could happen when genetically 
heterogeneous organisms are used, e.g. subject to genetic polymorphism. In many toxicity tests, however, 
the organisms used are genetically homogenous, and real (biological) heterogeneity in response to the 
chemical will, in those cases, not be very likely. 

Consequences for the analysis 

63.  Heterogeneity of variances may be a matter of scaling that can be removed by the right 
transformation.  Usually such a transformation also tends to make the data more normally distributed. 
Thus, one may apply standard methods based on normality (e.g. t-test, ANOVA, linear regression) to the 
transformed data. Another approach is to omit the transformation, and use methods that are directly based 
on the assumed distribution (i.e. generalised linear models). When a particular transformation is found that 
results in homogenous variances, only one variance parameter needs to be estimated. Thus, all the data 
contribute in the variance estimate, which is in statistical terms reflected by a larger number of degrees of 
freedom3.   

64.  However, when the heterogeneity of variances appears to be due to real biological heterogeneity in 
responses among individual organisms, one should carefully consider if further analysis is meaningful. For 
example, when the organisms (or experimental units) consist of two distinct subpopulations, one 
responding, the other not, any estimated change in mean response has no useful meaning. When such two 
subpopulations can be distinguished from observable features (e.g. sex), the appropriate way to proceed is 
to analyse both subpopulations separately, or by using the observable feature as a covariate (see, e.g. 
section 6.3.2, and Fig. 6.9) 

4.3.3. Transformation of data 

65.  Many standard parametric methods (e.g. ANOVA, t-tests, linear regression analysis) assume 
normally distributed data and homogenous variances. In practice, the data often deviate from these 
assumptions, and if so, the inferences resulting from these standard methods may be disturbed. A variance-
stabilising transformation is often applied to the data, and then the statistical analysis is performed on the 
transformed data. Examination of residual plots (plot of the residuals vs. the predicted values) and tests of 
heterogeneity of variance (e.g., Levene, Bartlett, Hartley’s F-max, or Cochran’s Q) can help to identify 
instances when the variances among the concentration groups are unequal. References on this topic include 
Box and Cox (1964), Box and Hill (1974), Box and Tidwell (1962), Draper and Cox (1969).   

66.  For a variance-stabilising transformation to exist, there must be a relationship between the 
population means and variances. In many cases, the theoretical distribution of the response variable can 
guide the choice of a transformation. For example, if the underlying distribution is assumed to be Poisson, 

                                                      
3 In general, it is favourable to include as few parameters (that need to be estimated from the data) as possible in the 
analysis, and yet describe the data accurately. Too few parameters will probably result in biased estimates, too many 
parameters tend to result in too wide confidence intervals. This is also referred to as the parsimony principle.  
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the square root transformation, yi’ = (yi
½) or yi’ = ((yi +1)½), is used. If the underlying data are lognormal, 

the log-transformation, yi’ =  log(yi), is often used. For proportions with binomial distributions, the arc-sin 
square-root [yi’=arcsin(yi

½)] and Freeman-Tukey  [yi’=(yi+1)½+ (yi
½) ] transformations are often used. If 

the underlying theoretical distribution is unknown, a data-based procedure (Box-Cox transformation) can 
be used (Box and Cox ,1964). 

67.  The use of transformations will often simplify the data analysis, in that the more familiar and 
traditional data analysis methods can be used, but care must be taken in interpreting the results of this data 
analysis. Several aspects are discussed below.  

68.  If a transformation is used, it is also necessary to back-transform the means and confidence 
intervals to the original scale, when reporting results. It is not correct to back-transform the standard errors. 
It is important to understand that the back-transformed means differ from the arithmetic means of the 
original data. These back-transformed means should be interpreted as estimates of the median of the 
underlying data distribution, if the transformed data are normally (or at least symmetrically) distributed. In 
the special case of a log-transformation, the back-transformed mean is the geometric mean of the original 
data, and this value estimates the median of the underlying lognormal distribution.  

69.  When a transformation is not used in the data analysis, the difference in the means is a logical 
measure for the size of an effect. This difference is interpreted as an absolute change in the original units 
(e.g., a decrease of 1.2 grams). The back-transformed difference in means (of the transformed data) 
however has another, usually more difficult, interpretation. In the special case of a log-transformation, the 
difference between the back-transformed means does allow a simple interpretation: it estimates the ratio 
(or percent change) of the median responses.  

70.  In addition, transformations may not maintain additivity of effects (interactions among factors, e.g., 
test substance, sex, age, in the experiment). Other possible consequences of using transformations are that 
they change the interpretation of outliers and that they affect the value of r (Pearson correlation coefficient) 
and R2. Not all data problems can be fixed by transformation of the response. For example, if a large 
percentage of the responses have the same measured value (ties), no transformation will address that issue. 

4.3.4. Parametric and non-parametric methods   

71.  A visual inspection of the data may have indicated that the scatter is more or less symmetric and 
homogeneous, possibly after a particular transformation. In that case, one may analyse the data by the 
standard parametric methods based on normality. Or, one may choose to analyse the data based on a 
particular distribution other than the normal. Here, some basic aspects of parametric and nonparametric 
methods are discussed.  

Parametric Methods 

72.  When the data are assumed to follow a particular statistical distribution, they can be summarised by 
the parameters of that distribution. For example, data that are normally distributed can be summarised by 
just two parameters, the mean and the variance. Therefore, methods that are based on an assumed 
distribution are called “parametric methods”. Obviously, these methods intend to estimate the parameters 
of the (assumed) distribution, such as the mean and the variance, or any derived parameters, such as the 
ECx.  

73.  If one is interested in the value of some entity (such as the ECx), rather than a “categorical” answer 
(significant or nonsignificant), parametric methods are the natural approach of analysis. In addition, in 
hypothesis testing parametric methods such as ANOVA are also widely used.  
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74.  Whatever distribution is assumed, parametric methods are based on the general principle of fitting 
the data to the model. In hypothesis testing this may be the ANOVA model, in dose-response modelling 
this may be a particular dose-response model. In applying parametric hypothesis tests, one must examine 
the data for outliers, deviations from normality and homogeneity, assessment of monotonicity of the dose-
response (for some approaches), and do a general assessment of whether the proposed model adequately 
describes the data. These points are discussed in depth in 5.1, 5.1.3, 5.1.5, 5.2.2.2, 5.2.2.4, 5.3.1, 5.3.1.2, 
5.3.1.2, 5.3.1.5, and 5.3.1.6. In dose-response modelling, the process of model fitting is eminent and indeed 
the focus of the analysis. Therefore, in any dose-response analysis (as discussed in Chapters 5, 6 and 7) the 
user should understand the general principles of model fitting. These are discussed in section 4.3.5, 5.1.3, 
5.2.2, 5.3.1, and 6.7. 

GLMs 

75.  Generalised linear models are an alternative approach to use parametric methods when the 
normality assumption is violated. In this approach, the analysis of the (untransformed) data is based on 
another (than normal) distribution, for example, a Poisson distribution (for counts), or a binomial 
distribution for frequencies. GLMs are not discussed in this document, and the reader is referred to the 
literature (Mc Cullagh and Nelder, 1983; Kerr and Meador, 1996).  

Nonparametric methods 

76.  Nonparametric methods have been developed for those cases where one is not willing to assume 
any distribution at all. These methods can be used to test the null hypothesis that the observations in two 
(or more) treatment groups do not differ (i.e., they stem from the same, but unknown distribution). These 
methods are based on the rank order of the observations. Therefore, significantly different treatment groups 
are supposed to differ in the medians (since the median can be defined in terms of rank order). To prevent 
misunderstanding, the medians should always be reported when nonparametric methods were used 
(differences between means may not be consistent with differences between medians; i.e. means are more 
sensitive to outliers than medians are). 

How to choose? 

77.  Parametric analyses have various advantages over nonparametric methods. They are typically 
simpler to conduct (wide availability of software), methods have been developed for a wider array of 
designs (e.g. designs with replicated dose groups), confidence intervals are more easily computed, the 
methods are more universally used, and interpretation of results is often easier. The advantage of non-
parametric methods is that they are based on very weak assumptions. Further, since nonparametric 
analyses are based on the rank order of the data, they are less sensitive to outliers than parametric analyses.  

78.  When the data appear to comply with the assumptions (after a visual inspection) of a particular 
parametric analysis, parametric is the obvious method to choose. The assumptions can be further checked 
as part of the analysis (e.g. by examining the residuals, see below). It may be noted that parametric analysis 
based on normal assumptions is reasonably robust to mild violations against the assumptions. When a data 
transformation results in a (better) compliance with the normality assumptions, one should be reminded 
that transformations other than the log-transformation may impair the interpretation of the results. This is 
because the log-transformation is naturally linked to the intuitive notion that biological effects are 
proportional (or multiplicative) rather than additive (compare definition of ECx). Thus, when omitting or 
applying a log-transformation does not make a large difference for complying with the assumptions, one 
might yet choose to apply it for reasons of interpretation.  
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79.  In situations where specific distributions are natural candidates for the data type at hand, one may 
consider the use of GLMs. When not any regular distribution can be assumed, as e.g. in the case of tied 
observations4, one may resort to nonparametric analysis.  

4.3.5. Pre-treatment of data 

80.  In general, pre-treatment of data (other than data transformation) is not a favourable strategy of 
data analysis. A few practical examples will be discussed.  

81.  Some methods (e.g. probit and logit model for quantal dose-response analysis) use a log-
transformation for concentration. It is not appropriate to add a small positive constant to the zero-
concentration (or to all concentrations) to avoid taking the log of zero (see chapter 6 for more details): the 
shape of the concentration-response curve is very sensitive to the constant and a biological basis for 
choosing one constant over another is very unlikely to ever exist. 

82.  A current habit in analysing continuous data is to divide the observed responses by the (mean) 
observed response in the controls. These corrected observations then reflect the percent change compared 
to the controls, which is usually the entity of interest. However, such a pre-treatment of the data is 
improper: Among other problems it assumes that the (mean) response in the controls is known without 
error, which is not the case. Therefore, this should be avoided, and instead the background response should 
be estimated from the data by fitting the model to the untreated data. Thus, the estimation error in the 
controls is treated in the same way as the estimation errors in the other concentration groups. (see e.g. 
chapter 6.2.2 and 6.3.2).  

4.3.6. Model fitting  

83.  All parametric methods employ the general principle of model fitting. The particular assumptions 
they are based on can be regarded as a particular model. The model contains specific parameters, and the 
goal of the data analysis is to estimate these parameters. The parameters are estimated by fitting the model 
to the data.  

84.  As a very simple example, consider a single sample of data. If it is assumed that these data follow a 
normal distribution, than the model is simply the normal distribution. The model contains two parameters, 
the mean and the variance. Depending on what values are chosen for the parameters, the agreement 
between the distribution and the data will be better or worse. The question now is what parameter values 
give the best agreement between the model and the data, i.e. gives the best fit of the model to the data.  

85.  To be able to answer the latter question, we have to define a measure for the “distance” between 
data and model, to be used as the fit criteria. A very general criterion is the likelihood. This measure 
directly follows from the assumed distribution, and is applicable to whatever distribution is assumed. The 
likelihood criteria should be maximised, and when this is achieved, the associated parameter values are 
called maximum likelihood estimates.  

86.  Another much used fit criterion is the residual Sum of Squares (SS). This measure is defined as the 
sum of the squared residuals, i.e. the differences of each separate observed response with its associated 
expected response (according to the model). The best fit is found by minimising the SS. In the simple 
example of fitting a normal distribution to a single dataset, the residuals are simply the differences of the 
observations to the mean. By changing the value of the mean, the SS will vary.  

                                                      
4 Tied data are two or more observations of the same value. Parametric methods do exist for tied data, but these are 
beyond the scope of this document. 
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87.  The value of the mean resulting in the best fit, is exactly the value of the (arithmetic) sample mean. 
Put another way, the sample mean is the estimate of the mean of a normal distribution that results in the 
best fit according to the SS criteria. In the special case of a normal distribution, the sample mean is at the 
same time the maximum likelihood estimate. In other distributions however, maximum likelihood or 
minimising the SS results in different estimates of the parameters. For instance, for quantal dose-response 
data, the sum of squares is not appropriate, and the likelihood is the usual fit criteria. 

88.  The same principle of model fitting holds for more complicated models than a single dataset. For 
example, by replacing the mean of the normal distribution by a function of the dose we obtain a dose-
response model. Here, fitting the model by minimising the SS or by maximising the likelihood results in 
the same fit (because of the normality assumption).  

89.  A general method of finding the best fit is by trial and error, i.e. in an iterative search one tries to 
improve the likelihood by changing the parameter values, until an improvement cannot be found anymore. 
General algorithms exist that perform such an iterative search in an efficient way. In particular models 
(“linear” models) the maximum likelihood estimates can be derived from explicit formulae, and search 
algorithms are not required (for that reason linear models used to be popular before the availability of 
computers). In nonlinear models search algorithms can hardly be avoided. Although the user need not 
worry about the calculations underlying these algorithms, fitting nonlinear models does require some basic 
understanding of the general principles of search algorithms (see section 6.7). 

4.3.7. Model checking 

Analysis of residuals 

90.  After a model has been fitted to the data, a final check for the appropriateness of the fitted model 
may be performed. Do the data indeed comply with the model assumptions? For instance, do the data 
comply with the assumed distribution (in parametric analyses), are the variances homogenous (e.g. in 
ANOVA), and is the dose-response model suitable for the dose-response data at hand (in dose-response 
analysis).  

91.  A general approach for checking such assumptions is the analysis of residuals: the differences 
between the observations and the value predicted by model. For instance, in ANOVA the predicted value is 
the associated group mean, while in dose-response modelling it is the value of the model at the relevant 
dose.  

92.  To check the distribution, the residuals can be taken together and be plotted in a single histogram, 
or in a (distribution-specific) QQ-plot5. Visual inspection of such plots may reveal deviations from the 
assumed distribution, in particular when inspecting a QQ-plot, which should be linear if the data comply 
with the assumed distribution. Formal tests exist as well (see chapter 5), but it should be noted that mild 
violation of the assumptions is no reason for concern, and tests do not measure the degree of violation. 

93.  Various other plots of the residuals can be made, e.g.  

• against the predicted value (i.e. the group means, usually), to check if the variances are 
homogenous (if such were assumed) 

• against the model prediction, to check for systematic deviations from the fitted model 

                                                      
5 QQ-plot corresponds to plots of observed quantiles versus expected quantiles. 
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• against other experimental factors, if relevant, for instance the order in time by which the 
observations were made. Such a plot may show if the pertinent factor influenced the response 
systematically.  

94.  Finally, one may perform a formal goodness of fit test. This test is sensitive for all the assumptions 
simultaneously. A significant overall test of goodness of fit may indicate that one of the assumptions is not 
met, but this does not necessarily imply that the model is not useful for the particular purpose of the 
analysis. Here, one should judge the nature of the violated assumption and its potential impact on the 
results one is interested in. On the other hand, a nonsignificant goodness of fit test does not imply that the 
model used may be regarded as reliable. The test is more easily passed when the data contain relatively 
little information, and, as a result, various models may pass the goodness of fit test, but lead to different 
conclusions. In other words, not only the model, but also the data should be “validated”, by asking the 
question of whether they contain the information needed for answering the question of interest. The 
evaluation of a dose-response model for describing a particular dataset is more fully discussed in section 
6.4. 

Validation of fitted dose-response model 

95.  In dose-reponse modelling, it may happen that the data appear to be unsuitable for that approach. 
This would happen if the dose-response information is too weak to have faith in any fitted dose-response 
model (see section 6.4). For example, there may be large gaps between response levels or too few dose 
levels in areas where the response changes rapidly. Therefore, the estimation of an ECx is only warranted 
if the dose-response data contain sufficient information on the shape of the dose-response relationship. 

4.3.8. Reporting the results 

96.  The final step in a statistical analysis is reporting the results. Basically, two types of information 
should be given: the results of the analysis, and the justification of the methods (assumptions) used.  

97.  The results of the analysis typically exist of summarising statistics, in current practice these are 
usually the means and standard deviations (or standard errors) per dose group. This may not generally be 
the best way of reporting results, however. When a parametric analysis assuming homogenous variances is 
applied, it is more informative to report the estimate of the common variance (residual Mean Square), 
together with a justification of the homogeneity assumption (e.g. a plot of the individual data or of the 
residuals against dose). When a log-transformation is applied before the analysis, it is more adequate to 
report the geometric means, and the (possible common) geometric standard deviation (GSD) or Coefficient 
of Variation (CV).   

98.  When a NOEC is assessed, the associated test used should be reported, along with the test 
outcomes.  

99.  In the case where an ECx is assessed, the fitted model should be reported, as well as the 
justification that the model was acceptable for assessing the ECx (see section 6.4).  

100. More specific guidance for reporting results are given at the end of chapters 5, 6 and 7.  



ENV/JM/MONO(2006)18 

 34

5. HYPOTHESIS TESTING  

 5.1. Introduction 

101. This chapter provides an overview of both hypothesis testing and methodological issues specific to 
determining NOECs under various experimental scenarios. It is divided into three major parts. The first 
part includes flow charts summarising possible schemes for analysing quantal (Fig. 5.1) and continuous 
data (Fig. 5.2 and 5.3), along with some basic concepts that are important to the understanding of 
hypothesis testing and its use in the determination of NOECs. Special attention is given to the choice of the 
hypothesis to be tested, as this choice may vary depending on whether or not a simple dose-response trend 
is expected, and on whether increases, or decreases (or both) in response are of concern. The remainder of 
the chapter is divided into two major sections that discuss statistical issues related to the determination of 
NOECs for quantal and continuous data (Sections 5.2 and 5.3 respectively) and provide further details on 
the methods listed in Figures 5.1 and 5.2.). This division reflects the fact that different statistical methods 
are required for each type of data, and that problems arise that are unique to the analysis of each type of 
data. An attempt has been made to mention the most widely used statistical methods, but to focus on a set 
of methods that combine desirable statistical properties with reasonable simplicity. For a given set of 
circumstances, more than one statistical approach may be acceptable, and in such cases the methods are 
described, the limitations and advantages of each are given, and the choice is left to the reader. The flow 
charts in Figures 5.1 and 5.2 indicate a possible choice of methods.  Examples of the application of many 
of these methods, mathematical details and properties of the methods are presented in Annex 5.1. 

102. The most commonly used methods for determining the NOEC are not necessarily the best. 
Relatively modest changes in current procedures for determining NOECs (e.g., selection of more powerful 
or biologically more plausible statistical methods) can improve the scientific basis for conclusions, and 
result in conclusions that are more protective of both the environment and business interests. Thus, some of 
the methods recommended may be unfamiliar to some readers, but all of the recommended methods should 
be compatible with current ISO and OECD guidelines that require the determination of NOECs.  

103. A basic principle in selecting statistical methods is to attempt to use underlying statistical models 
that are consistent with the actual experimental design and underlying biology. This principle has 
historically been tempered by widely adopted conventions. For example, it is traditional in 
ecotoxicological studies to analyse the same response measured at different time points separately by time 
point, although in many cases unified analysis methods may be available. It is not the purpose of this 
section to explore this issue. Instead, discussion will be restricted to the most appropriate analysis of a 
response at a single time point and, usually, for a single sex. 

104. NOECs, as defined and discussed in this document, are based on a concept sometimes called 
“proof of hazard”. In essence, the test substance is presumed non-toxic unless the data presents sufficient 
evidence to conclude toxicity. Alternative approaches to assessing toxicity through hypothesis testing exist.  
For example Tamhane et al (2001) and Hothorn and Hauschke (2000) develop an approach based on proof 
of non-hazard.  Specifically, if an acceptable threshold of effect is specified, such as a 20% decrease in 
mean, then the maximum safe dose (MAXSD in Tamhane et al (2001)) is the highest concentration for 
which there is significant evidence that the mean effect is less than 20%. These are relatively new 
approaches that have not been thoroughly tested in a practical setting and for few endpoints is there 
agreement on what level of effect is biologically important to detect. All current guidelines regarding 
NOEC are based on the proof of hazard concept. For these reasons, this alternative approach will not be 
presented in this chapter, though they do hold some promise for the future. The only common exception to 
this is in regard to limit tests, where in addition to determining whether there is a statistically significant 
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effect in the single test concentration, one also tests for whether the effect in the test concentration is less 
than 50%. A simple t-test can be used for that purpose.   

105. It should also be realized that statistics and statistical significance cannot be solely viewed as 
representative of biological significance. There can be no argument that statistical significance (or lack 
thereof) depends on many factors in addition to the magnitude of effect at a given concentration. Statistics 
is a tool that is used to aid in the determination of what is biologically significant. If an observed effect is 
not statistically significant, the basis for deciding it is nonetheless biologically significant is, obviously, not 
statistical. Lack of statistical significance may be because of a low power test.  On the other hand, a 
judgment of biological significance without sufficient data to back it up is questionable. 

106. The flow-charts and methodology presented indicate preliminary assessment of data to help guide 
the analysis. For example, assessments of normality, variance homogeneity, and dose-response 
monotonicity are advocated routinely. Such preliminary assessments do affect the power characteristics of 
the subsequent tests. The alternative to making these assessments is to ignore the characteristics of the data 
to be analyzed. Such an approach can be motivated on the perceived general characteristics of each 
endpoint. However, this does not avoid the penalty of sometimes using a low power or inappropriate 
method when the data do not conform to expectation. A bias of this chapter is to examine the data to be 
analyzed and use this examination to guide the selection of formal test to be applied. The preliminary 
assessment can be through formal tests or informed by expert judgment or some combination of the two.  
Certainly expert judgment should be employed whenever feasible, and when used, is invaluable to sound 
statistical analysis. These charts provide guidance, but sound statistical judgment will sometimes lead to 
departures from the flowcharts.  

107. The flow charts (Figures 5.1 and 5.2) are intended to include experiments which contain only two 
concentrations (control and one test concentration). Such experiments are generally referred to as limit 
tests and the methods described are applicable to these tests. 

108. It should be noted that tests of hypotheses might also be required for various special-case 
assessments of study results (e.g., use of a contingency table to assess the significance of male-female 
differences in frequency of responses at some dose). These types of analyses are beyond the scope of this 
document. 

109. The terms “dose” and “concentration” are used interchangeably in this chapter and the control is a 
zero dose or zero concentration group. Consistent with this, the terms “doses” and “concentrations” include 
the control, so that, for example, an experiment with only two concentrations has one control group and 
one positive concentration group.  

110. The tests discussed in this chapter, with the exception of the Tamhane-Dunnett and Dunn tests, are 
all available in commercial software. For example, they are available in SAS version 8 and higher. The 
two-sided Tamhane-Dunnett test (though not called such) is available in SAS through the studentized 
maximum modulus distribution provided by the probmc function. Where these tests are discussed, 
alternatives are provided, so that the reader can follow the general guidance of this chapter without being 
forced to develop special programs. 

111. It will be observed that there is no special flow chart for the exact Jonckheere-Terpstra and exact 
Wilcoxon tests. One of the appealing features of these two tests is that there are both asymptotic and exact 
versions and the same logic applies to both. 
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Dose response experiment with > 2 doses?

Yes

Expect monotone dose response?

No

Compare treatments to a common control?

Yes No

Use step-down trend test 
(e.g. based on Cochran-
Arm itage or Jonkheere

Use pairwise comparison 
(e.g. F isher’s Exact test 
with Bonferroni-Holm 
correction)

Yes No

Non-standard design. 
Not d iscussed here.

Use pairwise comparison 
(e.g. F isher’s Exact test 
with Bonferroni-Holm 
correction)

Both solvent contro l and non-solvent control are present.

Yes

Compare controls using Fishers 
Exact Test.  Do controls differ? 

No

Yes No

Drop Non-solvent contro l Combine controls, 
retain ing subgroups*

* Both scientific judgment and regulatory guidance must be considered in deciding w hether to pool non-solvent and solvent 
controls. The flow chart depicts appropriate actions if pooling is perm issible g iven these constraints.

 

Figure 5.1. Analysis of Quantal Data: Methods for determining the NOEC. Note that the dose count in ‘>2’ includes the control.
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controls. The flow chart depicts appropriate actions if pooling is permissible given these constraints.

** Doses include 0-dose control

Note: If there are <5 experimental units per treatment, or there are massive ties (see text)  then exact trend or pairwise tests
should be used if possible.
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Figure 5.2. Analysis of Continuous Data: Methods for determining the NOEC
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Use Tamhane-Dunnett test or perform pairwise 
comparisons (eg. using 
-Dunn’s Test with Bonferroni-Holm correction or
-Mann-Whitney with Bonferroni-Holm Correction or 
-Unequal variance t-test with Bonferroni-Holm
Correction )

Use non-parametric pairwise comparison (e.g. 
Dunn’s test or Mann-Whitney with Bonferroni-Holm 
correction)

Note: If there are <5 experimental units per treatment, or there are massive ties (see text)  then exact trend or pairwise tests
should be used if possible.

Data normally distributed?

A

Yes No

  

Figure 5.3. Analysis of Continuous Data: Methods for determining the NOEC. 
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5.1.1. The NOEC: What it is, and what it is not.  

112. The NOEC is defined as the test concentration below the lowest concentration that did result in a 
significant effect in the specific experiment, i.e. the NOEC is the tested concentration next below the 
LOEC.  

113. A significant effect is generally meant to be a statistically significant effect, as resulting from a 
hypothesis test. Obviously, no claim can be made that the condition of organisms exposed to toxicants at 
the NOEC is the same as the condition of organisms in the control group, or that the NOEC is an estimate 
of the threshold of toxicity (if such exists). Rather, no effect could be detected in this particular 
experiment. The detectability of an effect depends on the quality and the size of the experiment and the 
statistical procedure used. Of course, zero effects are never detectable. The relationship between the 
detectability of effects and the quality of the experiment can be quantified by the concept of statistical 
power. For a given null and alternative hypothesis, sample size and variance, statistical power is the 
probability that a particular magnitude of effect will result in a significant test outcome. In large 
experiments (i.e., many replicates) smaller sized effects are detectable as compared to small experiments. 
Thus, one may consider the detectable effect size of a particular experiment as an analogue of the detection 
limit of a particular chemical analysis. The detectable effect size can be increased not only by using larger 
sample sizes, but also by taking measures to make the experimental (residual) error smaller and by 
selecting more powerful statistical tests.  

114. Power calculations are useful for the purpose of designing experiments in such a way that effect 
sizes that are considered relevant are likely to be (statistically) detected. Care must be taken when using 
information on the power for interpreting a NOEC.  If the test was designed to detect a difference of x% 
and an observed treatment effect is not found statistically significant this does not allow one to conclude 
with a specified level of confidence that the true effect in the population is less than x%.  

115. Meaningful confidence intervals for the effect size at a given concentration are sometimes possible. 
An application of this is discussed in section 5.1.3 and methods for doing this are developed in Annex 5.3. 
For some techniques, obtaining meaningful confidence intervals is very difficult and this is discussed in 
greater detail in that annex. 

5.1.2. Hypothesis Used to determine NOEC  

116. The hypothesis that is tested in determining the NOEC for a toxicological experiment reflects the 
risk assessment question and the assumptions that are made concerning the underlying characteristics, or 
statistical model, of the responses being analysed (e.g., does the response increase in an orderly (i.e., 
monotone) way with increasing toxicant concentration?).  The statistical test that is used depends on the 
hypothesis tested (e.g., are responses in all groups equal?), the associated statistical model, and the 
distribution of the values (e.g., are data normally distributed?). Thus, it is necessary to understand the 
question to be answered and to translate this question into appropriate null and alternative hypotheses 
before selecting the test procedure.  

117. The need to select a statistical model for assessing the results of toxicity tests is not unique to the 
hypothesis testing approach. All methods of assessment assume a statistical model. The hypothesis testing 
approach to evaluation of toxicity data is based in part on keeping to a reasonable number the untestable or 
difficult-to-test assumptions, particularly those regarding the statistical model that will be used in reaching 
conclusions. The models used in regression and biologically based methods use stronger assumptions than 
the models used in the hypothesis testing approach.  
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118. The simplest statistical model generally used in hypothesis testing assumes only that the 
distributions of responses within these populations are identical except for a location parameter (e.g., the 
mean or median of the distribution of values from each group). Another statistical model that is often used 
assumes that there is a trend in the response that is associated with increasing exposure.  Each of these 
models suggests a set of hypotheses that can be tested to determine whether the model is consistent with 
the data. These two types of hypotheses can further be expressed as 1-sided or 2-sided. The discussion 
below is developed in terms of population means, but applies equally to hypotheses concerning population 
medians. The most basic hypothesis (in 1-sided form) can be stated as follows: 

H0 : µ0=µ1=µ2=…=µk vs. H1 : µ0>µi for at least one i, (model 1) 

where µi, i=0, 1, 2, 3, …, k denote the means of the control and test populations, respectively. 

119. Thus, one tests the null hypothesis of no differences among the population means against the 
alternative that at least one population mean is smaller than the control mean. There is no investigation of 
differences among the treatment means, only whether treatment means differ from the control mean. The 
one-sided hypothesis is appropriate when an effect in only one direction is a concern. The direction of the 
inequality in the above alternative hypothesis (i.e. in H1 : µ0>µi ) would be appropriate if a decrease in the 
endpoint was a concern but an increase was not (for instance, if an exposure was expected to induce 
infertility and reduce number of offspring).  If an increase in the endpoint was the only concern, then the 
direction of the inequality would be reversed.  

Two-sided Trend Test  

120. In the two-sided form of the hypothesis, the alternative hypothesis is : 

H1 : µ0≠µi for at least one i. 

Trend or Pairwise test 

121. If no assumption is made about the relationships among the treatment groups and control (e.g., no 
trend is assumed), the test statistics will be based on comparing each treatment to the control, independent 
of the other treatments. Many tests have been developed for this approach, some of which will be discussed 
below. Most such tests were developed for experiments in which treatments are qualitatively different, as, 
for example, in comparing various new therapies or drug formulations to a standard. 

122. In toxicology, the treatment groups generally differ only in the exposure concentration (or dose) of 
a single chemical. It is further often true that biology suggests that if the chemical is toxic, then as the level 
of exposure is increased, the magnitude effect will tend to increase. Depending on what response is 
measured, the effect of increasing exposure may show up as an increase or as a decrease in the measured 
response, but not both. The statistical model underlying this biological expectation is what will be called a 
trend model or a model assuming monotonicity of the population means: 

µ0 ≥ µ1 ≥ µ2 ≥ µ3 ≥. . . ≥ µk  (or with inequalities reversed)  (Model 2) 

The null and alternative hypotheses can then be stated as 

H02 : µ0=µ1=µ2=…=µk vs H12 : µ0 ≥ µ1 ≥ µ2 ≥ µ3 ≥. . . ≥ µk , with µ0 > µk . 
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Note that µ0 > µk is equivalent, under the alternative, to µ0 > µi for at least one i. If this monotone 
model is accepted as representing the true responses of test organisms to exposure to toxicants, it is not 
possible for, say, µ3 to be smaller than µ0 and µ6 not to be smaller.  

123. Under the trend model and tests designed for that model, if tests of hypotheses H02 vs. H12 reveal 
that µ3 is different from µ0, but µ2 is not, the NOEC has been determined (i.e. it is the test concentration 
associated with µ2), and there is no need to test whether µ1 differs from µ0. Also, finding that µ3 differs 
from µ0 implies that a significant trend exists across the span of doses including µ0 and µ3, the span 
including µ0 and µ4, and so on. For the majority of toxicological studies, a test of the trend hypothesis based 
on model (2) is consistent with the basic expectations for a model for dose-response. In addition, statistical 
tests for trend tend to be more powerful than alternative non-trend tests, and should be the preferred tests if 
they are applicable. Thus, a necessary early step in the analysis of results from a study is to consider each 
endpoint, decide whether a trend model is appropriate, and then choose the initial statistical test based on 
that decision. Only after it is concluded trend is not appropriate do specific pairwise comparisons make 
sense to illuminate sources of variability. 

124. Toxicologists sometimes do not know whether a compound will cause measurements of continuous 
variables such as growth or weight to increase or decrease, but they are confident it will act in only one 
direction. For such endpoints, the 2-sided trend test is appropriate, described in 5.1.6. One difference 
between implementing step-down procedures for quantal data and continuous data is that two-sided tests 
are much more likely to be of interest for continuous variables. Such a model is rarely appropriate for 
quantal data, as only increased incidence rate above background (control) incidence are of interest in 
toxicology.  

125. The two-sided version of the step-down procedure is based on the underlying model: 

µ0 ≥ µ1 ≥ µ2 ≥ µ3 ≥ . . . ≥ µk 

or 

µ0 ≤  µ1 ≤  µ2 ≤  µ3 ≤ . . . ≤  µk. 

126. Under this model, in testing the hypothesis that all population means are equal against the 
alternative that at least one inequality is strict, one first tests separately each 1-sided alternative at the 
0.025-level of significance with all doses present. If neither of these tests is significant, the NOEC is higher 
than the highest concentration. If both of these tests are significant, a trend-based procedure should not be 
used, as the direction of the trend is unclear.  If exactly one of these tests with all the data is significant, 
then the direction of all further tests is in the direction of the significant test with all groups. Thereafter, the 
procedure is as in the 1-sided test, except all tests are at the 0.025 significance level to maintain the overall 
0.05 false positive rate.  

127. Where it is biologically sensible, it is preferable to test the one-sided hypothesis, because random 
variation in one direction can be ignored, and as a result, statistical tests of the one-sided hypothesis are 
more powerful than tests of the two-sided hypothesis.  

128. Note that a hypothesis test based on model 2 assumes only a monotone dose-response rather than a 
precise mathematical form, such as is required for regression methods (Chapter 6) or the biologically based 
models (Chapter 7). 
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5.1.3. Comparisons of single-step (pairwise comparisons) or step-down trend tests to determine the 
NOEC  

129. In general, determining the NOEC for a study involves multiple tests of hypotheses (i.e., a family 
of hypotheses is tested), either pairwise comparisons of treatment groups, or a sequence of tests of the 
significance of trend. For that reasons, statisticians have developed tests to control the family-wise error 
rate, FWE, (the probability that one or more of the null hypotheses in the family will be rejected 
incorrectly) in the multiple comparisons performed to identify the NOEC. For example, suppose one 
compares each of ten treatments to a common control using a simple t-test with a false positive error rate of 
5% for each comparison.  Suppose further that none of the treatments has an effect, i.e., all of the treatment 
and control population means are equal.  For each comparison, there is a 5% chance of finding a significant 
difference between that sample treatment mean and the control. The chance that at least one of the ten 
comparisons is wrongly declared significant is much higher, possibly as high as 1-.9510 =0.4 or 40%. The 
method of controlling the family-wise error rate has important implications for the power of the test. There 
are two approaches that will be discussed: single-step procedures and step-down procedures. There are 
numerous variations within each of these two classes of procedures that are suited for specific data types, 
experimental designs and data distributions.  

130. A factor that must be considered in selecting the methods for analysing the results from a study is 
whether the study is a dose-response experiment. In this context, a dose-response experiment is one in 
which treatments consist of a series of increasing doses of the same test material. Monotone responses 
from a dose-response experiment are best analysed using step-down procedures based on trend tests (e.g., 
the Cochran-Armitage, Williams, or Jonckheere-Terpstra trend test), whereas non-monotone responses 
must be analysed by pairwise comparisons to the control (e.g., Fisher’s exact test or Dunnett’s test). This 
section will discuss when to use each of these two approaches. 

131. Single-step procedures amount to performing all possible comparisons of treatment groups to the 
control. Multiple comparisons to the control may be made, but there is no ordered set of hypotheses to test, 
and no use of the sequence of outcomes in deciding which comparisons to make. Examples of the single-
step approach include the use of the Fisher’s exact test, the Mann-Whitney, Dunnett and Dunn tests. Since 
many comparisons to the control are made, some adjustment must be made for the number of such 
comparisons to keep the family-wise error (FWE) rate at a fixed level, generally 0.05. With tests that are 
inherently single comparison tests, such as Fisher’s exact and Mann-Whitney, a Bonferroni adjustment can 
be made: a study with k treatment levels would be analysed by performing the pair-wise comparisons of 
each of the treatment groups to the control group, each performed at a significance level of α/k instead of 
α. (This is the Bonferroni adjustment.) Equivalently, the calcutaed p-value ignoring multiplicities is 
multiplied by k.  That is, pb

i =k*pi The Bonferroni adjustment is generally overly conservative, especially 
for large k. Modifications reduce the conservatism while preserving the FWE at 0.05 or less. 

132. For the Holm modification of the Bonferroni adjustment, arrange the k unadjusted p-values for all 
comparisons of treatments to control in rank order, i.e., p(1)≤ p(2)≤ p(3)≤ … ≤ p(k) . Beginning with p(1), 
compare p(i) with α/(k –i+1), stopping at the first non-significant comparison. If the smallest i for which p(i) 
exceeds α/(k –i+1) is i=j, then all comparisons with i>j are judged non-significant without further 
comparisons. It is helpful (Wright (1992)) to report adjusted p-values rather than the above comparisons. 
Thus, report p*(1) = p(1)*(k-i+1) and then compare each adjusted p-value to α. Table 5.1 illustrates the 
advantage of the Bonferroni-Holm method. In this hypothetical example, only the comparison of treatment 
4 with the control would be significant if the Bonferroni adjustment is used, whereas all comparisons 
except the comparison of the Control with treatment 1 would be significant if the Bonferroni-Holm 
adjustment is used.  
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Comparison Unadjusted p 
value 

Bonferroni-Holm 
Adjusted p value 
p *(i) 

Bonferroni Adjusted 
p-values  
Pb 

i 

Control – Treatment 4 p (1) =0.002 0.002*4=0.008 0.002*4=0.008 

Control – Treatment 2 p (2) =0.013 0.013*3=0.039 0.013*4=0.052 

Control – Treatment 3 p (3) =0.020 0.020*2=0.040 0.02*4=0.08 

Control – Treatment 1 p (4) =0.310 0.310*1=0.310 0.310*4=1. 
Table 5.1 Comparison of Adjusted and Unadjusted P-Values 

133. Alternatives based on the Sidak inequality (each comparison at level 1-(1-α)k ) are also available. 
The Bonferroni and Bonferroni-Holm adjustment guarantee that the family-wise error rate is less than α, 
but they are conservative. Other tests, such as Dunnett’s, have a “built-in” adjustment for the number of 
comparisons made and are less conservative (hence, more powerful). For completeness, it should be 
understood that if only one comparison is made, the Bonferroni and Bonferroni-Holm adjustments leave 
the p-value unchanged.  Of course, there is no need to refer to an adjustment in this simple case, but the 
discussion becomes needlessly complicated if special reference is always made to the case of only one 
comparison.   

134. Step-down procedures are generally preferred where they are applicable. All step-down procedures 
discussed are based on a sequential process consisting of testing an ordered set of hypotheses concerning 
means, ranks, or trend. A step-down procedure based on trend (for example) works as follows: First, the 
hypothesis that there is no trend in response with increasing dose is tested when the control and all dose 
groups are included in the test. Then, if the test for trend is significant, the high dose group is dropped from 
the data set, and the hypothesis that there is no trend in the reduced data set is tested. This process of 
dropping treatment groups and testing is continued until the first time the trend test is non-significant. The 
highest dose in the reduced data set at that stage is then declared to be the NOEC. Distinguishing features 
of step-down procedures are that the tests of hypothesis must be performed in a given order, and that the 
outcome of each hypothesis test is evaluated before deciding whether to test the next hypothesis in the 
ordered sequence of hypotheses. It is these two aspects of these procedures that account for controlling the 
family-wise error (FWE) rate. 

135. A step-down method typically uses a critical level larger than that used in single-step procedures, 
and seeks to limit the number of comparisons that need to be made. Indeed, the special class of “fixed-
sequence” tests described below fix the critical level at 0.05 for each comparison but bound the FWE rate 
at 0.05. Thus, step-down methods are generally preferable to the single-step methods as long as the 
response means are monotonic.  

136. Tests based on trend are logically consistent with the anticipated monotone pattern of responses in 
toxicity tests. Step-down procedures make use of this ordered alternative by ordering the tests of 
hypotheses. This minimises the number of comparisons that need to be made, and in all the methods 
discussed here, a trend model is explicitly assumed (and tested) as a part of the procedure. 

137. Procedures that employ step-down trend tests have more power than procedures that rely on 
multiple pairwise comparisons when there is a monotone dose-response because they make more use of the 
biology and experimental design being analysed. When there is a monotone dose-response, procedures that 
compare single treatment means or medians against the control, independent of the results in other 



ENV/JM/MONO(2006)18 

 44

treatments (i.e. single-step procedures), ignore important and relevant information, and suffer power loss as 
a result. 

138. The trend models used in the step-down procedures do not assume a particular precise 
mathematical relationship between dose and response, but rather use only monotonicity of the dose-
response relationship. The underlying statistical model assumes a monotone dose-response in the 
population means, not the observed means. 

139. Rejection of the null hypothesis (i.e., rejecting the hypothesis that all group means, or medians, or 
distributions are equal) in favour of the stated alternative implies that the high dose is significantly 
different from the control. The same logic applies at each stage in the step-down application of the test to 
imply, whenever the test is significant, that the high dose remaining at that stage is significantly different 
from the control. These tests are all applied in a 1-sided manner with the direction of the alternative 
hypothesis always the same. Moreover, this methodology is general, and applies to any legitimate test of 
the stated hypotheses under the stated model. That is, one can use this fixed-sequence approach with the 
Cochran-Armitage test on quantal data, the Jonckheere-Terpstra or Williams or Brown-Forsythe tests of 
trend on continuous data. Other tests of trend can also be used in this manner.  

140. Deciding between the two approaches Bauer (1997) has shown that certain tests based on a 
monotone dose-response can have poor power properties or error rates when the monotone assumption is 
wrong. For example, departures from monotonicity in non-target plant data are common, where they arise 
from low dose stimulation. Davis and Svendsgaard (1990) suggest that departures from monotonicity may 
be more common than previously thought.. These results suggest that a need for caution exists. There are 
two testing philosophies used to determine whether a monotone dose-response is appropriate. Some 
recommend assessing in a general way for an endpoint or class of endpoints, whether a monotone dose-
response is to be expected biologically. If a monotone trend is expected, then trend methods are used. This 
procedure should be augmented, at a minimum, by adding that, if a cursory examination of the data shows 
strong evidence of departure from monotonicity (i.e., large, consistent departures), then pairwise methods 
should be used instead.  

141. A second philosophy recommends formal tests to determine if there is significant monotonicity or 
significant departure from monotonicity. With continuous data, one can use either a positive test for 
monotonicity (such as Bartholomew’s test) and proceed only if there is evidence of monotonicity, or use a 
“negative” test for departure from monotonicity (such as sets of orthogonal contrasts for continuous 
responses and a decomposition of the chi-square test of independence for quantal responses) and proceed 
unless there is evidence of non-monotonicity. Details on these procedures are given in Annexes 5.1 and 
5.3. Either philosophy is acceptable. The second approach is grounded in the idea that monotonicity is the 
rule and that it should take strong evidence to depart from this rule. Both approaches reduce the likelihood 
of having to explain a significant effect at a low or intermediate concentration when higher concentrations 
show no such effect. The “negative” testing approach is more consistent with the way tests for normality 
and variance homogeneity are used and is more likely to result in a trend test than a method that requires a 
significant trend test to proceed. This is what is shown in the flow diagrams presented below. 

142. Formal tests for monotonicity are especially desirable in a highly automated test environment. One 
simple procedure that can be used in this situation for continuous responses is to construct linear and 
quadratic contrasts of normalised rank statistics (to avoid the complications that can arise from non-normal 
or heterogeneous data). If the linear contrast is not significant and the quadratic contrast is significant, 
there is evidence of possible non-monotonicity that calls for closer examination of the data or pairwise 
comparison methods. Otherwise, a trend-based analysis is used. A less simple, but more elegant procedure 
would be to construct simultaneous confidence intervals for the mean responses assuming monotonicity 
(i.e., isotonic estimators based on maximum likelihood criteria – see Annex 5.3) and use a trend approach 
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unless one or more sample (i.e., non-isotonic) means fall outside the associated confidence interval. For 
quantal data using the Cochran-Armitage test, there is a built-in test for lack of monotonicity.   

143. Where expert judgement is used, formal tests for monotonicity or its lack may be replaced by 
visual inspection of the data, especially of the mean or median responses. The same concept applies to 
assessing normality and variance homogeneity. 

5.1.4. Dose metric in trend tests  

144. Various authors have evaluated the influence on trend tests of the different ways of expressing dose 
(i.e. dose metrics), including actual dose-values, log(dose), and equally-spaced scores (i.e., rank-order of 
doses). Lagakos and Lewis (1985) discuss various dose metrics and prefer the rank-order as a general rule. 
Weller and Ryan (1998) likewise prefer rank ordering of doses for some trend tests.  

145. When dose values are approximately equally spaced on a log scale, there is little difference 
between using log(dose) and rank-order, but use of actual dose values can have the unintended effect of 
turning a trend test into a comparison of high dose to control, eliminating the value of the trend approach 
and compromising its power properties. This is not an issue with some tests, such as the Jonckheere-
Terpstra test discussed below, since rank-order of treatment groups is built into the procedure. With others, 
such as Cochran-Armitage and contrast-based tests, it is an important consideration. 

146. Extensive computer simulations have been done (J. W. Green, in preparation) to compare the use of 
rank-order to dose-value in the Cochran-Armitage test. One simulation study involved over 88,000 sets of 
dose-response scenarios for 4- and 5-dose experiments found 12-17% of the experiments where the rank-
order scoring found lower NOEC than dose-value did and only 1% of the experiments where dose-value 
scores lead to lower NOEC than when rank-order scores were used. In the remaining cases, the two 
methods established the same NOEC. While these simulations results do not, by themselves, justify the use 
of rank-order over actual dose levels or their logarithms, they do suggest that use of rank-order will not 
lessen the power of statistical tests. All trend based tests discussed in this document, including contrast 
tests for monotonicity, are based on rank ordering of doses. 

5.1.5. The Role of Power in Toxicity Experiments 

147. The adequacy of an experimental design and the statistical test used to analyse study results are 
often evaluated in terms of the power of the statistical test. Power is defined as the probability that a false 
null hypothesis will be rejected by the statistical test in favour of a true alternative. That power depends on 
the alternative hypothesis. In the context of toxicology, the larger the effect, the higher the power to detect 
that effect. So, if a toxicant has had some effect on the organisms in a toxicity test, power is the probability 
that a difference between treatment groups and the control will be detected. The power of a test can be 
calculated if we know the size of the effect to be detected, the variability of the endpoint measured, the 
number of treatment groups, and the number of replicates in each treatment group. (Detailed discussions 
are given in sections 5.2 and 5.3 and Annexes 5.1 and 5.3).  

148. It should be understood that the goal of selecting a method for determining a NOEC is not to find 
the most powerful method. Rather, the focus should be on selecting methods most appropriate for the data 
and end result. Power is certainly an ingredient in this selection process. As discussed below, power can be 
used in designing experiments and selecting statistical tests to reduce animal use without loss of statistical 
power.  This can be accomplished by selecting an inherently more powerful test applied to fewer animals, 
so that the result is to retain the power of more traditional tests but use fewer animals.   

149. The primary use of power analysis in toxicity studies is in the design stage. By demonstrating that a 
study design and test method have adequate power to detect effects that are large enough to be deemed 
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important, if we then find that, at a given dose, there is no statistically significant effect, we can have some 
confidence that there is no effect of concern at that dose. However, power does not quantify this 
confidence. Failure to adequately design or control an experiment so that statistical tests have adequate 
power can result in large effects being found to be statistically insignificant.  On the other hand, it is also 
true that a test can be so powerful that it will find statistically significant effects of little importance. 

150. Deciding on what effect size should be considered to be large enough to be important is difficult, 
and may depend on both biological and regulatory factors. In some cases, the effect size may be selected 
by regulatory agencies or specified in guidelines.  

151. A requirement to demonstrate an adequate power to detect effects of importance will remove any 
perceived reward for poor experimental design or technique, as poor experimental design will be shown to 
have low power to detect important effects, and will lead to the selection of more powerful statistical tests 
and better designs. The latter will be preferable to the alternative of increasing sample sizes. Indeed, it is 
sometimes possible to find statistical procedures with greater power to detect important differences or 
provide improved estimates and simultaneously decrease sample sizes. 

152. For design purposes, the background variance can be taken to be the pooled within-experiment 
variance from a moving frame of reference from a sufficiently long period of historical control data with 
the same species and experimental conditions. The time-window covered by the moving frame of reference 
should be long enough to average out noise without being so long that undetected experimental drift is 
reflected in the current average. If available, a three-to-five year moving frame of reference might be 
appropriate. When experiments must be designed using more limited information on variance, it may be 
prudent to assume a slightly higher value than what has been observed. Power calculations used in design 
for quantal endpoints must take the expected background incidence rate into account for the given 
endpoint, as both the Fisher Exact and Cochran-Armitage test are sensitive to this background rate, with 
highest power achieved for a zero background incidence rate. The background incidence rate can be taken 
to be the incidence rate in the same moving frame of reference already mentioned. 

153. While at the design stage, power must, of necessity, be based on historical control data for initial 
variance estimates, it may also be worthwhile to do a post-hoc power analysis as well to determine whether 
the actual experiment is consistent with the criteria used at the design stage. Care must be taken in 
evaluating post-hoc power against design power. Experiment-to-experiment variation is expected and 
variance estimates are more variable than means. The power determination based on historical control data 
for the species and endpoint being studied should be reported.  

154. Alternatively, for experimental designs constructed to give an acceptable power based on an 
assumed variance rather than on historical control data, a post-hoc test can be done to compare the 
observed variance to the variance used in designing the experiment. If this test finds significantly higher 
observed variance (e.g., based on a chi-square or F-test) than that used in planning, then the assumptions 
made at design time may need to be reassessed.  

 5.1.6. Experimental design 

155. Factors that must be considered when developing experimental designs include the number and 
spacing of doses or exposure levels, the number of subjects per dose group, and the nature and number of 
subgroups within dose groups. Decisions concerning these factors are made so as to provide adequate 
power to detect effects that are of a magnitude deemed biologically important.  

156. The choice of test substance concentrations is one aspect of experimental design that must be 
evaluated for each individual study. The goal is to bracket the NOEC with concentrations that are as 
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closely spaced as practical. If limited information on the toxicity of a test material is available, test 
concentrations or doses can be selected to cover a range somewhat greater than the range of exposure 
levels expected to be encountered in the field and should include at least one concentration expected not to 
have a biologically important effect. If more information is available this range may be reduced, so that 
doses can be more closely spaced. Where effects are expected to increase approximately in proportion to 
the log of concentration, concentrations should be approximately equally spaced on a log scale. Three to 
seven concentrations plus concomitant controls are suggested, with the smaller experiment size typical for 
acute tests and larger experiment sizes most appropriate when preliminary dose-finding information is 
skimpy.   

157. The trade-off between number of subjects per subgroup and number of subgroups per group should 
be based on power calculations using historical control data to estimate the relative magnitude of within- 
and among- subgroup variation and correlation. If there are no subgroups, then there is no way to 
distinguish housing effects from concentration effects and neither between- and within-group variances or 
nor correlations can be estimated, nor is it possible to apply any of the statistical tests described for 
continuous responses to subgroup means other than the Jonckheere-Terpstra test. Thus, a minimum of two 
subgroups per concentration is recommended; three subgroups are much better than two; four subgroups 
are better than three. The improvement in modelling falls off substantially as the number of subgroups 
increases beyond four. (This can be understood on the following grounds. The modelling is improved if we 
get better estimates of both among- and within-subgroup variances. The quality of a variance estimate 
improves as the number of observations on which it is based increases. Either sample variance will have, at 
least approximately, a chi-squared distribution. The quality of a variance estimate can be measured by the 
width of its confidence interval and a look at a chi-squared table will verify the statements made.) The 
precise needs for a given experiment will depend on factors such as the relative and absolute size of the 
between- and within-replicate variances.  Examples 1 and 2 in Annex 5.3 illustrate the trade-offs between 
replicates per concentration and subjects per replicate. 

158. In any event, the number of subgroups per concentration and subjects per subgroup should be 
chosen to provide adequate power to detect an effect of magnitude judged important to detect. This power 
determination should be based on historical control data for the species and endpoint being studied.  

159. Since the control group is used in every comparison of treatment to control, consideration should 
be given to allocating more subjects to the control group than to the treatment groups in order to optimise 
power for a given total number of subjects. The optimum allocation depends on the statistical test to be 
used. A widely used allocation rule was given by Dunnett (1955), which states that for a total of N subjects 
and k treatments to be compared to a common control, if the same number, n, of subjects are allocated to 
every treatment group, then the number, n0, to allocate to the control to optimise power is determined by 
the so-called square-root rule. By this rule, the value of n is (the integer part of) the solution of the equation 
N= kn + n√k, and n0 = N - kn. [It is almost equivalent to say n0 = n√k.] This has been shown to optimise 
power for Dunnett’s test. It is used, often without formal justification, for other pairwise tests, such as the 
Mann-Whitney and Fisher exact test. Williams (1972) showed that the square-root rule may be somewhat 
sub-optimal for his test and optimum power is achieved when √k in the above equation is replaced by 
something between 1.1√k and 1.4√k.  

160. The optimality of the square-root rule to other tests, such as Jonckheere-Terpstra and Cochran-
Armitage has not been published in definitive form, but simulations (manuscript in preparation by J. W. 
Green) show that for the step-down Jonckheere-Terpstra test, power gains of up to 25% are common under 
this rule compared to results from equal sample sizes. In all cases examined, the power is greater following 
this rule compared to equal sample sizes, where the total sample size is held constant In the absence of 
definitive information on the Jonckheere-Terpstra and other tests, it is probably prudent to follow the 
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square-root rule for pairwise, Jonckheere-Terpstra and Cochran-Armitage tests and either that or Williams’ 
modification of the rule for other step-down procedures.  

161. The selection of an allocation rule is further complicated in experiments where two controls are 
used, since if the controls are combined for further testing, a doubling of the control sample size is already 
achieved. Since experience suggests that most experiments will find no significant difference between the 
two controls, the optimum strategy for allocating subjects is not necessarily immediately clear. This of 
course would not apply if a practice of pooling of controls is not followed. 

162. The reported power increases from allocating subjects to the control group according to the square 
root rule do not consider the effect of any increase in variance as concentration increases. One alternative, 
not without consequences in terms of resources and treatment of animals, is to add additional subjects to 
the control group without subtracting from treatment groups. There are practical reasons for considering 
this, since a study is much more likely to be considered invalid when there is loss of information in the 
controls than in treatment groups.  

5.1.7. Treatment of Covariates and Other Adjustments to Analysis 

163. It is sometimes necessary to adjust the analysis of toxicity data by taking into account some 
restriction on randomisation, compartmentalisation (housing) or by taking into account one or more 
covariates that might affect the conclusions. Examples of potential covariates include: initial body weights, 
initial plant heights, and age at start of test. While a thorough treatment of this topic will not be presented, 
some attention to this topic is in order. 

164. For continuous, normally distributed responses with homogeneous variances, analysis of 
covariance (ANCOVA) is well developed. Hocking (1985) and Milliken and Johnson (1984) are among 
the many references on this topic. For continuous responses that do not meet the normality or homogeneity 
requirements, non-parametric ANCOVA is available. 

165. Shirley (1981) indicates why nonparametric methods are needed in some situations. Stephenson 
and Jacobson (1988) contain a review of papers on the subject up to 1988. Subsequent papers include 
Wilcox (1991) and Knoke (1991). Stephenson and Jacobson recommend a procedure that replaces the 
dependent variable with ranks but retains the actual values of the independent variable(s). This has proved 
useful in toxicity studies. Seaman et al (1985) discuss power characteristics of some non-parametric 
ANCOVA procedures. 

166. When the response variable is quantal and is assumed to follow the binomial distribution, 
ANCOVA can be accomplished through logistic regression techniques. In this case, the covariate is a 
continuous regressor variable and the dose groups are coded as ‘dummy variables.’ This approach can be 
more generally described in the Generalized Linear Model (GLM) framework (McCullagh and Nelder 
(1989)). For quantal data, Koch et al (1998), Thall and Vail (1990), Harwell and Serlin (1988), Tangen and 
Koch (1999a, 1999b) consider some relevant issues.  

167. Adjustments must be made to statistical methods when there are restrictions on randomisation of 
subjects such as housing of subjects together. This is discussed for both quantal and continuous data in 
sections 5.2.2.6, 5.2.3, and 5.3.2.7, where the possibility of correlations among subjects housed together is 
considered, as are strategies for handling this problem. In the simple dose-response designs being 
discussed in this chapter, other types of restrictions on randomisation are less common. However, there is a 
large body of literature on the treatment of blocking and other issues that can be consulted. Hocking (1985) 
and Milliken and Johnson (1984) contain discussions and additional references. 
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168. Transformation of the doses (i.e. not response measures) in hypothesis testing is restricted, in this 
chapter, to the use of rank order of the doses. For many tests, the way that dose values (actual or rank 
order) are expressed has no effect on the results of analysis. An exception is the Cochran-Armitage test. 
(See Annex 5.1) 

5.2. Quantal data (e.g., Mortality, Survival) 

5.2.1. Hypothesis testing with quantal data to determining NOEC values  

169. Selection of methods and experimental designs in this chapter for determining NOEC values 
focuses on identifying the tests most appropriate for detecting effects. The appropriateness of a given 
method hinges on the design of the experiment and the pattern of responses of the experimental units. 
Figure 5.1 illustrates an appropriate scheme for method selection, and identifies several statistical methods 
that are described in detail below. There are, of course, other statistical procedures that might be chosen. 
The following discussion identifies many of the procedures that might be used, gives details of some of the 
most appropriate, and attempts to provide some insight into the strengths and weaknesses of each method. 

170. If there are two negative controls (i.e., solvent and non-solvent) Fisher’s exact test applied just to 
the two controls is used to determine whether the two groups differ wherever it is appropriate to analyse 
individual sampling units. Where replicate means or medians are the unit for analysis, the Mann-Whitney 
rank sum test can be used. Further discussion of when each approach is appropriate is given in sections 
5.2.2 and 5.2.2.3. Section 4.2.3 contains discussions of issues regarding multiple controls in an ecotoxicity 
study.  

171. Figure 5.1 identifies a number of powerful methods for the analysis of quantal data. There are, of 
course, other statistical procedures that might be chosen. The following discussion identifies many of the 
procedures that might be used, gives details of some of the most appropriate, and attempts to provide some 
insight into the strengths and weaknesses of each method.  

172. The methods used for determining NOEC values on quantal data can be categorised according to 
whether the tests involved are parametric or non-parametric and whether the methods are single-step or 
step-down. Table 5.2 lists methods that can be used to determine NOEC values. Some of these methods are 
applicable only under certain circumstances, and some methods are preferred over the others.  

173. Except for the two Poisson tests, those tests listed in the column “Parametric” can be performed 
only when the study design allows proportion of organisms responding in replicated experimental units to 
be calculated (i.e. there are multiple organisms within each of multiple test vessels within each treatment 
group). Such a situation yields multiple responses, namely proportions, for each concentration, and these 
proportions can often be analysed as continuous. For very small samples, such a practice is inappropriate.  

174. Typically, if responses increase or remain constant with increasing dosage, the trend-based 
methods perform better than pairwise methods, and for most quantal data, a step-down approach based on 
the Cochran-Armitage test is the most appropriate of the listed techniques. The strengths and weaknesses 
of most listed methods are discussed in more detail below.  
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  Parametric  Non-Parametric 

Single-Step 
(Pair-wise) 

Dunnett 
Poisson comparisons 

Mann-Whitney with Bonferroni-Holm adjustments. 
Chi-squared with Bonferroni-Holm adjustment 
Steel’s Many-to-One 
Fisher’s exact test with Bonferroni-Holm adjustment. 

Step-down  
(Trend based) 

Poisson Trend Williams 
Bartholomew 
Welsch 
Brown-Forsythe  
Sequences of linear 
     contrasts 

Cochran-Armitage  
Jonckheere-Terpstra test 
Mantel-Haenszel 

 
Table 5.2 Methods used for determining NOEC values with quantal data.  

All listed single-step methods are based on pair-wise comparisons, and all step-down methods are based on trend-tests. The tests 
listed in Table 5.2 are well established as tests of the stated hypothesis in the statistics literature. Note: (The Mann-Whitney test is 
identical to the Wilcoxon rank-sum test.) 

5.2.2. Parametric versus non-parametric tests 

175. Parametric tests are based on assumptions that the responses being analysed follow some given 
theoretical distribution. Except for the Poisson methods, the tests listed in Table 5.2. as parametric all 
require that the data be approximately normally distributed (possibly after a transformation).The normality 
assumption can be met for quantal data only if the experimental design includes treatment groups that are 
divided into subgroups, the quantal responses are used to calculate proportions responding in each of the 
subgroups, and these proportions are the observations analysed. These proportions are usually subjected to 
a normalising transformation (see sections 4.32, 4.33, and 4.34), and a weighted ANOVA is performed, 
perhaps with weights proportional to subgroup sizes (Cochran (1943)). (It is noteworthy that some 
statistical packages, such as SAS version 6, do not always perform multiple comparisons within a weighted 
ANOVA correctly.) This approach limits the possibilities of doing trend tests to those based on contrasts, 
including Welsch and Brown-Forsythe tests (Roth (1983); Brown and Forsythe (1974)). Non-trend tests 
include versions of Dunnett’s test for pairwise comparisons allowing for unequal variances (Dunnett 
(1980); Tamhane (1979)). These methods may not perform satisfactorily for quantal data, partly due to a 
loss of power in analysing subgroup proportions. An example is given on Annex 5.1. 

176. The Cochran-Armitage test is listed as non-parametric even though it makes explicit use of a 
presumed binomial distribution of incidence within treatment groups. Some reasons for this are given in 
Annex 5.1. Fisher’s Exact test is likewise listed as non-parametric, even though it is based on the 
geometric distribution. The Jonckheere-Terpstra test applied to subgroup proportions is certainly non-
parametric. An advantage of Jonckheere-Terpstra over the cited parametric tests is that the presence of 
many zeros poses no problem for the analysis and it provides a powerful step-down procedure in both 
large- and small-sample problems, provided the number of subgroups per concentration is not too small. 
An example in Annex 5.3 will illustrate this concern. 
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5.2.2.1. Single-step procedures  

177. Suitable single-step approaches for quantal data are Fisher’s exact test and the Mann-Whitney test 
to compare each treatment group to the control, independently of other treatment groups, with Bonferroni-
Holm adjustment. Details of these tests are given in annex 5.1. 

5.2.2.2. Step-Down Procedures  

178. Suitable step-down procedures for quantal data are based on the Cochran-Armitage and Poisson 
trend tests. First, a biological determination is made whether or not to expect a monotone dose-response. If 
that judgement is to expect monotonicity, then the step-down procedure described below is followed unless 
the data strongly indicates non-monotonicity. If the judgement is not to expect monotonicity, then Fisher’s 
exact test is used. 

179. An analysis of quantal data is based on the relationships between the response (binary) variable and 
factors. In such cases, the Pearson Chi-Square (χ2) test for independence can be used to find if any 
relationships exist.  

180. Test for monotone dose-response: If one believes on biological grounds that there will be a 
monotone dose-response, then the expected course of action is to use a trend test. However, statistical 
procedures should not be followed mindlessly. Rather, one should examine the data to determine whether it 
is consistent with the plan of action. There is a simple and natural way to check whether the dose-response 
is monotone. The k-1 df Pearson Chi-Square statistic decomposes into a test for linear trend in the dose-
response and a measure of lack of fit or lack of trend, 2

)2k(
2

)1(
2

)1k( −− χ+χ=χ where χ2
(1) is the calculated 

Cochran-Armitage linear trend statistic and χ2
(k-2) is the Chi-Square statistic for lack of fit. The details of 

the computations are provided in annex 5.1.  

181. If the trend test is significant when all doses are included in the test, then proceed with a trend-
based step-down procedure. If the trend test with all doses included is not significant but the test for lack of 
fit is significant, then this indicates that there are differences among the dose groups but the dose-response 
is not monotone. In this event, even if we expected a monotone dose-response biologically, it would be 
unwise to ignore the contrary evidence and one should proceed with a pairwise analysis.  

182. The Cochran-Armitage trend test is available in several standard statistical packages including SAS 
and StatXact. StatXact also provides exact power calculations for the Cochran-Armitage trend test with 
equally spaced or arbitrary doses.   

183. The step-down procedure: A suitable approach to analysing monotonic response for quantal data is 
as follows. Perform a Cochran-Armitage test for trend on responses from all treatment groups including the 
control. If the Cochran-Armitage test is significant at the 0.05 level, omit the high dose group, re-compute 
the Cochran-Armitage and Chi-Squared tests with the remaining dose groups. Continue this procedure 
until the Cochran-Armitage test is first non-significant at the 0.05 level. The highest concentration 
remaining at this stage is the NOEC. 

184. Possible Modifications of the Step-Down Procedure:  There are two possible modifications to 
consider to the above. First, as noted by Cochran (1943), Fisher’s Exact test is more powerful for 
comparing two groups than the Cochran-Armitage test when the total number of subjects in the two groups 
is less than 20 and also when that total is less than 40 and the expected frequency of any cell is less than 5. 
This will include most laboratory ecotoxicology experiments. For this reason, if the step-down procedure 
described above reaches the last possible stage, where all doses above the lowest tested dose are 
significant, then we can substitute Fisher’s exact test for Cochran-Armitage for the final comparison on the 
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grounds that it is a better procedure for this single comparison. Such substitution does not alter the power 
characteristics or theoretical justification of the Cochran-Armitage test for doses above the lowest dose, but 
it does improve the power of the last comparison. 

185. Second, if the step-down procedure terminates at some higher dose because of a non-significant 
Cochran-Armitage test, but there is at this stage a significant test for lack of monotonicity, one should 
consider investigating the lower doses further. This can be done by using Fisher’s exact test to compare the 
remaining dose groups to the control, with a Bonferroni-Holm adjustment. The Bonferroni-Holm 
adjustment would take into account only the number of comparisons actually made using Fisher’s exact 
test.  The inclusion of a method within the step-down procedure to handle non-monotonic results at lower 
doses is suggested for quantal data (but not for continuous data) for two reasons. First, there is a sound 
procedure built into the decomposition of the Chi-squared test for assessing monotonicity that is directly 
related to the Cochran-Armitage test. Secondly, experience suggests that quantal responses are more prone 
to unexpected changes in incidence rates at lower doses than continuous responses, so that a strict 
adherence to a pure step-down process may miss some adverse effects of concern. 

5.2.2.3. Alternative Procedures 

186. These following parametric and nonparametric procedures are discussed because under some 
conditions, a parametric analysis of subgroup proportions may be the only viable procedure. This is 
especially true if there are also significant differences in the number of subjects within each subgroup, 
making analysis of means or medians problematic by other methods. 

187. Pairwise ANOVA (weighted by subgroup size) based methods performed on proportion affected 
have sometimes been used to determine NOEC values. While there can be problems with these proportion 
data meeting some of the assumptions of ANOVA (e.g., variance homogeneity), performing the analysis 
on proportion affected opens up the gamut of ANOVA type methods, such as Dunnett’s test and methods 
based on contrasts. Failure of data to satisfy the assumption of homogeneity of variances can often be 
corrected by the use of an arcsine-square-root or other normalising and variance stabilising transformation. 
However, this approach tends to have less power than step-down methods designed for quantal data that 
are described above, and is especially problematic for very small samples. These ANOVA based methods 
may not be very powerful and are not available if there are not distinct subgroups of multiple subjects each 
within each concentration. Williams’ test is a trend alternative that can be used, when data are normally 
distributed with homogeneous variance.  

188. A nonparametric trend test that can be used to analyse proportion data is the Jonckheere-Terpstra 
trend test, which is intended for use when the underlying response on each subject is continuous and the 
measurement scale is at least ordinal. The most common application in a toxicological setting is for 
measures such as size, fecundity, and time to an event. The details of this and other tests that are intended 
for use with continuous responses are given in section 5.3. A disadvantage of the use of the Jonckheere-
Terpstra trend test for analysing subgroup proportions where sample sizes are unequal is that it does not 
take sample size into account. It is not proper to treat a proportion based on 2 animals with the same weight 
as one based on 10, for example. For most toxicology experiments where survival is the endpoint, the 
sample sizes are equal, except for a rare lost subject, so this limitation is often of little importance. Where a 
sub lethal effect on surviving subjects is the endpoint, then this is a more serious concern. 

189. The methods described in Table 5.2 are sometimes used but tend to be less powerful than one 
designed for quantal data, such as those so indicated in Table 5.2. They are appropriate only if responses of 
organisms tested are independent, and there is not significant heterogeneity of variances among groups 
(i.e., within-group variance does not vary significantly among groups). If there is a lack of independence or 
significant heterogeneity of variances, then modifications are needed. Some such modifications are 
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discussed below. In the ANOVA context, a robust ANOVA (e.g., Welch's variance-weighted one-way 
ANOVA) that does not assume variance homogeneity can be used. 

190. Poisson tests can be used as alternatives in both non-trend and trend approaches. (See annex 5.1) A 
robust Poisson approach (Weller and Ryan (1998)) using dummy variables for groups, or multiple Mann-
Whitney tests using subgroup proportions as the responses could be used. In each case, an adjustment for 
number of comparisons should be made. For the robust Poisson model, this would be of the Bonferroni-
Holm type. For the Mann-Whitney test, the Bonferroni-Holm adjustment could be used or these pairwise 
comparisons could be “protected” by requiring a prior significant Kruskal-Wallis test (i.e. an overall rank-
based test of whether any group differs from any other). It should be noted that the Mann-Whitney 
approach does not take subgroup size into account, but this will usually not be an issue for survival data. 

 5.2.2.4. Assumptions of methods for determining NOEC values  

191. The assumptions that must be met for the listed methods for determining NOEC values vary 
according to the methods. Assumptions common to all methods are given below, while others apply only 
to specific methods. The details on the latter are given in annex 5.1. 

192. Assumption: Responses are independent. All methods listed in Table 5.2.1 are based on the 
assumption that responses are independent observations. Failure to meet this assumption can lead to highly 
biased results. If organisms in a test respond independently, they can be treated as binomially distributed in 
the analysis.(See section 4.2.2 for further discussion.) It is not uncommon in toxicology experiments for 
treatment groups to be divided into subgroups. For example, an aquatic experiment may have subjects 
exposed to the same nominal concentration but grouped in several different tanks or beakers. It sometimes 
happens that the survival rate within these subgroups varies more from subgroup to subgroup than would 
be expected if the chance of dying were the same in all subgroups. This added variability is known as 
extra-binomial (or extra-Poisson) variation, and is an indication that organisms in the subgroups are 
responding to different levels of an uncontrolled experimental factor (e.g., subgroups are exposed to 
differing light levels or are being held at differing temperatures) and are not responding independently. In 
this situation, correlations among subjects must be taken into account. For quantal responses, an 
appropriate way to handle this is to analyse the subgroup responses; that is, the subgroups are considered to 
be the experimental unit (replicate) for statistical analysis. Note that lack of independence can arise from at 
least two sources: differences in conditions among the tanks and interactions among organisms.  

193. With mortality data, extra-binomial variation (heterogeneity) is not a common problem, but it is 
still advisable to do a formal or visual check. Two formal tests are suggested: a simple Chi-Squared test 
and an improved test of Potthoff and Whittinghill (1966). Both tests are applied to the subgroups of each 
treatment group, in separate tests for each treatment group. While these authors do not suggest one, an 
adjustment for the number of such tests (e.g., Bonferroni) is advisable. It should be noted also that the Chi-
squared test can become undependable when the number of expected mortalities in a Chi -squared cell is 
less than five. In this event, an exact permutation version of the Chi-squared test is advised and is available 
in commercially available software, such as StatXact and SAS. 

194. If organisms are not divided into subgroups, lack of independence cannot be detected easily, and 
the burden for establishing independence falls to biological argument. If there is a high likelihood of 
aggression or competition between organisms during the test, responses may not be independent, and this 
possibility should be considered before assigning all organisms in a test level to a single test chamber.  

195. It should be noted that even if subgroup information is entered separately, a simple application of 
the Cochran-Armitage test ignores the between-subgroup (i.e., within-group) variation and treats the data 
as though there were no subgrouping. This is inappropriate if heterogeneity among subgroups is 
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significant. The same is true of simple Poisson modelling. Thus, if significant heterogeneity is found, an 
alternative analysis is advised. One in particular deserves mention. This is a modification of the Cochran-
Armitage test developed by Rao and Scott (1992) that is simple to use and is appropriate when there is 
extra-binomial variation. The beta-binomial model of Williams (1975) is another modification of the 
Cochran-Armitage tests that allows for extra-binomial variation. If the Jonckheere-Terpstra test is used, 
there is no adjustment (or any need to adjust) for extra-binomial variation, as that method makes direct use 
of the between-subgroup variation in observed proportions. However, as pointed out above, if there is 
considerable variation in subgroup sizes, this approach suffers by ignoring sample size. 

Treatment of multiple controls 

196. A preliminary test can be done comparing just the two controls as a step in deciding how to 
interpret the experimental data. For quantal (e.g., mortality) data, Fisher’s exact test is appropriate. The 
decision of how to proceed after this comparison of controls is given in section 4.2.3. 

 5.2.3. Additional Information  

197. Annex 5.1 contains details of the principle methods discussed in this section, including examples. 
Annex 5.2 contains a discussion of the power characteristics of the step-down Cochran-Armitage and 
Fisher exact tests. Section 5.3 and Annex 5.3 contain a discussion of the methods for continuous responses 
that can be used to analyse subgroup proportions, as discussed above. 

5.2.4. Statistical Items to be Included in the Study Report  

198. The report describing quantal study results and the outcome of the NOEC determination should 
contain the following items: 

• Test endpoint assessed 

• Number of Test Groups 

• Number of subgroups within each group (if applicable) 

• Identification of the experimental unit 

• Nominal and measured concentrations (if available) for each test group  

• Number exposed in each treatment group (or subgroup if appropriate) 

• Number affected in each treatment group (or subgroup if appropriate) 

• Proportion affected in each treatment group (or subgroup if appropriate) 

• Confidence interval for the percent effect at the NOEC, provided that the basis for the calculation 
is consistent with the distribution of observed responses. (See Annex 5.3). 

• P value for test of homogeneity if performed 

• Name of the statistical method used to determine the NOEC 

• The dose metric used 

• The NOEC 

• P value at the LOEC (if applicable) 

• Design power of the test to detect an effect of biological importance (and what that effect is) 
based on historical control background and variability. 
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• Actual power achieved in the study. 

• Plot of response data versus concentration. 

5.3. Continuous data (e.g., Weight, Length, Growth Rate) 

5.3.1. Hypothesis testing with continuous data to determine NOEC  

199. Figure 5.2 provides a scheme for determining NOEC values for continuous data, and identifies 
several statistical methods that are described in detail below. As reflected in this flow chart, continuous 
monotone dose-response data are best analysed using a step-down test based on the Jonckheere trend test 
or Williams test (the former applicable regardless of the distribution of the data, the latter applicable only if 
data are normally distributed and variances of the treatment groups are homogeneous).  

200. Non-monotonic dose-response data should be assessed using an appropriate pairwise comparison 
procedure. Several such are described below. They can be categorized according whether the data are 
normally distributed or homogeneous. Dunnett’s test is appropriate if the data are normally distributed with 
homogeneous variance. For normally distributed but heterogeneous data, the Tamhane-Dunnett (T3) 
method (Hochberg and Tamhane, 1987) can be used. Alternatively, such data can be analysed by the Dunn, 
Mann-Whitney, or unequal variance t-tests with Bonferroni-Holm adjustment. Non-normal data can be 
analysed by using Dunn or Mann-Whitney tests with Bonferroni-Holm adjustment. Normality can be 
formally assessed using the Shapiro-Wilk test (Shapiro and Wilk 1965) while homogeneity of variance is 
assessed by Levene’s test (Box, 1953). Dunn’s test, if used, should be configured only to compare groups 
to control. All of these procedures are discussed in detail below. Alternatives exist to these if software used 
does not include these more desirable tests.  For normality, the Anderson-Darling, Kolmogorov-Smirnov, 
Cramér-von Mises, Martinez-Iglewicz and D’Agostino Omnibus test are available.  For variance 
homogeneity, Cochran’s Q, Bartlett’s and the Maximum F test can be used.  The tests described in detailed 
in this chapter are recommended where available, based on desirable statistical properties. 

201. There are, of course, a number of statistical procedures that are not listed in Figure 5.2 that might 
also be applied to continuous data. The following discussion identifies many of the procedures that might 
be used, and attempts to provide some insight into the strengths and weaknesses of each..  

202. Table 5.3.1 lists methods that are sometimes used to determine NOEC values. Some of these 
methods are applicable only under certain circumstances, and some methods are preferred over the others. 
Parametric tests listed are performed only when the distribution of the data to be analysed is approximately 
normally distributed. Some parametric methods also require that the variances of the treatment groups be 
approximately equal.  
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 Parametric  Non-Parametric 

Single-Step 

(Pair-wise) 

Dunnett 

Tamhane-Dunnett 

Dunn 

Mann-Whitney with Bonferroni 
correction 

Step-down 

 (Trend based) 

Williams 

Bartholomew 

Welch trend 

Brown-Forsythe trend 

Sequences of linear contrasts 

Jonckheere-Terpstra 

Shirley 

 
Table 5.3.1. Methods used for determining NOEC values with continuous data.  

All listed single step methods are based on pair-wise comparisons, and all step-down methods are based on trend-tests. 

5.3.1.1. Parametric versus non-parametric tests 

203. The parametric tests listed in Table 5.3.1, all require that the data be approximately normally 
distributed. Many also require that the variances of the treatment groups are equal (exceptions are the 
Tamhane-Dunnett, Welch and Brown-Forsythe tests). Parametric tests are desirable when these 
assumptions can be met. The failure of the data to meet assumptions can sometimes be corrected by 
transforming the data. (Section 5.1.10) Some non-parametric tests are almost as powerful as their 
parametric counterparts when the assumptions of normality and homogeneity of variances are met. The 
non-parametric tests may be much more powerful if the assumptions are not met. Furthermore, a test based 
on trend is generally more powerful than a pairwise test. A decision to use a parametric or non-parametric 
test should be based on which best describes the physical, biological and statistical properties of a given 
experiment. 

204. Piegorsch and Bailer (1997), referenced in the document, warns that use of the Jonckheere-Terpstra 
test requires that shapes of distributions or the response variable be equivalent and in many cases, this 
translates to requiring that the response variable have a common variance. They conclude the applicability 
of the Jonckheere-Terpstra test is brought into question when there are large disparities in variances.  
While the Jonckheere-Terpstra test discussed in detail below is a distribution-free trend test, that fact alone 
does not mean that its results are not susceptible to heterogeneity of variance. While most people who have 
investigated the usual nonparametric methods find them less sensitive to these problems than the usual 
parametric procedures, they are not impervious to these problems. To address this question, a large power 
simulation study has been carried out (J. W. Green, manuscript in preparation) comparing the effects of 
variance heterogeneity on the Jonckheere, Dunnett, and Tamhane-Dunnett tests. These simulations have 
shown the Jonckheere test to be much less affected by heterogeneity than the alternatives indicated and to 
lose little of its good power properties.   

205. Heterogeneity and non-normality are inherent in some endpoints, such as first or last day of hatch 
or swim up. There will be observed zero within-group variance in the control and lower concentrations 
quite often and non-zero variance in higher concentrations. No transformation will make the data normal or 
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homogeneous. It may be possible to apply some generalized linear model with a discrete distribution to 
such data, but that is not addressed in this chapter. 

5.3.1.2. Single-step (pairwise) procedures  

206. These tests are used when there is convincing evidence (statistical or biological) that the dose-
response is not monotone. This evidence can be through formal tests or through visual inspection of the 
data, as discussed in section 5.3.2.3. Pairwise procedures are also appropriate when there are differences 
among the treatments other than dose, such as different chemicals or formulations. These tests are 
described briefly here. Details of each test, including mathematical description, power, assumptions, 
advantages and disadvantages, relevant confidence intervals, and examples are discussed in Annex 5.3. 

207. Dunnett’s test: Dunnett’s test is based on simple t-tests from ANOVA but uses a different critical 
value that controls the family-wise error (FWE) rate for the k –1 comparisons of interest at exactly α. Each 
treatment mean is compared to the control mean. This test is appropriate for responses that are normally 
distributed with homogeneous variances and is widely available.  

208. Tamhane-Dunnett Test: Also known as the T3 test, this is similar in intent to Dunnett’s test but 
uses a different critical value and the test statistic for each comparison uses only the variance estimates 
from those groups. It is appropriate when the within-group variances are heterogeneous. It still requires 
within-group responses to be normally distributed and controls the FWE rate at exactly α. 

209. Dunn’s Test: This non-parametric test is based on contrasts of mean ranks. In toxicity testing, it is 
used to compare the mean rank of each treatment group to the control. To control the FWE rate at α or less, 
the Bonferroni-Holm correction (or comparable alternative) should be applied. Dunn’s test is appropriate 
when the populations have identical continuous distributions, except possibly for a location parameter 
(e.g., the group medians differ), and observations within samples are independent. It is used primarily for 
non-normally distributed responses. 

210. Mann-Whitney test: This is also a non-parametric test and can be applied under the same 
circumstances as Dunn’s test. The Mann-Whitney rank sum test compares the ranks of measurements in 
two independent random samples and has the aim of detecting if the distribution of values from one group 
is shifted with respect to the distribution of values from the other. It can be used to compare each treatment 
group to the control. When more than one comparison to the control is made, a Bonferroni-Holm 
adjustment is used. 

5.3.1.3. Step-down trend procedures 

211. For continuous data, two trend tests are described for use in step down procedures, namely the 
Jonckheere-Terpstra and Williams’ Test (described below) that are appropriate provided there is a 
monotone dose-response. Where expert judgement is available, the assessment of monotonicity can be 
through visual inspection. For such an assessment, plots of treatment means, subgroup means, and raw 
responses versus concentration will be helpful. An inspection of treatment means alone may miss the 
influence of outliers. However, a visual procedure cannot be automated, and some automation may be 
necessary in a high-volume toxicology facility. Although not discussed here in detail, the same 
methodology can be applied to the Welsch, Brown-Forsythe or Bartholomew trend tests. 

212. A general step-down procedure is described in the next section. Where the term “trend test” is used, 
one may substitute either “Jonckheere-Terpstra test” or “Williams’ test.” Details of these, as well as 
advantages and disadvantages, examples, power properties, and related confidence intervals for each are 
given in Annex 5.3. 
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5.3.1.4. Determining the NOEC using a step-down procedure based on a trend test 

213. This section describes a generalised step-down procedure for determining the NOEC for a 
continuous response from a dose response study. It is appropriate whenever the treatment means are 
expected to follow a monotone dose-response and there is no problem evident in the data that precludes 
monotonicity. 

214. Preliminaries: The procedure described is suitable if the experiment being analysed is a dose 
response study with at least two dose groups (Fig. 62). For clarity, the term “dose group” includes the zero-
dose control. Before entering the step-down procedure, two preliminary actions must be taken. First, the 
data are assessed for monotonicity (as discussed in section 5.1.4). A step-down procedure based on trend 
tests is used if a monotonic response is evident. Pairwise comparisons (e.g., Dunnett’s, Tamhane-Dunnett, 
Dunn’s test or Mann-Whitney with Bonferroni-Holm correction, as appropriate) instead of a trend-based 
test should be used where there is strong evidence of departure from monotonicity. Next, examine the 
number of responses and number of ties (as discussed in section 5.3.2.1). Small samples and data sets with 
massive ties should be analysed using exact statistical methods if possible. Finally, if a parametric 
procedure (e.g. Dunnett’s or Williams’ test) is to be used, then an assessment of normality and variance 
homogeneity should be made. These are described elsewhere. 

215. The Step-Down Procedure: The preferred approach to analysing monotonic response patterns is as 
follows. Perform a test for trend (Williams or Jonckheere) on responses from all dose groups including the 
control. If the trend test is significant at the 0.05 level, omit the high dose group, and re-compute the trend 
statistic with the remaining dose groups. Continue this procedure until the trend test is first non-significant 
at the 0.05 level, then stop. The NOEC is the highest dose remaining at this stage. If this test is significant 
when only the lowest dose and control remain, then a NOEC cannot be established from the data. 

216. Williams’ test: Williams’ test is a parametric procedure that is applied in the same way the 
Jonckheere-Terpstra test is applied. This procedure, described in detail in Annex 5.3, assumes data within 
concentrations are normally distributed and homogeneous. In addition to the requirement of monotonicity 
rather than linearity in the dose-response, an appealing feature of this procedure is that maximum 
likelihood methods are used to estimate the means (as well as the variance) based on the assumed 
monotone dose-response of the population means. The resulting estimates are monotone. An advantage of 
this method is that it can also be adapted to handle both between- and within-subgroup variances. This is 
important when there is greater variability between subgroups than chance alone would indicate.  
Williams’ test must be supplemented by a non-parametric procedure to cover non-normal or heterogeneous 
cases. Either Shirley’s (1979) non-parametric version of Williams’ test or the Jonckheere-Terpstra test can 
be used, but if these alternative tests are used, one loses the ability to incorporate multiple sources of 
variances. Limited power comparisons suggest similar power characteristics for Williams’ and the 
Jonckheere-Terpstra tests. 

217. Jonckheere-Terpstra Test: The Jonckheere-Terpstra trend test is intended for use when the 
underlying response of each experimental unit is continuous and the measurement scale is at least ordinal. 
The Jonckheere-Terpstra test statistic is based on joint rankings (also known as Mann-Whitney counts) of 
observations from the experimental treatment groups. These Mann-Whitney counts are a numerical 
expression of the differences between the distributions of observations in the groups in terms of ranks. The 
Mann-Whitney counts are used to calculate a test statistic that is used in conjunction with standard 
statistical tables to determine the significance of a trend. Annex 5.3 gives details of computations. The 
Jonckheere-Terpstra test reduces to the Mann-Whitney test when only one group is being compared to the 
control.  
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218. The Jonckheere-Terpstra test has many appealing properties. Among them is the requirement of 
monotonicity rather than linearity in the dose-response. Another advantage is that an exact permutation 
version of this test is available to meet special needs (as discussed below) in standard statistical analysis 
packages, including SAS and StatXact. If subgroup means or medians are to be analysed, the Jonckheere-
Terpstra test has the disadvantage of failing to take the number of individuals in each subgroup into 
account. 

219. Extensive power simulations of the step-down application of the Jonckheere-Terpstra test 
compared to Dunnett’s test have demonstrated in almost every case considered where there is a monotone 
dose-response, that the Jonckheere-Terpstra test is more powerful than Dunnett’s test (Green, J. W., in 
preparation for publication). The only situation investigated in which Dunnett’s test is sometimes slightly 
more powerful than the Jonckheere-Terpstra is when the dose-response is everywhere flat except for a 
single shift. These simulations followed the step-down process to the NOEC determination by the rules 
given above and covered a range of dose-response shapes, thresholds, number of groups, within-group 
distributions, and sample sizes.  

5.3.1.5. Assumptions for methods for determining NOEC values  

Small Samples / Massive Ties 

220. Many standard statistical tests are based on large sample or asymptotic theory. If a design calls for 
fewer than 5 experimental units per concentration, such large sample statistical methods may not be 
appropriate. In addition, if the measurement is sufficiently crude, then a large proportion of the measured 
responses have the same value, or are very restricted in the range of values, so that tests based on a 
presumed continuous distribution may not be accurate. In these situations, an exact permutation-based 
methodology may be appropriate. While universally appropriate criteria are difficult to formulate, a simple 
rule that should flag most cases of concern is to use exact methods when any of the following conditions 
exists: (1) at least 30% of the responses have the same value; (2) at least 50% of the responses have one of 
two values; (3) at least 65% of the responses have one of three values. StatXact and SAS are readily 
available software packages that provide exact versions of many useful tests, such as the Jonckheere-
Terpstra and Mann-Whitney tests. 

Normality 

221. When parametric tests are being considered for use, then a Shapiro-Wilk test (Shapiro and Wilk 
1965) of normality should be performed. If the data are not normally distributed, then either a normalising 
transformation (section 5.1.10) should be sought or a non-parametric analysis should be done. Assessment 
of non-normality can be done at the 0.05 significance level, though a 0.01 level might be justified on the 
grounds that ANOVA is robust against mild non-normality. The data to be checked for normality are the 
residuals after differences in group means are removed; for example, from an ANOVA with concentration, 
and, where necessary, subgroup, as class (i.e., non-numeric) variables.  

Variance Homogeneity 

222. If parametric tests are being considered for use and the data are normally distributed, then a check 
of variance homogeneity should be performed. Levene’s test (Box, 1953) is reasonably robust against 
marginal violations of normality. If there are multiple subgroups within concentrations, the variances used 
in Levene's test are based on the subgroup means. If there are no subgroups the variances based on 
individual measurements within each treatment group would be used. It should be noted that ANOVA is 
robust to moderate violations of assumptions, especially if the experimental design is balanced (equal n in 
the treatment groups), and that some tests for homogeneity are less robust than the ANOVA itself. Small 
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departures from homogeneity (even though they may be statistically significant by some test) can be 
tolerated without adversely affecting the power characteristics of ANOVA based tests. For example, it is 
well known that Bartlett’s test is very sensitive to non-normality. It is customary to use a much smaller 
significance level, (e.g., 0.001) if this test is used. Levene’s test, on the other hand, is designed to test for 
the very departures from homogeneity that cause problems with ANOVA, so that a higher level 
significance (0.01 or 0.05) in conjunction with this test can be justified. Where software is available to 
carry out Levene’s test, it is recommended over Bartlett’s. 

223. For pairwise (single-step) procedures, if the data are normally distributed but heterogeneous, then a 
robust version of Dunnett’s test (called Tamhane-Dunnett in this document) is available. Such a procedure 
is discussed in Hochberg and Tamhane (1987). Alternatives include the robust pairwise tests of Welch and 
Brown-Forsythe. If the data are normally distributed and homogeneous, then Dunnett’s test is used. 
Specific assumptions and characteristics of many of the tests referenced in this section are given in Annex 
5.3. 

224. Of course, expert judgement should be used in assessing whether a significant formal test for 
normality or variance homogeneity reveals a problem that calls for alternative procedures to be used. 

5.3.1.6. Operational considerations for statistical analyses 

Treatment of Experimental Units 

225. A decision that must often be made is whether the individual animals or plants can be used as the 
experimental unit for analysis, or whether subgroups should be the experimental unit. The consequences of 
this choice should be carefully considered. If there are subgroups in each concentration, such as multiple 
tanks or beakers or pots, each with multiple specimens, then the possibility exists of within- and among-
subgroup variation, neither of which should be ignored. If subjects within subgroups are correlated, that 
does not mean that individual subject responses should not be analysed. It does mean that these 
correlations should be explicitly modelled or else analysis should be based on subgroup means. Methods 
for modelling replicated dose groups (e.g., nested ANOVA) are available. For example, Hocking (1985), 
Searle (1987, especially section 13.5), Milliken and Johnson (1984, esp. chapter 23), John (1971), Littell 
(2002) and many additional references contain treatments of this.  

226. Technical note: If both within-subgroup and between-subgroup variation exist and neither is 
negligible, then the step-down trend test should either be the Jonckheere-Terpstra test with mean or median 
subgroup response as the observation, or else an alternative trend test such as Williams’ or Brown-Forsythe 
with the variance used being the correct combination of the within- and among-subgroups variances as 
described in the discussion on the Tamhane-Dunnett test in Appendix 5.3.1.  

227. Given the possibility of varying subgroup sample sizes at the time of measurement, it may not be 
appropriate to treat all subgroup means or medians equally. For parametric comparisons, this requires only 
the use of the correct combination of variance components, again as described as Appendix 5.3.1. For non-
parametric methods, including Jonckheere’s test, there are no readily available methods for combining the 
two sources of variability. The choices are between ignoring the differences in sample sizes and ignoring 
the subgroupings. If the differences in sample sizes are relatively small, they can be ignored. If the 
differences among subgroups are relatively small, they can be ignored. If both differences are relatively 
large, then there is no universally best method. A choice can be made based on what has been observed 
historically in a given lab or for a given type of response and built into the decision tree.  
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Identification and Meaning of Outliers 

228. The data should be checked for outliers that might have undue influence on the outcome of 
statistical analyses. There are numerous outlier rules that can be used. Generally, an outlier rule such as 
Tukey’s (Tukey, 1977) that is not itself sensitive to the effects of outliers is preferable to methods based on 
standard deviations, which are quite sensitive to the effects of outliers. Tukey’s outlier rule can be used as 
a formal test with outliers being assessed from residuals (results of subtracting treatment means from 
individual values) to avoid confounding outliers and treatment effects.  

229. Any response more than 1.5 times the interquartile range above the third quartile (75th percentile) 
or below the first quartile (25th percentile) is considered an outlier by Tukey’s rule. Such outliers should be 
reported with the results of the analysis. The entire analysis of a given endpoint can be repeated with 
outliers omitted to determine whether the outliers affected the conclusion. While it is true that 
nonparametric analyses are less sensitive to outliers than parametric analyses, omission of outliers can still 
change conclusions, especially when sample sizes are small or outliers are numerous. 

230. Conclusions that can be attributed to the effect of outliers should be carefully assessed. If the 
conclusions are different in the two analyses, a final analysis using non-parametric methods may be 
appropriate, as they are less influenced than parametric methods by distributional or outlier issues.  

231. It is not appropriate to omit outliers in the final analysis unless this can be justified on biological 
grounds. The mere observation that a particular value is an outlier on statistical grounds does not mean it is 
an erroneous data point. 

Multiple Controls 

232. To avoid complex decision rules for comparing a water and solvent control, it is recommended that 
a non-parametric Mann-Whitney (or, equivalently, Wilcoxon) comparison of the two controls be 
performed, using only the control data. This comparison can be either a standard or an exact test, according 
as the preliminary test for exact methods is negative or positive. If a procedure for comparing controls 
using parametric tests were to be employed, then another layer of complexity can result, where one has to 
assess normality and variance homogeneity twice (once for controls and again later, for all groups) and one 
must also consider the possibility of using transformations in both assessments. 

General 

233. Outliers, normality, variance homogeneity and checks of monotonicity should be done only on the 
full data set, not repeated at each stage of the step-down trend test, if used. Diagnostic tools for 
determining influential observations can also be very helpful in evaluating the sensitivity of an analysis to 
the effects of a few unusual observations. 

5.3.2. Statistical Items to be Included in the Study Report.  

234. The report describing continuous study results and the outcome of the NOEC determination should 
contain the following items: 

• Description of the statistical methods used 

• Test endpoint assessed 

• Number of Test Groups 

• Number of subgroups within each group and how handled (if applicable) 
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• Identification of the experimental unit 

• Nominal and measured concentrations (if available) for each test group  

• The dose metric used. 

• Number exposed in each treatment group (or subgroup if appropriate) 

• Group means (and median, if a non-parametric test was used) and standard deviations 

• Confidence interval for the percent effect at the NOEC, provided that the basis for the calculation 
is consistent with the distribution of observed responses. (See Annex 5.3). 

• The NOEC 

• P value at the LOEC (if applicable) 

• Results of power analysis 

• Plot of response versus concentration 

6. DOSE-RESPONSE MODELLING  

6.1. Introduction 

235. The main regulatory use of dose-response modeling in toxicity studies is to estimate an ECx, the 
exposure concentration that causes an x% effect in the biological response variable of interest, and its 
associated confidence bounds. The value of x, the percent effect, may be specified in advance, based on 
biological (or regulatory) considerations. Guidelines may specify for which value(s) of x the ECx is 
required. This chapter discusses how an ECx may be estimated, as well as how it may be judged that the 
available data are sufficient to do so.   

236. Dose-response (or concentration-response) modelling aims at describing the dose-response data as 
a whole, by means of a dose-response model. In general terms, it is assumed that the response, y, can be 
described as a function of concentration (or dose), x : 

y  =   f(x) 

where f can be any function that is potentially suitable for describing a particular dataset. Since y is 
considered as a function of x, the response variable y is also called the dependent variable, and the 
concentration x, the independent variable. As an example, consider the linear function 

 y  = a +  b x  

where the response changes linearly with the concentration. Here, a and b are called the model parameters. 
By changing parameter a one may shift the line upwards or downwards, while by changing the parameter b 
one may rotate the line. Fitting a line to a dataset is the process of finding those values of a and b that result 
in “the best fit”, i.e., making the distances of the data points to the line as small as possible. Similarly, for 
any other dose-response model, or function f, the best fit may be achieved by adjusting the model 
parameters.  
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237. This example illustrates that the data determine the values of the parameters a and b, and thereby 
the location and angle of the line. However, whatever the data, the result of the fitting process will, for this 
model, always be a straight line, so the flexibility of the dose-response model in following the dose-
response data is limited. In general, the flexibility of a dose-response model tends to be larger when it 
includes more parameters. For example, the model  

 y  =  a  +   b x  +  c x2  +  d x 3 

has four parameters (a, b, c, and d), which can all be varied in the fitting process. Therefore, this model is 
more flexible compared to the linear model, and can take on various shapes other than a straight line. One 
might conclude here: “the more parameters, the better”, but that is not the case. It only makes sense to 
include more parameters in a model when the data contain the information to estimate them (also referred 
to as the parsimony principle), or when including the parameter in the model leads to a significantly better 
fit.  

238. The fit of the model to the data may be defined in various ways. One measure for the fit is the sum 
of squares of the residuals, where the residuals are simply the distances (differences) between the data and 
the model value at the pertinent concentration. The best fit is then found by minimising the sum of squared 
residuals, or briefly the Sum of Squares (SS). Another measure for the fit is the likelihood, which is based 
on a particular distribution that is assumed for the data (e.g. a normal or lognormal distribution for 
continuous data, a binomial distribution for quantal data, or a Poisson distribution for count data). In that 
case the best fit is found by maximising the likelihood (or the log-likelihood, which amounts to the same 
thing). See section 4.3.5. for a general discussion of model fitting.  

239. In this chapter a dose-response model is generally written as y  =  f(x), where x may denote either 
concentration or dose. Indeed, a concentration-response and a dose-response model are not different from a 
statistical point of view. The response y may refer to data of various types. The type of the response data, 
either quantal or continuous (see chapter 3), does make an important difference, not only for the statistical 
analysis, but also for the interpretation of the results. In this chapter dose-response modelling is separately 
discussed for quantal (6.2) and for continuous (6.3) data, since the statistical analysis is completely 
different. The flow chart given in Fig. 6.1 summarizes the main lines of a dose-response modeling 
approach.  

240. Of course, the response in biological test systems not only depends on the concentration (dose) but 
also on the exposure duration. Yet, most ecotoxicity tests only vary the concentration (dose), at a single 
exposure duration. Therefore, the larger part of this chapter addresses how to model the concentration-
response relationship, ignoring the exposure duration. Obviously, any results from the statistical analysis 
then only hold for that particular exposure duration.  

241. For data sets where the exposure duration varied as well, one may apply models where the response 
is a function of both concentration and exposure duration. The inclusion of exposure duration is discussed 
in section 6.6, for both quantal and continuous data. In the other sections of this chapter, time is considered 
as fixed.  In chapter 7 the role of time and exposure duration in describing the response is further discussed 
from the perspective of biologically-based modelling.  

6.2. Modelling quantal dose-response data (for a single exposure duration) 

242. A quantal response y is defined as y = k/n , where k is the number of responding organisms (or 
experimental units) out of a total of n. A quantal response may also be expressed as a percentage, but the 
total number of observed units, n, cannot be omitted. For example, 2 responses out of 4 is not the same 
information as 50 out of 100. See also section 4.  
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243. The purpose of dose-response modelling of quantal data is to estimate an ECx (LCx), where x is a 
given percentage usually equal to or lower than 50%. When the dose-response data relate to a particular 
(single) exposure duration, the estimated parameters (EC50 or ECx) obviously only hold for that particular 
exposure duration (or to, e.g., a single acute oral dose).  

244. In this chapter the terms ED50 / EC50 / LD50 / LC50 are used interchangeably, as well as EDx / 
ECx / LDx / LCx, where x denotes a particular response level (usually smaller than 50). Note that x in 
model expressions denotes the concentration (or dose). In human risk assessment the term Benchmark dose 
(BMD)6 is used, and is, for the case of quantal data, equivalent to the ECx (but not so for continuous 
responses, see section 6.3).  

245. The terms dose and concentration are used interchangeably, as well as dose-response relationship 
and concentration-response relationship.  

                                                      
6 Originally the BMD was introduced by Crump (1984) as the lower confidence bound of the point estimate. More 
recently this is often indicated as BMDL.  
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More than 2 dose groups  (incl. controls ) showing  different* response levels?

yes no exit

Quantal data ?

yes

yes no

More than one
partial  response?

no

EC50 might be estimated
by other methods
(see 6.2.2)

For ECx  (x<50):
exit

Continuous data?

yes

yesyes

no

no

no

Fit various
models
(see 6.2.1)

Fit various
models
(see 6.3.1)

Models fitting equally
well give similar ECx
estimates ?**  see 6.4

exit Are confidence  intervals among ECx estimates extremely  different?

exitchoose lowest confidence bound

Not discussed  in this document

For ordinal data, see the PROAST software

Fig . 6.0 Flow chart for dose -response modeling . Doses = concentrations
Exit: ECx cannot be assessed from the data at hand; repeat the experiment with more (adequate) doses, or go to Chapter  5.
*  i.e. apparently different, given the noise in the data
**  in addition , it should be assessed by visual inspection that the fitted  model is sufficiently supported by the data.
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6.2.1. Choice of model   

246. A (statistical) dose-response model serves to express the observed response as a function of dose, 
to provide for a tool to estimate the parameters of interest, (in particular the ECx) and assess 
confidenceintervals for those estimates. A statistical regression model itself does not have any meaning, 
and the choice of the model (expression) is largely arbitrary. It is the data, not the model, that determines 
the dose-response, and thereby the ECx. Of course, an improper choice of the model can lead to an 
inappropriate estimate of the ECx, but the choice of the model is in most ecotoxicity studies governed by 
the data.  

247. Numerous dose-response models are theoretically possible, but in practice only a limited number is 
applied, mostly determined by historical habits in the field of application. Only the more frequently applied 
models will be discussed here. See section 6.4 for a discussion on model selection. 

248. For quantal data an obvious property for a dose-response function is that it ranges between 0 and 1 
(0% and 100%). Further, one would normally expect the response to be monotone, i.e., it only increases (or 
decreases). Cumulative distribution functions (e.g., normal, logistic, Weibull) obey that property, and are 
therefore candidates for dose-response modelling of quantal data.  

249. The use of cumulative distribution functions for quantal dose-response modelling can also be 
considered from the idea of tolerance distributions. By assuming that each individual in the population 
observed has its own tolerance for the chemical, a tolerance distribution expresses the variability between 
the individuals. Plotting the tolerance distribution cumulatively results in the quantal dose-response 
relationship, where the fraction of responding individuals (at a given concentration) is viewed as all 
individuals having a tolerance lower than that concentration. For example, a predicted response of 25% at 
concentration 10 ppm is interpreted as 25% of the individuals having a tolerance lower than 10 ppm. Given 
this interpretation, the slope of a quantal dose-response relationship is a reflection of the variability 
between the individuals, with steeper slopes meaning smaller variability in tolerances. 

250. In light of the preceding, the choice of a quantal concentration-response model may be based on an 
assumed tolerance distribution.  For several reasons one may expect a tolerance distribution to be 
approximately lognormal, or, equivalently, to be approximately normal for the log-concentrations. Indeed, 
a long history of experience has confirmed this, and it has become standard that models that are based on 
symmetrical tolerance distributions (e.g. the probit and logit model, see below) are fitted against the 
logarithms of the concentrations.  

251. In general, a dose-response model for quantal data is a function of the concentration or dose x: 

 y   = f(x) 

where y is the quantal response. It is important to keep in mind that in the model, y represents the true 
response, which may be thought of as the fraction of responding individuals in the infinite population, or as 
the probability of response for any individual. The function f(x) is chosen such that it equals zero at 
concentration zero (and unity for infinite concentration). However, theoretically the probability of response 
in the unexposed population might be very small, but it cannot be (strictly) zero. Therefore, it is 
theoretically more appropriate to extend the model and include a background incidence parameter by 
putting  

 y   =  f(x)  =  a  +  (1 – a) g(x) 
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where a denotes the true background probability of response, and g(x) is a function increasing from 0 to 1 
for x increasing from zero to infinity. In this formulation the response at infinite concentrations remains 
unity (since g(x) = 1 for infinite x). 

252. Some of the more commonly used models are discussed below. For a more extensive list of 
models, see Scholze et al. 2001.   

The probit model 

253. The probit model is the cumulative normal distribution function. In practice it is usually applied to 
the log-concentrations, implying that a lognormal tolerance distribution is assumed. The probit model 
(without the background mortality parameter a) can be expressed as:  

 )
50

log(})50log()log({)(
ED

xbEDxbyz =−=   (1) 

where z is the standard normal deviate associated with probability y. At first sight, the use of log-
concentration in this model appears to present a problem for dose zero. Note, however, that for x = 0, z = -
∞, and the associated probability y is zero. In other words, model (1) assumes that the probability of ever 
observing a response in the control group is strictly zero. Therefore, when model (1) is fitted to the data, 
the control observations can just as well be deleted7. They only provide information to the model when a 
background parameter is included in the model (see expression (5)).  

254. The standard normal deviate cannot be calculated from an explicit expression, as opposed to the 
logit model (see below). Common statistical software packages use standard algorithms; therefore this 
should not concern the user.   

255. The probit model has two parameters: the ED50 and the slope (b).  

256. The ED50 is the median of the (lognormal) tolerance distribution, and the slope is the inverse of the 
standard deviation of that distribution. 

257. Figure 6.1 shows an application of the probit model to mortality data.  

The logit model 

258. The logit model is the cumulative logistic distribution function. The logistic distribution has wider 
tails than the normal distribution, but is similar otherwise. Just as with the probit model, the logit model is 
usually applied to the log-concentrations.  

259. The logit model (without the background mortality parameter a) can be expressed as: 

 
)]/50log(exp[1

1
xEDb

y
+

=     (2) 

                                                      
7 Adequate software simply sets the log-likelihood score for observations in the control group at zero (whatever the 
observations). When a background response parameter is included in the model (see expression (5)), the log-
likelihood score associated with the observations in the control group only depends on the value of the background 
parameter.    
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where y is the probability of response.Just as in the probit model, the logarithm of dose does not present 
any problem for dose zero. It can be seen immediately that, in the limit, y equals zero for x approaching 
zero. In fitting the model, the control observations can be simply deleted, as they do not provide any 
information, unless a background parameter is included (see expression (5)).  

260. The logit model has two parameters: the ED50 and the slope (b). 

261. The ED50 is the median of the (log-logistic) tolerance distribution, and the slope is related to the 
standard deviation by: 

 
3b

SD ondistribtuitolerance
π

=  

262. Figure 6.2 illustrates the logit model applied to the same mortality data as Figure 6.1.  

The Weibull model 

263. The Weibull distribution is not necessarily symmetrical, and is usually applied to the 
concentrations themselves (not their logs). The Weibull model (without the background mortality 
parameter a) may be expressed as  

])/(exp[1 cbxy −−=      (3) 

264. It has two parameters, a location parameter b, and a parameter c (high values of c give steep slope). 
The ED50 is related to b and c by  

 ED50  =  b ln(2) 1/c  

265. Fig. 6.3 illustrates the Weibull model applied to the same mortality data as fig. 6.1 and 6.2.   

Multi-stage models 

266. The multi-stage model (see e.g., Crump et al. 1976) is often used for describing tumour dose-
response data. It is usually applied in a simplified version (the linearized multi-stage model, briefly LMS)  

}....{exp1 32 −−−−−−= dxcxbxay    (4) 

where the number of parameters is also called the number of stages. It includes the one-stage model 

       }{exp1 bxay −−−= , 

also referred to as the one-hit model. Note that in the multistage model background mortality is included, 
and equals 1 – exp(-a).  

267. The multi-stage model can be regarded as a family of nested models. For example, by setting the 
parameter d in the three-stage model equal to zero, one obtains the two-stage model. Thus, one can let the 
number of stages depend on the data (see below for a further discussion of nested models). 
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Figure 6.1 Probit model fitted to observed mortality frequencies (triangles) as a function of log-dose.  

Note that, on log-scale, the zero concentration is minus infinity.  

a = background mortality, b = slope, c = LD50, dashed lines indicate the LD20, pnorm = cumulative standard normal 
distribution function. 
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Figure 6.2 Logit model fitted to mortality dose-response data (triangles). 

c = LD50, b = slope, a = background mortality, dashed lines indicate the LD20. 
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Figure 6.3 Weibull model fitted to mortality dose-response data (triangles). 

b = “location” parameter, c = “slope” parameter, a = background mortality, dashed lines indicate the LD20. 
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268. The LD50 equals b ln(2) 1/c  = 0.145. Note that the data and the model in Figs. 6.1 – 6.3 are plotted 
against log-dose with the purpose of improving the readability of the plots. However, the Weibull model 
was fitted as a function of dose, while the probit and logit models were fitted as a function of log-dose. 

Definitions of EC50 and ECx 

269. The ECx is defined as the concentration associated with x% response, with the EC50 as a special 
case8. The situation of nonzero background response complicates the definition of the EC50 and of the 
ECx, since the background response may be taken into account in various ways.  

270. The EC50 is defined as the concentration associated with 50% response. However, a 50% response 
(i.e. incidence) can relate to the whole population, irrespective of the background response, or only to that 
part of the population that did not respond at concentration zero. Consider the general quantal dose-
response model where the background response (incidence) a is included as a model parameter:    

y = f(x) = a + (1-a) g(x)                                                              (5) 

271. Here g(x) may be any cumulative tolerance distribution, ranging from zero to one. It reflects the 
dose-response relationship for the fraction of the population that did not show a response at concentration 
zero. The background-corrected EC50 then simply is the EC50 as given by g(x). For example, when g(x) 
denotes the log-logistic model, then parameter c is the background-corrected EC50. This definition of the 
EC50 (LD50) is used in Fig 6.1 to 6.3. 

272. For response levels x% smaller than 50%, the ECx may be defined in various ways, e.g., 

      x%/100% = f(ECx) – a     (additional risk), 
      x%/100% = [f(ECx) – a ] / (1-a)  = g(ECx)  (extra risk). 

273. For example, when the background response a amounts to 3%, then the EC10 according to the 
additional risk definition corresponds to a response in the population of 13% (since 13%-3%=10%). In the 
extra risk definition the EC10 would correspond to a response of 12.7% (since [12.7%-3%] / 97% = 10%).  

274. Note that the background-corrected ECx according to the extra risk concept is equal to the 
(uncorrected) ECx of g(x) in expression (5). Therefore, extra risk appears favourable, but the numerical 
difference for the ECx based on additional or extra risk is usually small. The illustrative examples in Fig. 
6.1-6.3 used the additional risk concept. 

275. In ecotoxicity testing the additional risk is common for the ECx when x < 50%. However, in the 
case of the EC50 the background response will usually be taken into account according to the extra risk 
concept (as in Figs. 6.1-6.3). It may be noted that in other disciplines, still other risk concepts are used.  
For instance, in epidemiology more common measures are relative risk (response of exposed subjects 
divided by response in non-exposed subjects), and derived concepts such as attributable proportion, and 
odds ratio.  

                                                      
8 In human risk assessment the term Benchmark dose (BMD) is used, defined as the dose associated with a certain 
Benchmark response (=x%). Originally the Benchmark dose was defined as the lower confidence limit of the point 
estimate (Crump, 1984), also indicated as BMDL. See also Table in section 6.3.  
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6.2.2. Model fitting and estimation of parameters 

276. Fitting a model to dose-response data may be done by using any suitable software , e.g. SAS 
(www.sas.com), SPSS (www.spss.com), splus (www.insighful.com), and PROAST9 (Slob, 2003).  

277. The user does not need to be aware of the computational details, but some understanding of the 
basic principles in nonlinear regression is required to be able to interpret the results properly. These 
principles are discussed in 6.7. Furthermore, the user should be aware of the assumptions underlying the fit 
algorithm. For quantal data it is usually assumed that the data follow a binomial distribution, and the 
common fit algorithm is based on maximising the binomial likelihood (see section 6.2.3 for a discussion of 
the assumptions). The parameter values produced by this algorithm are the values associated with the 
maximum likelihood, and are also called the Maximum Likelihood Estimates (MLEs).  

278. Maximum likelihood can only be applied for data including at least two concentrations with partial 
responses, otherwise the MLE of the slope will tend to infinity. When the data only include 0% and 100% 
responses, or only a single concentration with partial response, the slope of the dose-response can therefore 
not be estimated. But there are several methods available for estimating the EC50 in those situations. These 
methods include procedures for assessing the precision of the estimated EC50 (Hoekstra, 1993).  

Response in controls 

279. Instead of estimating the background response (incidence) as a parameter in the dose-response 
model, Abbott’s correction is often used in situations where dose-response data show nonzero observed 
response in the controls. In this correction, each observed response pi is replaced by (pi – p0) / (1 – p0) 
where p0 denotes the observed background response. However, this is inappropriate, since the observed 
background response p0 contains error, which is not taken into account in this way. Instead the background 
response should be treated as an estimate containing error, just like the observed responses in the other 
dose groups. By incorporating the background response as a parameter in the model, it is estimated from 
the data, and estimation errors are accounted for, e.g. in calculating confidence intervals. As already 
discussed, it is theoretically impossible that the probability of response in the controls equals (strictly) zero. 
Therefore, the background response should be regarded as an unknown value, and be estimated from the 
data, even if the observed background response is zero (the fact that all observed control individuals did 
not respond does not imply that a response is impossible). Nonetheless, as Figure 6.4 illustrates, the 
background response may be estimated to be (virtually) zero, and in such situations fixing the background 
response at zero versus estimating it as a free parameter in the model does not make much difference 
(although the confidence intervals could be different, but probably not too much). Of course, one may 
always compare both ways of analyses in any practical situation. It should be noted that omitting the 
background parameter from the model has the advantage of one less parameter to be estimated (parsimony 
principle), but at the same time the observations in the control group are made worthless in that way.  

280. In practice it may happen that the best fit of the model results in a negative estimate of the 
background response. To prevent this, the model should be fitted under the constraint that the background 
response must be nonnegative (i.e. a ≥ 0). Instead of a negative estimate, the background response a 
associated with the best fit will, in those situations, then be estimated to be zero. 

Analysis of data with various observed fractions at each dose group 

281. Ecotoxicological (quantal) dose-response data often show replicated observed fractions at each 
concentration or dose group. For example, the individual organisms in each dose group may be housed in 

                                                      
9 Available upon request (Wout.slob@rivm.nl) 
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different containers, each container resulting in an observed fraction of responding organisms. As another 
example, the fraction of fertile eggs may be observed in individual female birds, where each dose group 
consists of various female birds.  

282. In more general terms, these designs have various experimental units per dose group, and in each 
experimental unit the fraction of responding sampling units is counted. Of course, a dose-response model 
can be fitted to such data by simply regarding the various observed fractions at each dose group as true 
replicates. In that case, it is assumed that the experimental units themselves (e.g. aquaria, of female birds) 
do not differ from each other.  

283. If this cannot be assumed, the variability between experimental units must be taken into account in 
the statistical analysis. Here, two approaches are briefly mentioned. One approach is to apply a normalising 
(e.g. the square-root arcsine) transformation to the observed fractions related to each experimental unit. 
The transformed data can then be analysed as continuous data, as discussed in section 6.3. However, this 
approach is problematic for data with 0% and 100% responses. Another approach is to account for the 
among-container variation by adjusting the  binomial distribution. For example, the parameter reflecting 
the probability of response in the binomial distribution may be assumed to follow a beta distribution 
(reflecting the variability among containers). This implies that the observed response is beta-binomial 
distributed rather than binomial, and the associated likelihood may be maximised (see e.g. Teunis and 
Slob, 1999).  Section 5.2.2.4. gives a description of two methods for deciding whether extra biromila 
variation is present.  

Analysis of data with one observed fraction at each dose group 

284. When the study design has only one container per dose group, the analysis appears at first sight 
simpler as compared to the situation of replicated containers at each dose. However, this is apparent only. 
If the containers differ by themselves, this between-container variation will result in extrabinomial 
variation just as well. Theoretically, the variation among containers could be taken into account by the 
approaches mentioned above. However, experience with how this works in practical ecotoxicity data 
appears to be lacking.  

Extrapolation and ECx 

285. Because of the fact that a fitted statistical model only reflects the information in the data, 
extrapolation outside the range of observation is usually unwarranted. Consequently, an ECx that is 
estimated to be below the lowest applied (nonzero) dose should not be trusted. 

Confidence intervals 

286. Whatever definition for the ECx is used, it is estimated from the point estimates of the parameters 
in the model. When these point estimates are obtained by maximum likelihood, these are Maximum 
Likelihood Estimates (MLEs). The ECx is also a MLE when it is (indirectly) calculated from these values .  

287. The MLE for the EC50, or any other ECx, is a point estimate only, and may, to a larger or smaller 
extent, be imprecise. The imprecision may be quantified by the standard error of the estimate, but it is more 
informative to calculate a confidence interval. A confidence interval indicates the plausible range for the 
parameter, e.g., a 95%-confidence interval is supposed to contain the true value of the parameter with 
probability 95%. Confidence intervals may be assessed in various ways: 

• plus or minus twice the parameter’s standard error (provided by most dose-response software), 
which is estimated by the second derivative of the likelihood function (Hessian or information 
matrix), possibly with Fieller’s correction (Fieller 1954),  
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• based on the profile of the log-likelihood function, using the Chi-square approximation of the 
log-likelihood, 

• value(s),  

• bootstrap methods (see e.g., Efron 1987, Efron and Tibshirani, 1993), 

• Bayesian methods, in particular if one has some preliminary knowledge on the plausible range of 
the parameter. 

Various studies have compared the first three methods (see e.g. Moerbeek et al. 2004).  
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Figure 6.4 Logit model fitted to mortality dose-response data (triangles).  

Here background mortality (parameter a) was included as a free parameter in the model, and estimated to be close to 
zero. The dashed lines indicate the LD50, and the LD10.  

6.2.3. Assumptions 

288. A dose-response model consists of a deterministic part (the predicted dose-response relationship) 
and a stochastic part (describing the noise). The assumptions made in the statistical part are analogous to 
those in hypothesis testing, and will only be briefly mentioned here. The focus in this chapter is on the 
additional assumption, that of the (deterministic) dose-response model.  

Statistical assumptions 

The assumptions for hypothesis testing equally hold for dose-response modelling: 

• Binomial distribution for observations per experimental unit, i.e. independence between the 
animals in the same experimental unit (e.g. container). When the experimental unit is not 
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accounted for in the statistical model, it is additionally assumed that experimental units do not 
vary among each other by themselves (i.e. at the same dose).  

• No systematic differences (caused by unintended experimental factors) between dose groups (the 
latter is particularly relevant for unreplicated designs, i.e. one container per dose-group). 

• The values of the concentrations/doses are assumed to be known without error, or, in situations 
where they are measured, the measurement errors are assumed to be negligible.  

Additional assumption:  

• The fitted model has a shape that is close to the true dose-response relationship 

Evaluation of assumptions 

Basic assumptions: 

289. In designs with sample units (e.g. organisms, eggs) within experimental units (e.g. containers, 
female birds) the assumption of binomially distributed data may not be met, due to variation among the 
experimental units themselves. One way to check this is by fitting a model based on a betabinomial 
distribution, and comparing the associated log-likelihood with that obtained from a fit based on a binomial 
distribution. This comparison can be done by a likelihood ratio test, since the binomial and betabinomial 
distributions are nested.   

Additional assumption:  

290. Fulfilment of the assumption that the shape of the fitted model is close to the true dose-response 
relationship depends not only on the choice of a proper dose-response model, but also on the quality of the 
dose-response data. Therefore, one not only needs to consider if the model is suitable to describe the data, 
but also if the data are good enough to sufficiently guide the model in obtaining the right shape. For a fuller 
discussion of evaluating the shape of the fitted dose-response model, see section 6.4.  

Consequences of violating the assumptions 

Basic assumptions: 

291. When the assumption of binomial distribution is not met, due to variation between experimental 
units, a fitted quantal dose-response model may result in a biased estimate of the ECx, as well as in too 
narrow confidence intervals.  

Additional assumption: 

292. Given that the data include both (close to) zero and (close to) 100% responses, violation of the 
assumption that the fitted model indeed reflects the true underlying dose-response relationship is less 
serious for an EC50 than for an ECx (the more so for lower values of x). The (point) estimate of the ECx 
may be inaccurate (biased), and the associated confidence interval may in extreme cases not even include 
the true value of the ECx. Therefore, it is not recommended to estimate an ECx if the fitted model appears 
not sufficiently confined by the data from visual inspection, or if it is found that various models fitting 
equally well result in different ECx estimates. In the latter case one might consider to construct an overall 
confidence interval for the ECx based on various models that fit the data equally well (if repeating the 
experiment, aimed at more concentrations with partial responses, is no option). 
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6.3. Dose-response modelling of continuous data (for a single exposure duration) 

293. While a quantal response is based on the observation of whether or not each single organism 
(biological system) has a particular property (e.g. death, clinical signs, immobilisation), a continuous 
response is a quantitative measure of some biological property (e.g. body weight, concentration of 
enzyme). Such continuous response is measured in each experimental unit, and since organisms (biological 
systems) are never identical by themselves or not observed under identical conditions, the resulting data 
show a certain amount of scatter, depending on the homogeneity of the treatment group. This scatter may 
be assumed to follow a certain distribution, e.g. a normal, a lognormal, or a Poisson distribution.  

294. Continuous data do not only differ from quantal data in a purely statistical sense (i.e. the underlying 
distribution). A more fundamental difference is that changes in response are interpreted in a completely 
different way. While the ECx in quantal responses relates to a change in response rate, an ECx in 
continuous responses relates to a change in the degree of the effect, as occurring in the average individual 
(of the population observed). For example, an IC10 in a fish test is associated with a 10% inhibition of the 
growth rate in the “average” fish (under the average experimental conditions).  

295. The purpose of dose-response modelling of continuous data is to estimate the ECx, where x is any 
given percentage. When the dose-response data relate to a single exposure particular duration, the 
estimated ECx obviously only hold for that particular exposure duration (or to, e.g., a single acute oral 
dose).  

Terms and notation 

296. In this section the following terms and notations are used. The continuous response y is related to 
the dose (or concentration) x by function f : 

y  = f(x) .  

297. In ecotoxicology the term ECx is defined as the concentration (or dose) associated with an effect 
x10), where x is defined as:  

 %1
)0(

)(100% 







−=

y
ECxyx   ,  

i.e., x is defined as a percent change in the (average) level of the endpoint considered, e.g., a 10% decrease 
in weight. 

298. In human toxicology different terms exist for the ECx. The equivalent terms are CED (Critical 
Effect Dose), which is equivalent to the ECx, and the CES (Critical Effect Size) which is equivalent to x in 
ECx (see e.g. Slob and Pieters, 1998). However, in human toxicology another approach has been proposed, 
which is based on a change in response rather than on a change in the degree of effect. In that approach 
(also called the hybrid approach) the terms BMD and BMR are used (e.g. Crump 1995, Gaylor and Slikker 
1990), but these terms are not comparable to the ECx in continuous responses in ecotoxicology. The 
following table summarises the terms.  

                                                      
10)  Note that x is used for both concentration (dose) and the degree of effect.  
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 Ecotoxicology human toxicology 

Quantal response  
(x in terms of response) 

x 
Ecx 

BMR (benchmark response) 
BMD (benchmark dose) 

Continuous response 
(x in terms of degree of effect) 

x 
ECx (ICx) 

CES (critical effect size) 
CED (critical effect dose) 

Continuous response  
(BMR in terms of response) 

- 
- 

BMR 
BMD 

 

6.3.1. Choice of model 

299. A (statistical) dose-response model only serves to smooth the observed dose-response, to estimate 
an ECx by interpolating between applied doses, and to provide for a tool to assess confidence intervals.  A 
statistical regression model itself does not have any meaning, and the choice of the model (mathematical 
expression) is largely arbitrary.  Numerous dose-response models are theoretically possible, but in practice 
only a limited number is applied, mostly determined by historical habits in the field of application. A 
number of useful (families of) models will be discussed here.  

300. A first distinction that can be made is linear versus nonlinear regression models. This distinction is 
made as the type of calculations is different between these two classes of models.  In linear models the 
calculations are relatively simple, and could be done without a computer, which is hardly possible for 
nonlinear models. Clearly, given the widespread use of computers, this advantage has become more and 
more irrelevant, and nonlinear models are gaining attention, as they may be considered to more realistic for 
reflecting a dose-response relationship (see below). Yet, linear models will be briefly discussed, for the 
sake of completeness. After that, a number of other models (or family of models) will be discussed, most 
of which are nonlinear.  

Linear models 

301. Linear regression models are defined as models that are linear with respect to their parameters. 
They can be nonlinear with respect to the independent variable and thus not only include the straight line, 
but also quadratic, or higher order polynomials: 
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302. These models have the property that the parameters (a, b, etc) in the model can be estimated by 
evaluating a single (explicit) formula (as opposed to nonlinear models, see below), which makes them 
relatively easy to apply. Another advantage is that these models are nested. For example, the quadratic 
model can be turned into a linear model by taking c = 0. Inversely, a linear model can be turned into a 
quadratic model by incorporating an additional parameter (here: c). It can be statistically tested if the 
addition of parameters leads to a significant improvement of the fit (e.g. by an F-test).  

303. Linear models may be incorporated in the framework of GLM (generalized linear models), see e.g., 
Bailer and Oris (1997).  
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304. A disadvantage of linear models is that they are not necessarily strictly positive, while biological 
endpoints typically are (if the data are not pre-treated), which makes them theoretically implausible. 
Further, they are not necessarily monotone, which can result in doubtful results, especially in the situation 
of a limited number of dose groups.  

Threshold models 

305. A threshold model is a model that contains a parameter reflecting a dose-threshold, i.e. a dose 
below which the change in the endpoint is (mathematically) zero. In general, a threshold model is given by 

 y  =   a  if  x < c 

 y  =   a   +   f(x - c)       if  x > c    (6)  

where c denotes the threshold concentration and f(x) may be any function. For example, in the (“hockey 
stick”) model  

 y  =   a  if  x < c 

 y  =   a   +   b (x – c)       if  x > c     

the response is linear above the threshold. The threshold concentration could be called an EC0, i.e. an ECx 
with x=0. At first sight the threshold concentration appears attractive, as it avoids the discussion of what 
value of x in ECx is ecologically relevant. However, various objections can be raised against the use of 
threshold models. One of them is that the (point) estimate of the threshold can be dependent on the dose-
response relationship, i.e. the function that is chosen for f(x) in expression (6).   

Additive vs. multiplicative models  

306. Strict continuous data (e.g. weights, concentrations) observed in toxicity studies usually have 
nonzero values in unexposed conditions, and the question then is to what extent the compound changes that 
level. Clearly, the compound interacts with that background level, by whatever biological mechanisms. 
This idea may be expressed in simple mathematical terms by incorporating the background level (a) in the 
dose-response model in a multiplicative way: 

 f(x) = a ⋅ g(x) (7) 

rather than in an additive way: 

 f(x) = a + g(x) (8) 

as is more common in models discussed in statistical textbooks. (Note that the models based on quantal 
models discussed in the previous section are also additive). Of course, the whole idea of defining the ECx 
as a given percent change compared to the background level, is in concordance with the multiplicative 
interaction between compound and background level, as expressed in (7). A further convenience of the 
multiplicative model is that two populations (e.g. species, sexes) showing different background levels but 
equally sensitive to the compound are, in this way, characterised by the same g(x). This implies that in the 
multiplicative model two equally sensitive populations (but possibly with different background levels) are 
defined to have the same ECx.  



 ENV/JM/MONO(2006)18 

 79

Models based on “quantal”models 

307. Continuous dose-response data from ecotoxicity tests have often been described by dose-response 
models that are derived from the models used for quantal data, i.e. models whose predicted values range 
from zero to one. To make these models applicable to continuous models, they are usually adjusted as 
follows:  

 y  =  y(0)  +  [y(∝) – y(0)] f(x) 

for increasing dose-responses, and 

 y  =  y(∝)  +  [y(0) – y(∝)]  [1 - f(x)] 

for decreasing responses (see, e.g., Bruce and Versteeg 1992; Scholze et al., 2001). Here, y(0)  is the 
(predicted) background value, y(∝) is the (predicted) value at infinite dose, and f(x) is any quantal dose-
response model.  Note that these models are multiplicative (with respect to the background response), 
while their shape is typically sigmoidal. As an example, when the logit model is chosen for f(x), the 
associated model for the continuous data becomes 
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308. In current practice it is common to correct the data for the background response, and fit the model 
without a background parameter. As discussed in section 4.3.4, this procedure of pre-treatment of the data 
ignores the estimation error in the observed background, and is therefore unsound. By incorporating the 
parameter y(0) in the model to be fitted, the estimation error is taken into account, and therefore this 
approach should always be taken. 

Nested nonlinear models 

309. Slob (2002) proposed to use the following nested family of multiplicative nonlinear models for 
general use in dose-response modelling.  

model 1:  y  =   a  with a > 0 
model 2: y  =   a exp(x/b)  with a > 0 
model 3: y  =   a exp(±(x/b)d)   with a > 0, b > 0, d ≥ 1 
model 4: y  =   a [c - (c - 1) exp(-x/b)]  with a > 0, b > 0, c > 0 
model 5: y  =   a [c - (c - 1) exp(-(x/b)d)]   with a > 0, b > 0, c > 0, d ≥ 1 

where y is any continuous endpoint, and x denotes the dose (or concentration) . In all models the parameter 
a represents the level of the endpoint at dose zero, and b can be considered as the parameter reflecting the 
efficacy of the chemical (or the sensitivity of the subject). At high doses models 4 and 5 level off to the 
value ac, so the parameter c can be interpreted as the maximum relative change. Models 3 and 5 have the 
flexibility to mimic threshold-like responses (i.e. slowly changing at low doses, and more rapidly at higher 
doses). All these models are nested to each other, except models 3 and 4, which both have three 
parameters.  

310. In all models the parameter a is constrained to being positive for obvious reasons (it denotes the 
value of the endpoint at dose zero). The parameter d is constrained to values larger than (or equal to) one, 
to prevent the slope of the function at dose zero being infinite, which seems biologically implausible. The 
parameter b is constrained to be positive in all models. Parameter c in models 4 and 5 determines whether 
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the function increases or decreases, by being larger or smaller than unity, respectively. To make model 3 a 
decreasing function, a minus sign has to be inserted in the exponent.  

311. These models have the following properties: 

• the predicted response is strictly positive 

• they are monotone (i.e., either decreasing or increasing) 

• they do not contain a threshold, but they are sufficiently flexible to show strong curvature at low 
doses, so as to mimic threshold-like responses 

• they can describe responses that level off at high dose 

• two populations that differ in background level but are equally sensitive can be described by the 
same model, with only parameter a being different between the populations 

• it can be easily tested if two populations differ in sensitivity (by the likelihood ratio test) 

• when two populations differing in sensitivity can be described by the same model from this 
family, with only parameter b (and possibly a) being different between the two populations, the 
difference in sensitivity can be quantified as the ratio of the value of b. This way of expressing 
differences in sensitivity is analogous to the relative potency factor, and to the extrapolation 
factors used in risk assessment. 

312. For all five models, the ECx can be derived by evaluating an explicit formula: 

d

b
ccxECx /1}])1(/)1(ln[{ −−+

−=  

where x is defined as x = y(ECx)/a  -  1, and where c = 0 for models 2 and 3, and d = 1 for models 2 and 4. 

313. Clearly, the five multiplicative models given here only apply for those endpoints that are strictly 
positive and have a nonzero background value (value of y in unexposed conditions). For example, 
describing internal concentration as a function of external concentration is not possible with these models, 
as in that case y is expected to be zero for x = 0.  

314. The procedure of selecting a model from this nested family of models, i.e., accepting additional 
parameters only when it results in a significantly better fit, is illustrated in fig. 6.6. In this dataset, the 
following log-likelihoods were found: 

model 1: 277.02 
model 2: 339.90 
model 3: 339.90 
model 4: 351.11 
model 5: 351.11 

315. Model 3 resulted in exactly the same fit11 as model 2, while model 5 resulted in the same fit as 
model 4. But model 4 is significantly better than model 2 (critical difference is 1.92 at α = 0.05, according 

                                                      
11 Adding a parameter to a model can, by definition, not result in a lower (optimum) log-likelihood. When the log-
likelihood remains the same, the additional parameter is estimated at the value that makes it disappear. In this case the 
parameter d was estimated to be one. 
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to the likelihood ratio test), and therefore model 4 should be selected for this dataset. (Note that model 3 
and model 4 are not nested, they both have three parameters).  

Hill model 

316. Enzyme kinetics and receptor binding are usually described by the Hill model. It was introduced by 
A.V. Hill in 1910 in order to model the binding of oxygen to haemoglobin.  The model is well known by 
enzymologists, biochemists and pharmacologists, and could be considered as one of the very few examples 
of a mechanistically based model. It has the form: 

 c

c

xb
xay
+

=  

where c is called the Hill parameter. By setting c = 1, it is equivalent to the Michealis-Menten expression 
in a strict sense, with a denoting the maximum level of y at infinite dose, and b the ED50 (dose resulting in 
half the maximum response). 

317. The following formulation makes more sense for toxicology since the parameter noted b in the 
draft standard is actually a thermodynamic equilibrium dissociation constant Kd that can be changed as 
EC50

n which is more familiar to toxicologists and is homogenous to a concentration (or dose):  
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318. It is worth noticing that the Hill model is analytically equivalent to the logit model:  
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319. It should be noted that dose-response data observed in in vivo studies are not the result of a single 
underlying receptor binding process, but of many processes acting simultaneously. Yet, it may be a very 
accurate model for describing particular data, see e.g. Fig. 6.15.  
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Figure 6.6 Two members from a nested family of models fitted to the same data set.  

The marks indicate the observed (geometric) means of the observations. The exponential model (upper panel) is 
significantly improved by adding a parameter c, enabling the response to level off (lower panel). 

Non monotone models 

320. In some cases dose-response data appear to be non monotone. Unfortunately, it is not easy to assess 
if this is due to an underlying dose-response relationship that is indeed non monotone. It is not unlikely that 
an apparent non monotone dose-response in observed data is due to experimental artefacts, either 
systematic errors in unreplicated dose groups, or simply random noise. Although the latter possibility can 
be checked by statistical methods, the former cannot. Therefore, when the apparent monotonicity is based 
on a single treatment group, no unambiguous conclusion can be drawn. Only multiple dose studies with a 
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clear non monotone pattern, supported by various consecutive dose groups, may provide evidence of a real 
non monotone response.  

321. When it is assumed that the data do not contain any systematic errors, the straightforward way to 
test for non monotonicity is by fitting a non monotone model to the data, and compare the fit with a nested 
model that is monotone (for an example of a nested non monotone model, see Brain and Cousens 1989, or 
Hoekstra 1993). If the non monotone model appears to be significantly better, it may still be doubtful if 
this particular model reflects the true dose-response relationship. The practical difficulty is that non 
monotone models are very data demanding, in particular with respect to the number of consecutive dose 
groups around the local maximum (or minimum) of the response. Otherwise, the location and height of the 
local maximum response will be highly model dependent. Therefore, fixation of the local maximum 
response requires the enclosure by sufficiently close adjacent dose groups. Since the location of the local 
maximum response is not known in advance, the study design would require a large number of dose 
groups. Therefore, when non-monotone dose-response relationships may be expected (as in plant grow 
data), a larger number of dose groups needs to be incorporated in the study design.  

322. Of course dose-response models include more parameters to be estimated, and this is another 
reason that many dose groups are required. In most practical data sets various non monotone models would 
give different results, and therefore can often not be trusted.  

6.3.2. Model fitting and estimation of parameters 

323. Fitting a model to dose-response data may be done by using any suitable software, e.g. SAS 
(www.sas.com), SPSS (www.spss.com), splus (www.insighful.com), and PROAST (Slob, 2003). The user 
does not need to be aware of the computational details, but some understanding of the basic principles in 
nonlinear regression is required to be able to interpret the results properly. These principles are discussed 
in section 6.7. Furthermore, the user should be aware of the assumptions underlying the fit algorithm. For 
continuous data it is often assumed that the data follow a normal or a lognormal distribution. In the latter 
case, a log-transformation is used to make the data (more closely) normally distributed. When a normal 
distribution with homogenous variances is assumed (possibly after transformation), maximising the 
likelihood or minimising the Sum of Squares amounts to the same thing (see section 4.3.5). When another 
distribution is assumed (e.g. a Poisson for counts), the model may be fitted by maximum likelihood, based 
on the particular distribution assumed. The parameter values produced by maximum likelihood are also 
called the Maximum Likelihood Estimates (MLEs).  

Response in controls 

324. In all models discussed here, the background response is incorporated as a model parameter in the 
model. This parameter should be estimated from the data, before deriving the ECx or ICx. Pre-treatment of 
the data (dividing all responses by the mean background response) should be avoided (see also section 
4.3.3). 

Fitting the model assuming normal variation 

325. When the original data are assumed to be normally distributed with homogenous variances the 
model may be fitted by either maximising the log-likelihood function based on the normal distribution, or 
by minimising the sum of squares. Both methods will result in the same estimates of the regression 
parameters, which are maximum likelihood estimates (MLEs) in both cases. The fitted model describes the 
arithmetic mean response, as a function of dose.  
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Fitting the model assuming normal variation after log-transformation 

326. When the residual variation is assumed to be lognormal, the model may be fitted after first log-
transforming both the model predictions and the data, and then either maximising the log-likelihood 
function based on the normal distribution, or minimising the sum of squares. Both methods will result in 
the same estimates of the regression parameters and the residual variance, which are maximum likelihood 
estimates (MLEs) in both cases. It should be noted that the resulting parameter estimates do relate to the 
original parameters of the (untransformed) model. Substituting the estimated regression parameters in the 
model results in a prediction of the median (or geometric mean) response as a function of dose. Therefore, 
in plotting the model together with the data, the back transformed means (which are equivalent to the 
geometric means) should be plotted (see e.g. fig. 6.5). 

327. While the MLEs of the regression parameters relate to the model on the original scale, the MLE of 
the variance (s2) relates to the log-transformed data. Apart from this variance (s2) on log-scale, the 
variation of the scatter around the model (i.e. of the regression residuals) may be equivalently reported by 
the geometric standard deviation (GSD), which is the back transformed square root of s2 , or by the 
coefficient of variation (CV), which relates to s2 by  

 1)exp( 2 −= sCV , 

when s2 relates to the variance of the data after natural log-transformation, or by 

 1)]10ln(exp[ 2 −= sCV  

when the log10-transformation was applied to the data. 

328. At first sight, a disadvantage of taking the logarithm of the data before fitting is that the logarithm 
of zero does not exist. Although zero observations for continuous responses rarely occur in ecotoxicity 
testing, the following may be noted. Zero observations usually mean that the response is below the 
detection limit rather than truly zero. By regarding zero observations as truncated observations, they can be 
easily and accurately dealt with by incorporating the information that the observation is lower than the 
detection limit in the log-likelihood function.  

Fitting the model assuming normal variation after other transformations 

329. When another transformation is applied to the data, the same transformation should be applied to 
the model, before maximising the likelihood (or minimising the SS). Both the fitted model and the 
transformed data may be back-transformed before plotting. Again, the resulting plot relates to the predicted 
and observed median response, as a function of dose (assuming that the transformation made the scatter 
symmetrical). 

No individual data available 

330. In reported studies (published papers) individual observations are not always given. Instead, means 
and standard deviations (or standard errors of the mean) for each dose group are commonly reported. Since 
the mean and standard deviation are “sufficient” statistics for a sample from a normal distribution, a dose-
response model can just as well be fitted based on these statistics without any loss of information (except 
possible outliers), by adjusting the log-likelihood function (Slob, 2002). In the case of an assumed 
lognormal distribution, sufficient statistics are provided by the geometric mean and the geometric standard 
deviation, or by the (arithmetic) mean and standard deviation on log-scale. These can be estimated from 
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the reported mean and standard deviation (Slob, 2002). Figure 6.6 exemplifies a dose-response analysis 
applied to the reported means and standard deviations, without knowing the individual data, but taking the 
reported standard deviations into account. 

Fitting the model using GLM 

331. Since the log-likelihood function directly derives from the postulated distribution, one may 
theoretically assume any distribution, and apply maximum likelihood for fitting the model based on that 
assumption. For a number of distributions (the so-called exponential family of distributions) one may make 
use of the theory of Generalised Linear Models (GLM), and use existing software without deriving and 
programming one’s own formulae. The GLM framework is also useful for analysing data with replicated 
concentration groups.  

332. The Poisson distribution is a member of this exponential family, and the existing GLM software 
can be directly used. Thus, one may assume this distribution for the analysis of counts, and check if the 
distribution is reasonable. 

333. The gamma distribution is another example of a distribution belonging to the exponential family. 
This distribution can be directly dealt with by the existing (GLM) software (e.g. in SAS, SPSS, splus.  The 
gamma distribution is very similar to the lognormal distribution regarding its behaviour of describing the 
variation in data. Therefore, an analysis based on either one of these two distributions may be expected to 
give very similar results. However, there are a few differences. While an analysis based on the lognormal 
distribution results in a model describing the median response (as estimated by the geometric means), an 
analysis based on the gamma distribution describes the response in terms of the statistical expectation (as 
estimated by the arithmetic means). Therefore, the latter fitted model will, on the whole, lie at a lower level 
than the former because the mean is larger than the median (the more so for larger experimental variation, 
i.e. more skewed scatter). However, both analyses may be expected to result in similar point estimates for 
the ECx: the difference in level will cancel as the ECx is a ratio of the two medians, or of the two mean 
levels, respectively. A second difference is, that the analysis based on the gamma distribution results in an 
estimate of the residual variation in terms of the variance on the original scale, while the analysis based on 
the lognormal distribution the residual variation is estimated in terms of a C.V. (or a GSD: geometric 
standard deviation). 

Covariates 

334. In many studies not only the concentration is varied systematically. Other factors also may 
bevaried intentionally as part of the design.  For example, a chemical is studied under various conditions, 
e.g. temperature, pH, or soil condition. Instead of fitting a model to each subset of data, it is often possible 
to fit the model simultaneously to the whole data set, by letting a particular parameter (possibly more) 
depend on that covariate. Such an analysis is illustrated in Fig. 6.7, where AChE inhibition was measured 
at three points in time, i.e. at three different exposure durations. Here, a four-parameter model was fitted, 
two of which were allowed to depend on duration. Thus a total of nine parameters was estimated, while a 
separate analysis for each duration would have resulted in a total of 15 estimated parameters (three times 4 
regressions plus one variance parameter). The gain of this is that the resulting confidence intervals for the 
ECx estimates are smaller.     
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Figure 6.7 Cholinesterase inhibition as a function of dose at three exposure durations (triangles: three weeks, 
circles: 7 weeks, pluses: 13 weeks).  

Marks denote the geometric group means, the individual observations are not plotted here. The background AChE 
levels increase with duration (age), while the ECx (CED for CES=0.20) decreases with exposure duration. The model 
used is model 5 from the nested family of models proposed by Slob(2002). 

Heterogeneity and weighted analysis 

335. In concordance with the principle of parsimony (as discussed in e.g. section 6.1) it is favourable to 
assume homogenous variances between dose groups: in this way only one single parameter for the residual 
variance needs to be estimated. However, it should be noted that the term “homogenous variances” is 
closely associated with the normal distribution. When other distributions are assumed, the variances are 
generally not expected to be homogenous, e.g.:  

• For lognormally (or Gamma) distributed data, variances increase with the means (more 
specifically, CVs are predicted to be constant), and this heterogeneity should vanish when the 
data are log-transformed. Thus, it may be assumed that (on the original scale) the CVs are 
homogenous, and the statistical analysis would result in a single estimate of the CV. 

• For Poisson distributed data (counts) the variances also increase with the mean. In fact they 
should be equal to the means, and if the data confirm this, no variance parameter needs to be 
estimated. In practice, this assumption is often violated, with the variances being larger than the 
means. This is called extra-Poisson variation, and an extra parameter may be estimated 
expressing the proportionality constant between mean and variance. 

336. Apart from statistical reasons (the parsimony principle), the issue of homogenous variances should 
also be considered for biological reasons. It might be that the organisms did not respond equally to the 
compound due to variability in sensitivity, and this will be reflected in the variances. It is not easy to 
discriminate between statistical heterogeneity (distribution effects) and biological heterogeneity (“true” 
effects). For that reason (among others), it is important to carefully consider what distribution should be 
assumed, e.g. by using historical data on the same (or similar) endpoint examined for other chemicals (or 
treatments).  
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337. When the heterogeneity of variances cannot be explained by the underlying distribution, one might 
conclude that the responses themselves are heterogeneous. Statistically, this implies that the precision of 
the estimated group means is not the same among groups. This may be taken into account in the statistical 
analysis by using a weighted analysis, e.g. weighted least squares, where the squares are multiplied by a 
weight, usually the inverse of the standard deviation of the relevant group, or by using maximum 
likelihood where a variance is estimated for each separate group12. For a more extensive discussion see e.g. 
Scholze et al. 2001.  

338. A weighted analysis should result in a more efficient estimate of the mean response (as a function 
of dose) in situations where the data are considered to reflect the same underlying response, and the 
heterogeneity is due to differences in measurement errors. The interpretation of a mean response is, 
however, problematic when the heterogeneity reflects that the population responds heterogeneously, in 
particular when this is caused by distinct subpopulations that differ in response. As an example, consider 
fig. 6.8, where relative liver weights are plotted on the log-scale (since for this endpoint the scatter is 
normally proportional to the mean level). In this particular example, the scatter first decreases, then 
increases with the dose. This might lead one to perform a weighted analysis (e.g. weighted least squares). 
However, as fig. 6.9 shows, the heterogeneity in variances is caused by different responses in males and 
females. Fitting the model taking sex into account results in two different dose-response relationships, each 
with homogenous scatter around it. 
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Figure 6.8 Relative liver weights against dose, plotted on log-scale.  

Normally, relative liver weights show homogenous scatter in log-scale, but in these data the scatter first decreases, 
then increases with dose.  

                                                      
12 When the heterogeneity in response changes systematically with the dose in a way that cannot be explained by the 
underlying distribution, one may also incorporate a dose-response relationship for the variation parameter in the 
likelihood function.  
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Figure 6.9 Dose response model fitted to the data of fig. 7.6a, showing that the heterogeneous variance was 
caused by males (triangles) and females (circles) responding differently to the chemical.  

Confidence intervals 

339. Confidence intervals may be assessed in various ways: 

• the delta method, i.e. plus or minus twice (or the relevant standard normal deviate times) the 
standard error as estimated by the second derivative of the likelihood function (Hessian or 
information matrix); the standard errors of the parameters are provided by most dose-response 
software, 

• based on the profile of the log-likelihood function, using the Chi-square approximation of the 
log-likelihood, 

• bootstrap methods (see e.g., Efron 1987, Efron and Tibshirani, 1993), 

• Bayesian methods, in particular if one has some preliminary knowledge on the plausible range of 
the parameter value(s). 

340. The relative performance of the first three methods applied to a typical toxicological dataset (from 
a rodent study) has been examined by Moerbeek et al. (2004). In this study the second and third method 
resulted in similar intervals, while the first method appeared less accurate.  

Extrapolation 

341. Because of the fact that a fitted statistical model only reflects the information in the data, 
extrapolation outside the range of observation is usually unwarranted. Therefore, estimating an ECx that is 
much lower than the lowest applied (nonzero) dose or concentration should be avoided.   

Analysis of data with replicated dose group 

342. The individual organisms in each dose group may be housed in different containers. In that case, 
the individual observations may not be independent, due to systematic differences between the containers 
themselves. A straightforward and relatively simple approach for analysing such data is to follow two 
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steps. In the first step the model is fitted as though the data were independent (i.e. the observations from 
various containers at the same dose are taken together and treated as a single sample). Then, the residuals 
from the fitted model are calculated and these are subjected to a nested analysis of variance, resulting in an 
estimate for the (residual) variance within as well as among the containers. Strictly, the first step of this 
method is not completely valid, as it assumed independence between the observations. However, the 
results would normally not be much different (especially so for more or less balanced designs) 

343. One may also fit a mixed model to the data, i.e. a model that contains both the (systematic) dose-
response relationship and the random variation between containers.  

344. These analyses will result in an estimate of the variation among containers, and the residual 
variation within containers.  

345. In studies without replicated dose groups, the variation between containers will be incorporated 
into the residual variance. Theoretically, the variation between containers can still be estimated in designs 
with a sufficient number of dose groups, but practical experience with real toxicity data appears to be 
lacking.   

6.3.3. Assumptions 

346. A dose-response model consists of a deterministic part (the predicted dose-response relationship) 
and a statistical part (describing the noise). The assumptions made in the statistical part are analogous to 
those in hypothesis testing, and only be briefly mentioned here. The focus in this chapter is on the 
additional assumption, that of the (deterministic) dose-response model.  

Statistical assumptions 

The assumptions for hypothesis testing equally hold for dose-response modelling: 

• independence between the animals in the same experimental unit (e.g. container)  

• no variation between experimental units (e.g. containers) themselves, if they are not incorporated 
in the statistical analysis 

• a particular statistical distribution and variance structure for the residual variation, e.g., 

− normal distribution with homogenous variance  

− lognormal distribution with homogenous Coefficient of Variation (CV) 

− gamma distribution with homogenous Coefficient of Variation (CV) 

− Poisson distribution without variance parameter, or with additional parameter for extra-
Poisson variation 

• no systematic differences (due to unintended experimental factors ) between dose groups,   

• the values of the concentrations/doses are assumed to be known without error, or, in situations 
where they are measured, the measurement errors are assumed to be negligible.  

Additional assumption:  

• the shape of the fitted model is close to the true dose-response relationship.  
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Evaluation of assumptions  

347. The statistical assumptions are similar to those in hypothesis testing, and may be further checked 
by plotting (analysing) the residuals (see section 4.3.5 and 5) However, the additional assumption 
(acceptance of the fitted dose-response model) is the most important, and the reader should first of all read 
and understand section 6.4. 

Consequences of violating the assumptions 

Basic assumptions 

348. Violation of the assumptionthat containers do not vary amongst each other, while this variation is 
not taken into account in the statistical analysis, it does not have much impact on the point estimate of the 
ECx (in particular when the number of replicates is similar between dose groups). It does, however, distort 
the estimate of the confidence interval, which will be too narrow.  

349. Systematic differences between (unreplicated) dose groups, caused by some unintended 
experimental factor, may have a deforming effect on the fitted model, and thereby result in a biased 
estimate of the ECx. However, especially for multiple dose designs, the effect may be small: systematic 
deviations in particular dose groups are, to a greater or lesser extent (depending on the situation) mitigated 
by the other dose groups in the process of fitting a single dose-response model to the complete data set. To 
prevent systematic errors between dose groups as much as possible, attention should be paid to applying 
randomisation procedures in the study protocol (see also section 4.2.1). 

350. If one suspects that experimental units (e.g., containers) vary by themselves, then one should 
incorporate replicated dose groups in the design (e.g. various containers per dose group), or increase the 
number of dose groups (keeping one container per dose). In both designs the container effect can be 
estimated, although in the latter design this can only be done indirectly and may be difficult in practice.  

351. A dose-response model is often relatively insensitive to outliers. See Fig. 6.10 for an illustration. 

Additional assumption 

352. Violation of the assumption that the shape of the fitted model is close to the true dose-response 
relationship results in a biased estimate of the ECx. There is no remedy against violation of this 
assumption, other than to repeat the study with an improved design. Therefore, it is not recommended to 
estimate an ECx if the fitted model appears not sufficiently confined by the data from visual inspection, or 
if it is found that various models fitting equally well result in different ECx estimates. In the latter case, 
one might consider to construct an overall confidence interval for the ECx based on various models that fit 
the data equally well (if repeating the experiment, aimed at more concentrations with different  response 
levels, is no option).  
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Figure 6.10 model fitted to dose-response data with and without an outlier in the top dose.  

Note that the estimate of the ec05 (ced at ces=0.05) is only mildly affected, even though the outlier is in the top dose.  
The 90%-confidence interval was estimated at (1.63, 2.30) with the outlier included, and at (2.12, 2.93) when excluded.   

6.4. To accept or not accept the fitted model? 

353. A fundamental issue in dose-response modelling is the question: Can the fitted model be accepted 
and be used for its intended purpose (such as estimating an ECx)? The issue is not that the model used 
should be the “right” model, since there is no such thing (at least not for statistical models). A statistical 
model completely hinges on the dose-response data, and the quality of the data is in fact the crucial aspect. 
In the fitting process a model tries to hit the response at the observed doses. But when it is used for 
assessing an ECx by interpolating between observed doses, the model should also “hit” the response in the 
non-observed dose range in between. In other words, there are two aspects in evaluating the fitted model: 
one should not only assess if the model succeeded in describing the observed responses, but also if the 
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model can be trusted to describe the non-observed responses in between. The former aspect focuses on the 
quality of the model, the latter on the quality of the data. The following discussion indicates how to deal 
with these two aspects. It should be noticed that this discussion holds for both quantal and continuous 
dose-response data.  

Is the model in agreement with the data?  

354. This question may be addressed using the goodness-of-fit. Goodness-of fit methods can be used in 
an absolute or in a relative sense. In an absolute sense one may test if the data significantly deviate from a 
particular model. It should be noted that this test is sensitive not only to the inadequacy of the model 
chosen, but also to any violations of the basic assumptions (e.g. no independent observations, outliers). In 
particular, a single deviating concentration group (due to some unknown experimental factor) could make 
the model be rejected significantly even when it perfectly follows the overall trend in the data. Therefore, 
the (absolute) goodness-of-fit test should never be strictly applied. A visual check of the data is always 
needed and may overrule a goodness-of-fit test.  

355. The goodness-of-fit may also be used in a relative way, i.e. to compare the fits of different models. 
When models are nested (as discussed in section 6.2.1 and 6.3.1), the likelihood ratio test can be applied to 
determine the number of parameters needed for describing the data. For non-nested models one may use 
the Aikaike criteria (Akaike, 1974; Bozdogan, 1987), but this test is not exact. 

356. It has been suggested to focus the goodness of fit to the region of interest (around the ECx). This 
approach in a sense undermines the whole idea of dose-response modeling, i.e. describing the dose-
response relationship as a whole. In particular, it will be more sensitive for (systematic) errors in the data 
that happen to occur in one of the dose groups in the range of interest. As discussed in section 6.3.3, one of 
the advantages of dose-response modeling is that potential systematic errors in a single dose group may be 
mitigated by the others.  

Do the data provide sufficient information for fixing the model? 

357. This question is at least as important as the previous. Therefore, the fitted dose-response model 
should always be visually inspected, not only to see if the data are close to the model, but also to check if 
the data provide sufficient information to confine the model. Here, one should ask the question: If 
additional data on intermediate dose groups had been available, could that substantially have changed the 
shape of the dose-response relationship as compared to the current fitted model? (See also section 4.3.5).  

358. Another way to deal with this question is by comparing the outcomes from different fitted models. 
If the data do contain sufficient information to confine the shape of the dose-response relationship, 
different models fitting the data (nearly) equally well, will result in similar fits and similar estimates of the 
parameters. To illustrate this (for the case of quantal data), the results of Fig 6.1-6.3 are summarised in 
Table 6.13. In this case, the results are quite independent from the model chosen, and one may conclude 
that the data provide sufficient information to rely on dose-response modelling.  
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Model a (background 
response) 

LD50 LD20 confidence interval of LD20 1) Log-
likelihood 

Probit 0.0355 0.2564 0.165 0.112 – 0.217 -34.01 

Logit 0.0356 0.2554 0.167 0.121 – 0.220 -34.16 

Weibull 0.0352 0.2625 0.145 0.084 – 0.218 -34.02 

Table 6.13 : results of fitting three different models to the same data set (see fig. 6.1-6.3).   
1) confidence intervals based on 1000 parametric bootstrap runs. 

359. As another illustration, Fig. 6.11 shows two different models fitted to the same (continuous) data. 
Again, due to the good quality of the data, they result in very similar estimated concentration-response 
relationships, and therefore in a similar (point) estimate of any ECx. In situations where the results (in 
particular, the ECx) depends on the model chosen, it cannot be considered as a reliable estimate, and other 
methods should be considered (see section 4.1) 

360. In current practice, there is a tendency to focus on the first part and a formal goodness-of-fit test is 
often regarded as (sufficient) evidence that the model is acceptable. This is unfortunate, since a goodness-
of fit test tends to be more easily passed for data with few dose groups, and exactly in that situation the 
second condition is more likely not to be met . In addition, a goodness-of-fit test assumes that the 
experiment was carried out perfectly, i.e. perfectly randomised with respect to all potentially relevant 
experimental factors and actions. Clearly, this assumption is not realistic.  
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Figure 6.11 Two different models (both with four parameters) fitted to the same data set resulting in similar 
dose-response relationships.  

Small marks indicate individual observations, large marks (geometric) means. 

361. The ideas discussed here are further illustrated (theoretically) in Fig. 6.12. In the left panel, the data 
are insufficient to establish the dose-response relationship, leaving too much freedom to the model. In the 
right panel, the data are sufficiently informative to confine the shape of the dose-response relationship.   
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Figure. 6.12 Two data sets illustrating that passing a goodness of fit is not sufficient for accepting the model.  

In the left panel the data (either quantal or continuous) do not contain sufficient information to confine the dose-
response relationship, in the right panel they do. These figures also illustrate that more dose groups is more important 
than higher precision (indicated by vertical error bars): although the precision of the ECx estimate will be lower in the 
left panel, it is more likely to be biased. Note: dose group number 1, as indicated on the abscissa, may be read as the 
control group in these plots. 

362. A number of general guidelines may be formulated in choosing and accepting a particular model 
for describing the dose-response data: 

• When one of two nested models results in a significantly better fit, choose that model, otherwise 
the one with fewer parameters. One more parameter in the model can be regarded to result in a 
significantly better fit (at α = 0.05) if the log-likelihood is increased by at least 1.92 (which is 
half the critical Chi-square value with one degree of freedom at α = 0.05). One may also follow 
this procedure as a proxy for non-nested models (or use the Aikaike criteria). 

• When two (or more) models have the same number of parameters, but one of them has a better 
goodness of fit, the choice of the better fitting model is obvious. However, if one prefers for some 
reason the other model, one may use Aikaike’s criteria to compare the model fits (Akaike, 1974; 
Bozdogan, 1987).  

• When two models result in a similar goodness of fit, but their shapes are very different (resulting 
in different estimates of the ECx) no conclusion can be made other than the data being 
inconclusive. In this situation it is not recommendable to derive an ECx based on dose-response 
modelling.  

• The situation that two (or more) models show a similar goodness of fit, both being similar in 
shape (resulting in similar ECx estimates), can be considered as a confirmation that the data 
provide sufficient information to assess the dose-response relationship, and estimate the ECx. 

363. It is re-emphasised that a dose-response model, as long as it is not based on the mechanism of 
action of the particular chemical, only serves to smooth the observed dose-response relationship, and to 
provide for a tool to assess confidence intervals. A statistical regression model itself does not have any 
biological meaning, and the choice of the model (expression) is to some extent arbitrary. It is the data, not 
the model, that should determine the dose-response relationship, and thereby the ECx (Fig. 6.12). When 
different models (with similar goodness of fit and equal number of parameters) result in different ECx 
estimates, the data are apparently not suitable for dose-response modelling.  
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364. Dose-response models that are based on the mechanism of action of the particular chemical are, as 
opposed to statistical models, supposed to contain information by themselves, and therefore be less 
sensitive to data gaps (between dose groups). However, they do contain unknown parameters that need to 
be estimated from the data, and it appears sensible to follow the guidelines described here in such models 
just as well. Mechanistic dose-response models are extremely rare, and contain some general elements at 
best. In the biological models discussed in chapter 7, the biological mechanisms in the models relate to the 
normal physiology in organisms rather than to the mechanism of action of specific chemicals. 

6.5. Design issues 

365. Concentration-response modelling can only be applied if the data contain sufficient information on 
the shape of the concentration-response relationship. Although this condition should be judged in each 
individual situation, experience teaches that at least four different response levels are needed (including the 
control group) in the case of continuous data. A similar condition holds for quantal data, e.g. two partial 
kills next to (almost) complete mortality and (almost) complete survival. When one actually ‘knows’ in 
advance that the concentration-response relationship is linear, designs with fewer concentration groups 
may be considered, and, as a matter of fact, they will be more efficient in terms of precision. However, it 
seems rare that one can be confident a priori that the concentration-response is indeed linear (usually not 
much is known in advance about the tested chemical’s action on the test organism) and extra concentration 
groups are highly recommendable. 

366. A design with three concentration groups and a control may result in concentration-response data 
that allow for concentration-response modelling. However, it is always advisable to include more 
concentration groups for various reasons. If just one of the concentration groups was inadequately chosen 
(e.g. no observable response), concentration-response modelling will fail. Further, systematic differences 
between treatment (concentration) groups are not unusual in toxicity testing (e.g. caused by systematic 
order in handling the groups), which may result in biased estimation of the concentration-response 
relationship. This unfavourable effect can be diminished in designs with more concentration groups.  

367. In general, it may be stated that for the purpose of estimating an ECx, it is important to have a 
sufficient number of dose groups, to prevent biased estimates of the ECx. The allocation of the organisms 
(or experimental units) to more dose groups may be done at the expense of the number of replicates in each 
group without much loss (if any) for the precision of the estimated ECx.  

Location of dose groups  

368. Concretely, for the purpose of estimating an ECx, the available number of organisms (replicates) 
should be allocated to at least three (excluding the controls), but preferably more concentration groups. 
Next to a sufficient number of concentration groups (resulting in different response levels), one needs to 
choose a lowest and highest concentration level.  

369. For quantal data, one may aim at four concentrations showing different response levels, including 
(nearly) none and (nearly) complete response together with two concentrations with partial responses, as a 
minimum requirement.  In continuous data, the low concentration is preferably chosen such that the 
observed response differs from the controls to a similar degree as x in the required ECx (to prevent that the 
ECx can only be estimated by extrapolation). Although one is usually interested in low response levels, 
high response levels are needed to assess the concentration-response relationship. The highest 
concentration would be preferably chosen such that the range between highest and lowest observed 
response is large enough to potentially include at least four different (in a rough statistical sense, that is, 
they appear detectable from the noise) response levels.  
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370. Interestingly, simulation studies show that the intuitive idea of concentrating dose levels around the 
ECx is not optimal. Designs that include sufficiently high dose levels (or rather sufficiently different 
response levels compared to the controls) perform better (Slob, in prep.).  

Number of replicates 

371. In typical quantal data (with both 0% and 100% observed response levels) the precision of the ECx 
declines with x, and the size of the experiment (total number of organisms or units) should be larger for 
smaller values of x that are considered appropriate.  Thus, when only an EC50 is required, a smaller 
experiment is required than when an ECx is aimed for. In continuous dose-response this phenomena 
appears to be less prominent.  

372. Theoretically, in quantal dose-response analysis the relationship between the precision of an ECx 
and the size of the experiment can be calculated. However, the number of organisms needed to obtain any 
given precision depends on the slope of the dose-response function itself, which is typically unknown 
before the study. 

373. For the generally applicable nested family of (five) models, given in section 6.3.1, simulation 
studies are being performed (for continuous data), to provide an  indication of the (total) number of 
replicates necessary to achieve a particular precision for the ECx (Slob,  in prep).  

Balanced vs. unbalanced designs 

374. Due to the principle of leverage, observations in the extreme dose groups have more influence on 
the resulting model fit than the middle dose groups. This suggests that designs with larger sample sizes in 
the extreme dose groups may be more efficient than designs with the same sample sizes in all dose groups. 
Yet, preliminary simulation studies indicated that a design with twice the sample size in the controls 
performed only slightly better than one with equally sized dose groups. But more simulation studies are 
needed to give more definite answers to this question.  

375. For designs with replicated experimental units (e.g. containers), where the number of replicates is 
small, say two, it appears wise to allocate a higher number of replicates in the controls, since a single 
erroneous replicate in the controls may then have a large impact on the model fit.  

6.6. Exposure duration and time 

376. It may be expected a priori that the response in biological systems is not only a function of dose, 
but also of the duration of the exposure. Therefore a model that describes the response as a function of both 
dose and duration would be more informative and give a more complete picture. Exposure duration is 
however a more complicated factor than dose, because it interferes with the factor time. The factor time 
has an impact by itself, e.g. on ageing, adaptation and repair of the processes underlying the response. 
Depending on the question to be answered, the study may, e.g.: 

• monitor the organisms during a period of time after an acute, or a fixed period of exposure, 

• monitor the organisms while they are held at various, but constant exposure levels, 

• treat different groups of individuals with different exposure durations and compare the response 
at the end of exposure, or at a fixed point in time. 

377. The second type of study is quite common in ecotoxicity testing in general (the others may be 
relevant for specific situations). Usually, in these studies the same (individual or groups of) organisms are 
followed over time. For example, the same organisms are recorded to have died or not. Or, egg production 
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is monitored for the same (group of) organisms over time. In other studies, however, the observations in 
time may relate to different experimental units. As a result, the observations may be or not be independent, 
and this should be taken into account in the analysis of the data. This section will briefly discuss the 
analysis of this type of data for both quantal and continuous data.  

Quantal data 

378. When a quantal response is observed at various points in time (e.g. number of additional deaths 
recorded each day while maintaining exposure at the same level), the statistical analysis of the dose-
response data may be extended to include this extra information. Some authors have suggested fitting a 
dose-response model to the separate data sets, i.e. for each exposure duration separately, and plotting the 
ensuing EC50s as a function of time. The value to which this function levels off is called the incipient 
EC50, interpreted as the EC50 for “infinite” exposure. This is not a proper method and should be avoided, 
for various reasons. First, conceptual problems arise, e.g. an incipient LC50 does not make sense as more 
than 50% of the animals die without any exposure at longer exposure durations. Second, statistical 
problems arise, e.g. the dose-response data at different time points are not independent, which hampers the 
establishment of confidence intervals for the incipient EC50. And third, comparing dose-response models 
(such as the log-logistic) that are fitted for several time points separately may lead to inconsistent results 
(e.g. the fitted dose-response functions for various exposure durations intersect each other).  

379. The approach of fitting a response surface to dose (concentration) and time simultaneously 
(multiple regression) is also improper, since the observations in time are not independent.  

380. A proper way of modelling dose-time-response data where each individual is followed in time, is 
by assuming a relationship of dose with the hazard. The hazard13 reflects the probability of an individual to 
respond (e.g. die in the case of mortality) in a very small time interval, divided by the probability that it is 
still alive at that age. On a population level, this reflects the incidence of response during that small time 
interval, divided by the fraction of the population still alive at that age. By assuming that the hazard is a 
function of dose, the dose-time-response data can be described in a single model. The hazard can be 
directly transformed into a survival (or mortality) function, or, more generally, in a quantal time-response 
function. This function may be used for deriving the log-likelihood given the observed frequencies of 
response, in the usual way. There is a vast literature on survival analysis (see, e.g. Cox and Oakes 1984; 
Miller 1981; Tableman and Kim 2004). For an example of dose-response modeling based on the hazard 
function, see section 7.2. 

Continuous data 

381. For many continuous endpoints observations can be (and sometimes are) made in time. For 
example, body weights of animals can be determined at particular time intervals during the study. Or, the 
growth of algae can be monitored over time. As another example, the number of eggs produced can be 
counted at specific time intervals. It is re-emphasised that the observations in time may relate to the same 
or to different units (organisms), determining if the data should be treated as dependent or independent 
observations. 

                                                      
13 The hazard may be formally defined as 

)(
/)(
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dttdS

−  , where S(t) denotes the survival function. 
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Independent observations in time 

382. In some studies the observations in time relate to different units. For example, in algal growth 
studies, the biomass at a concentration is followed in time (e.g. day 0, 1 and 2). Suppose that once any of 
the algal test vessels has been measured it is removed from the test. In that case each observation relates to 
another vessel, and the data can be treated as independent, i.e. they can be taken together in a single 
analysis. As an illustration consider the data in fig 6.14, where at 9 different concentrations the biomass 
was measured at three consecutive days (each time with two replicates). Here a time-response model (i.e., 
a dose-response model with dose replaced by time) was fitted to all the data simultaneously, by assuming 
that the biomass at time zero was equal among the concentrations, while the growth rate differed between 
the concentrations. Thus, for each concentration a slope parameter b was estimated, but only a single 
parameter a and a single variance parameter. Thus, 11 parameters in total were estimated in a simultaneous 
fit of the model to these data.  
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Figure.6.14 Observed biomasses (marks) as a function of time, for nine different concentrations of atrazine.  

Here, an exponential growth model was fitted, thereby estimating a single background value (a), a separate growth 
rate (b) for each concentration, and a single residual variance (for log-biomass). Note that replicates are treated as 
independent observations in this analysis.  
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383. The estimated growth rates can subsequently be subjected to a dose-response analysis, as shown in 
Fig. 6.15.  
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Figure 6.15 Growth rates as derived from biomasses observed in time (see fig. 6.14) at nine different 

concentrations (including zero), with the Hill  model fitted to them.  

Point estimate of EC10 (=CED): 0.0387 mg/l, with 90%-confidence interval: (0.0351, 0.0424), based on 1000 bootstrap 
runs.  

Dependent observations in time 

384. When the data in time relate to the same experimental units, the observations cannot be treated as 
independent data, and an analysis as in fig. 6.14 is improper. When the data show a clear trend in time, a 
straightforward approach is to fit the exponential growth model to the biomasses, but now allowing each 
experimental unit (flask) to have its own growth rate. This amounts to fitting a separate time-response 
model for each separate experimental unit, and subsequently subject the relevant14 parameter estimates to a 
dose-response analysis. This analysis is analogous to that illustrated in fig. 6.14 and 6.15, but the 
concentration response data  now have replicates (see fig. 6.16). 

                                                      
14 The relevant parameter should follow from understanding the biological process. In algal biomass the obvious 
parameter is the growth rate; when the observations relate to number of eggs, supposed to level off at a constant level 
with age, the parameter reflecting that level or the parameter reflecting the rate at which that level is reached could 
both be the relevant parameter.   
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Figure. 6.16  estimated growth rates as a function of (log-)concentration atrazine.  

Here, the individual flasks were taken into account, resulting in two growth rate estimates for each (nonzero) 
concentration, and six growth rates for concentration zero. Point estimate of ec10 (=ced): 0.0388 mg/l, with 90%-
confidence interval : (0.0355, 0.0421), based on 5000 bootstrap runs.   

385. It may be noted that the confidence intervals for the EC10 as derived from the data in Fig. 6.15 and 
Fig. 6.16 are very similar, despite the fact that in the latter case there are more data points. The reason is 
that the information in both data sets is in fact the same. 

386. In data sets where no trend in time is apparent, one may just as well take the average over time (in 
each unit) and apply the dose-response analysis to the averages.  

6.7. Search algorithms and nonlinear regression 

387. As discussed previously, nonlinear regression models can only be fitted in an iterative “trial and 
error” approach. Computer software use efficient algorithms to do that, and the user does not need to worry 
about the exact nature of the calculations. However, some basic understanding of the search process in 
required in order to interpret the results. In addition, such understanding is needed to evaluate whether or 
not the algorithm was successful or not, and if not, what if anything can be done about that.  

388. An iterative algorithm tries to find “better” parameter values in a process by evaluating if the fit 
can be improved by changing the parameter values. By regarding the fit criteria as a function of the 
parameters, the problem is in fact to find the maximum (in the case of likelihood) or minimum (in the case 
of Sum of Squares) of that function. Although algorithms have been developed to do this in an efficient 
way, one should keep in mind that the algorithm cannot see in advance where the optimum of the function 
is. One may compare the algorithm with a blindfolded person, who can only feel if there is a slope or not 
(and how steep it is). The algorithm recognises the optimum by the property that around the optimum the 
slope changes from increasing to decreasing (or vice versa).  



ENV/JM/MONO(2006)18 

 102

389. Obviously, the algorithm can only start searching when the parameters have values to start with. 
Although the software often gives a reasonable first guess for the starting values, the user may have to 
change these. It is not unusual (in particular when the information in the data is hardly sufficient to 
estimate the intended parameters) that the end result depends on the starting values chosen, and the user 
should be aware of that.  

390. The algorithm keeps on varying the parameter values until it decides to stop. There are two 
possible reasons for the algorithm to stop the searching process:  

• The algorithm has converged, i.e. it has found a clear maximum in the log-likelihood function. In 
this case the associated parameter values can be considered as the “best” estimates (MLEs if the 
likelihood was maximised). However, it can happen that the log-likelihood function has not one 
but more (local) maxima. This means that one may get other results when running the algorithm 
again, but with other start values. This can be understood by remembering that the algorithm can 
only “feel” the slope locally, so that it usually finds the optimum that is closest to the starting 
point.  

• The algorithm has not converged, i.e. the algorithm was not able to find a clear optimum in the 
likelihood function, but it stops because the maximum number of iterations (trials) is exceeded. 
This may occur when the starting values were poorly chosen, such that the associated model 
would be too far away from the data. Another reason could be that the information in the data is 
poor relative to the number of parameters to be estimated. For example, a concentration-response 
model with five unknown parameters cannot be estimated with a four-concentration-group study. 
As another example, the variation between the observations within concentration groups may be 
large compared to the overall change in the concentration-response. In these cases the likelihood 
function may be very flat, and the algorithm cannot find a point where the function changes 
between increasing and decreasing. The user may recognise such situations by high correlations 
between parameter estimates, i.e. changing the value of one parameter may be compensated by 
another, leaving the model prediction practically unchanged.   

6.8. Reporting Statistics 

391. Reporting statistics are as follows: 

Quantal data 

• Test endpoint assessed 

• Number of Test Groups 

• Number of subgroups within each group (if applicable) 

• Identification of the experimental unit 

• Nominal and measured concentrations (if available) for each test group  

• Number exposed in each treatment group (or subgroup if appropriate) 

• Number affected in each treatment group (or subgroup if appropriate) 

• Proportion affected in each treatment group (or subgroup if appropriate) 

• The dose metric used 

• The model function chosen for deriving the EC50 (ECx) 

• Plot of dose-response data with fitted model, including the point estimates of the model 
parameters and the log-likelihood (or residual SS) 
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• Fit criteria for other fitted models  

• The EC50 together with its 90%-confidence interval.  

• If required: the ECx together with its 90%-confidence interval.  

• Method used for deriving confidence intervals 

Continuous data 

• Test endpoint assessed 

• Number of Test Groups 

• Number of subgroups within each group (if applicable) 

• Identification of the experimental unit 

• Nominal and measured concentrations (if available) for each test group  

• The dose metric used. 

• Number exposed in each treatment group (or subgroup if appropriate) 

• Arithmetic group means and standard deviations, but geometric group means and standard 
deviation if lognormality was assumed 

• The model function chosen for deriving the ECx 

• Plot of dose-response data with fitted model, including the point estimates of the model 
parameters and the log-likelihood (or residual SS) 

• Fit criteria for other fitted models  

• The ECx (CED) together with its 90%-confidence interval 

• Method used for deriving confidence intervals 

7. BIOLOGY-BASED METHODS 

7.1. Introduction 

7.1.1. Effects as functions of concentration and exposure time 

392. Biology-based methods  not only aim to describe observed effects, but also to understand them in 
terms of underlying processes such as toxicokinetics, mortality, feeding, growth and reproduction 
(Kooijman 1997). This focus on dynamic aspects allows exposure time to be treated explicitly. 

393. This chapter focuses on the analysis of data from a number of standardized toxicity tests on 
mortality, body growth (e.g. fish), reproduction (e.g. daphnia), steady-state population growth (of e.g. 
algae, duckweed). The guidelines for these tests prescribe that background mortality is small, while the 
duration of the test is short relative to the life-span of the test-organisms. Moreover the tests are done under 
conditions that are otherwise optimal, which excludes multiple stressors (e.g. effects of food restriction, 
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temperature (Heugens, 2001, 2003)), and quite a few processes that are active under field conditions (e.g. 
adaptation, population dynamics, species interactions, life-cycle phenomena (Sibly and Calow (1989)). The 
type of data that are routinely collected in these tests are very much limited, and do not include internal 
concentrations of test compounds. These restrictions exclude the application of quite a few potentially 
useful methods and models for data analysis, such as more advanced pharmacokinetic models and time 
series analysis, see e.g. Newman (1995). The theory behind biology-based methods can deal with dynamic 
environments (changing concentrations of test compounds, changing food densities), but the application in 
the analysis of results from toxicity tests is simplified by the assumption that organisms’ local environment 
in the test is constant. 

394.  Biology-based methods make use of prior knowledge about the chemistry and biology behind the 
observed effects. This knowledge is used to specify a response surface, i.e. the effects as a function of the 
(constant) concentration of test compound in the medium and the exposure time to the test compound. This 
response surface is determined by a number of parameters. The first step is to estimate these parameters 
from data. The second step is to use these parameter values to calculate quantities of interest, such as the 
ECx-time curve, or the confidence interval of the No-Effect-Concentration (NEC). It is also possible to use 
these parameter values to predict effects at longer exposure times, or effects when the concentration in the 
medium is not constant. If the observed effects include those on survival and reproduction of individuals, 
these parameters can also be used to predict effects on growing populations (in the field) (Kooijman 1985, 
1988, 1997, Hallam et al 1989). 

395. It is essential to realise that ECx values decrease for increasing exposure time, as long as the 
exposure concentration and the organism’s sensitivity remain constant. This is partly due to the fact that 
effects depend on internal concentrations (Kooijman 1981, Gerritsen 1997, Péry et al 2002), and that it 
takes time for the compound to penetrate the body of test organisms. (The standard is to start with 
organisms that were not previously exposed to the compound.) The exposure period during which the 
decrease is substantial depends on the properties of the test compound and of the organism and the type of 
effect. For test compounds with large octanol-water partition coefficients and test organisms with large 
body sizes this period is usually large. The LC50 for daphnids hardly decreases for a surfactant after two 
days, for instance, but their LC50 for cadmium still decreases substantially after three weeks. For this 
reason, biology-based methods fit a response surface to data, using all observation times simultaneously. If 
just a single observation time is available, however, these methods can still be used and the response 
surface reduces to a response curve. Obviously, such data hardly contain information about the dynamic 
aspect of the occurrence of effects. The parameter(s) that quantify this aspect are then likely to be poorly 
defined. This does not need to be problematic for all applications (such as the interpolation of responses for 
other concentrations at that particular observation time; this is the job of dose-response methods). It is 
strongly recommended, however, for a two-day test on survival, for instance, to use not only the counts at 
the end of the experiment, but also those at one day. Such data are usually available (and GLP even 
requires the reporting of those data), but these data are not always used. More recommendations are given 
in section 7.3. 

396. In practice it is not unusual that very few, if any, concentrations exist with partial effects; survival 
of a cohort of individuals tends to be of the “all or nothing” type in most concentrations. High 
concentrations run out of surviving individuals more rapidly than lower concentrations. This can occur in 
ways such that for each single observation time, no, or very few, concentrations show partial mortality. 
This situation also occurs if each individual is exposed separately, and measured rather than nominal 
concentrations are used in the data analysis; one then has just a single individual per concentration because 
no two concentrations are exactly equal. Although such a case is generally problematic for dose-response 
methods, because a free slope parameter has to be estimated (Kooijman 1983), biology-based methods do 
not suffer from this problem, because the (maximum) slope is not a free parameter (models’ slope of 
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concentration-survival curves increases during exposure), and the information of the complete response 
surface is used. An example will be given in section 7.3 

397. Biology-based methods allow the use of several data sets simultaneously, such as survival data, 
sublethal effect data, and data on the concentration of test compound inside the bodies of the test 
organisms during accumulation/elimination experiments. As will be discussed below, logical relationships 
exist between those data, and these relationships can be used to acquire information about the value of 
particular parameters that occur in all these data sets. Both the statistical procedures and the computations 
can become somewhat more complex in this type of advanced applications, but free and downloadable 
software exist that can do all computations with minimum effort (see below). 

7.1.2. Parameter estimation 

398. The maximum likelihood (ML) method is used to estimate parameter values (the criterion of least 
squared deviations between data and model predictions is a special case of the ML method, where the 
scatter is independently normally distributed with a constant variance). If more than one data set is used 
(for instance, data on body size and reproduction rate and/or internal concentration), the assumption is that 
the stochastic deviations from the mean are independent for the different data sets. This allows the 
formulation of a composite likelihood function that contains all parameters for all models that are used to 
describe the available data sets. For effects on survival, the number of dead individuals between 
subsequent observation times follows a multinomial distribution (see e.g. Morgan 1992); for sublethal 
effects, the deviations from the mean are assumed to be independently normally distributed with a common 
(data-set-specific) variance. The deterministic part of the model prediction is fully specified by the theory,.  
Ffor the stochastic part, only these straightforward assumptions are programmed in the DEBtox software 
(see Section 7.9.). The software package DEBtool, allows more flexibility in the stochastic model, e.g. for 
ML estimates in the case that the variance is proportional to the squared mean; this rarely results in 
substantially different estimates, however.)  

399. If surviving individuals are counted in a toxicity test and tissue-concentrations are measured in 
another test, a composite likelihood function can be constructed that combines these multinomial and 
normal distributions. The elimination rate (dimension: per time) is a parameter that occurs in both types of 
data. In survival data it quantifies how long it takes for death to show up; if the elimination rate is high, one 
only has to wait a short time to see the ultimate effects. The elimination rate can, therefore, be extracted 
from survival data in absence of data on internal concentrations. Although it is helpful to have the 
concentration-in-tissue data (both for estimating the parameters and for testing model assumptions), these 
data are by no means required to analyse effects on survival. If one has prior knowledge about the value of 
the elimination rate, one can fix this parameter and estimate the other parameters (such as the NEC) from 
survival data.  

400. Profile likelihood functions are used to obtain confidence intervals for parameters of special 
interest, and in particular for the NEC. This way of quantification of the uncertainty in a parameter value 
does not necessarily lead to a single compact interval, but sometimes leads to two, non-overlapping 
intervals. Therefore, they can better be indicated with the term “confidence set”. Computer simulation 
studies have shown that these confidence sets are valid for extremely low numbers of concentrations and of 
test organisms (Andersen et al, 2000). 

401. Estimation procedures have been worked out (Kooijman 1983) to handle somewhat more complex 
experimental designs, in which living individuals are sacrificed for tissue analysis during the test. The 
information that they were still living at the moment of sampling is taken into account in the estimation of 
parameter values that quantify the toxicity of the compound. Péry et al (2001) discuss the estimation of 
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parameters in the case that the concentration in the media varies in time using hazard models; Kooijman 
(1981) and Reinert et al (2002) use critical body residue models.  

7.1.3. Outlook 

402. This document only discusses the simplest experimental designs of toxicity tests and the simplest 
models. The authors of this document are unaware of alternatives models in the open literature that are 
applicable on a routine basis and hope that this document will stimulate research in this direction. The 
models can be and have been extended in many different ways; just one example is given. All individuals 
are assumed to have identical parameter values in the models that are discussed below. Individuals can 
differ, despite the standardisation efforts in tests. Such difference might relate to differences in one or more 
parameter values (Sprague 1995). It is mathematically not difficult to include such differences in the 
analysis, on the basis of assumptions about the simultaneous scatter distribution of the parameter values. 
Needless to say, one really does know little if anything about this distribution. This makes such 
assumptions inspired by convenience arguments rather than by mechanistic insight. A strong argument for 
refraining from such extensions is that the method becomes highly unpractical. The data simply do not 
allow a substantial increase in the number of parameters that must be estimated from routine data.  

403. The theory covers many features, such as extrapolating from constant to pulse exposures and vice 
versa, and including the effects of senescence, that are not yet worked out in software support (see Section 
7.9). 

7.2.3. The modules of effect-models 

404. Effects are described on the basis of a sequence of three steps (modules): 

1. Change in the internal concentration: the step from a concentration in the local environment 
(here the medium that is used in the test) to the concentration in the test organism. 

2. Change in a physiological target parameter: the step from a concentration in the test organism 
to a change in a target parameter, such as the hazard rate, the (maximum) assimilation rate, the 
specific maintenance rate, the energy costs per offspring, etc. 

3. Change in an endpoint: the step from a change in a target parameter to a change in an endpoint, 
such as the reproduction rate, the total number of offspring during an exposure period, etc. 

405. This decomposition of the description of effects into three modules calls for an eco-physiological 
model of the test organism that reveals all possible physiological targets. The primary interest is in small 
effects. A simplifying assumption is that just a single physiological process is affected at low 
concentrations and that this effect can be described by a single parameter. At higher concentrations, more 
processes might be affected simultaneously. This means that the number of possible effects (and so the 
number of required parameters) can rapidly increase for large effects. It is unpractical and, for our purpose 
not necessary, to try to describe large effects in detail.  

406. The concept “most sensitive physiological process” has an intimate link with the concept “no-
effect-concentration”. The general idea is that each physiological process has its own “no-effect-
concentration”, and that these concentrations can be ordered. Below the lowest no-effect-concentration, the 
compound has no effect on the organism as a whole. Between the lowest and the second lowest no-effect 
concentrations, a single physiological process is affected; between the second and the third lowest no-
effect concentrations, two processes are affected, etc. 

407. The concept “no-effect-concentration” is quite natural in eco-physiology (see e.g. Chen & Selleck 
1969). All methods for the analysis of toxicity data (including hypothesis testing and dose-response 
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methods) make use of the concept “no-effect-concentration”. All methods assume, at least implicitly, that 
compounds in the medium, apart from the tested chemical, do not affect the organism’s response. 
Hypothesis testing explicitly assumes that the tested chemical has no effect on the response at 
concentrations equal to, and lower than, the NOEC. Biology-based methods use the NEC as a free 
parameter.  

408. Generally each compound has three domains in concentration: 

1. Effects due to shortage. Think, for instance, of elemental copper, which is required in trace 
amounts for several co-enzymes of most species 

2. No-effect range. The physiological performance of the organism seems to be independent of the 
concentration, provided that it remains in the no-effect range. Think, for instance, of the 
concentration of nitrate in phosphate limited algal populations; Liebig’s famous minimum law 
rests on the “no-effect” concept (von Liebig 1840)  

3. Toxic effects. Think, for instance, of glucose, which is a nutritious substrate for most bacteria in 
low concentrations, but inhibits growth if the concentration is as high as in jam. 

409. It is essential to realise that the judgement “no-effect” is specific for the level of organisation under 
consideration. At the molecular level, molecules cannot be classified into one type that does not give 
effects, and another type that gives effects. The response of the individual as a whole is involved (Elsasser 
1998). The concept “no-effect-concentration” can deal with the situation that it is possible to remove a 
kidney, for instance, from a human subject (so a clear effect at the sub-organism-level), without any 
obvious adverse effects at the level of the individual (during the limited time of a test). This example, 
therefore, shows that below the NEC effects can occur at the suborganismic level (e.g. enzyme induction), 
as well as on other endpoints that are not included in the analysis (e.g. changes in behaviour). 

410. Most compounds are not required for the organisms’ physiology, which means that their range of 
concentrations that cause effects due to shortage is zero, and the lower bound of the no-effect range is, 
therefore, zero as well. Some compounds, and especially the genotoxic ones (van der Hoeven et al 1990, de 
Raat et al 1985, 1987, Purchase & Auton 1995), are likely to have a no-effect range of zero as well, and the 
upper bound of the no-effect range is, therefore, also zero. This gives no theoretical problems in biology-
based methods. A NEC of zero is just a special case, and a point estimate for this concentration from 
effect-data should (ideally) not deviate significantly from zero (apart from the Type I error ; a Type I error  
occurs if the null hypothesis is rejected, while it is true).  

411. The model for each of the three modules for the description of effects is kept as simple as possible 
for practical reasons, where one usually has very little, if any, information about internal concentrations, or 
physiological responses of the test organisms. Each of these modules can be replaced by more realistic 
(and more complex) modules if adequate information is available. Some applications allow further 
simplification. Algal cells, for instance, are so small that the intracellular concentration can be safely 
assumed to be in instantaneous equilibrium with the concentration in the media that are used in the test for 
growth inhibition. This gives a constant ratio between the internal and external concentrations, and 
simplifies the model considerably. The standard modules are introduced below. 

7.2.1. Toxico-kinetics model 

412. The toxico-kinetic module is taken to be a first order kinetics by default; the accumulation flux is 
proportional to the concentration in the local environment, and the elimination flux is proportional to the 
concentration inside the organism. This simple two-parameter model is rarely accurate in detail, but 
frequently captures the main features of toxico-kinetics (Harding & Vass 1979, Kimerle et al 1981, 
McLeese et al 1979, Spacie & Hamelink 1979, Wong et al 1981, Janssen et al 1991, Legierse et al 1998, 
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Jager, 2003, Jaget et al 2003). It can be replaced by a more-compartment model, or a pharmacokinetic 
model, if there are sound reasons for this. Metabolic transformation, and satiation in the elimination rate 
can modify toxico-kinetics in ways that are sometimes simple to model (Kooijman 2000). 

413. If the organism grows during exposure, or changes in lipid content occur (for instance when the test 
organisms are starved during exposure), predictable deviations from first order kinetics can be expected, 
and taken into account (Kooijman & van Haren 1990, Kooijman 2000). Dilution by growth should always 
be taken into account in the test for body growth and reproduction, since such a dilution affects the effect-
time profiles substantially. 

7.2.2. Physiological targets of toxicants 

414. The specification of sublethal effects involves an eco-physiological model that reveals all potential 
target parameters, and allows the evaluation of the endpoints of interest. A popular endpoint is, for 
instance, the cumulative number of offspring of female daphnids in a three-week period. The model should 
specify such a number, as well as the various physiological routes that lead to a change of this number.  It 
should also be not too complex for practical application.  An example of such a model is the Dynamic 
Energy Budget (DEB) model. Because it is the only model for which generic applications in the analysis of 
toxicity data has been worked out presently, the following discussion will focus on this model. 

415. The DEB model results from a theory that is described conceptually in Kooijman (2001) and 
Nisbet et al (2000), and discussed in detail in Kooijman (2000). Figure 7.1 gives a scheme of fluxes of 
material through an animal, which are specified mathematically in the DEB model, on the basis of 
mechanistic assumptions. The model’s main features are indicated in the legend of Figure 7.1. The DEB 
theory is not confined to animals, however, and covers all forms of life.  

 

Figure 7.1 Fluxes of material and energy through an animal, as specified in the DEB model.  

Assimilation, i.e. the conversion of food into reserve (plus faeces) is proportional to structure’s surface area.  Somatic 
and maturity work (involved in maintenance) are linked to structure’s mass, but some components (heating in birds and 
mammals, osmo-regulation in freshwater organisms) are linked to structure’s surface area. Allocation to structure is 
known as growth; to maturity as development; to gametes as reproduction. Embryos do not feed, juveniles do not 
reproduce, adults do not develop. Reserves and structure are both conceived as mixtures of mainly proteins, 
carbohydrates and lipids; they can differ in composition. The rate of use of reserve depends on the amount of reserve 
and structure; this rate is known as the catabolic rate. A fixed fraction of the catabolic flux is allocated to somatic 
maintenance plus growth, as opposed to maturity maintenance plus development (or reproduction). 

416. The general philosophy behind the DEB theory is a full balance approach for food (nutrients, 
energy, etc): “what goes in must come out”. Offspring is (indirectly) produced from food, which relates 
reproduction to feeding. Large individuals eat more than small ones, which links feeding to growth. 
Maintenance represents a drain of resources that is not linked to net synthesis of tissue or to reproduction. 
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An increase of maintenance, therefore, indirectly leads to a reduction of growth, so to a reduction of 
feeding and reproduction.  

417. This reasoning shows that the model requires a minimum level of complexity to address the various 
modes of action of a compound. One needs to identify this route to translate effects on individuals to that 
on the growth of natural populations (in the field). If food conditions are good, investment in maintenance, 
for instance, comprises only a small fraction of the daily food budget of individuals. Small effects of a 
toxicant on maintenance, therefore, result in very small effects on the population growth rate. If food 
conditions are poor, however, maintenance comprises a large fraction of the daily food budget. Small 
effects on maintenance can now translate into substantial effects on the population size. This reasoning 
shows that effects on populations depend on food conditions, which generally vary in time (Kooijman 
1985, 1988, Hallam et al 1989). The different modes of action usually result in very similar point estimates 
for the NEC, within the current experience. Furthermore, no effects on individuals implies no effects on 
populations of individuals, but the mode of action is particularly important for predicting the effects at the 
population level.  

7.2.3. Change in target parameter 

418. The value of the target parameter is assumed to be linear in the internal concentration. The 
argumentation for this very simple relationship is in the Taylor’s Theorem- which states that any regular 
function can be approximated with any degree of accuracy for a limited domain by a polynomial of 
sufficiently large order. The interest is usually in small effects only, and routine applicability urges for 
maximum simplicity, so a first order polynomial (i.e. a linear relationship) is a strategic choice.  

419. The biological mechanism of a linear relationship between the parameter value and internal 
concentration boils down to the independent action at the molecular level. Each molecule that exceeds an 
individual’s capacity to repress effects acts independent of the other molecules. Think of the analogy 
where photosynthesis of a tree is just proportional to the number of leaves as long as this number is small; 
as soon as the number grows large, self-shading occurs and photosynthesis is likely to be less than 
predicted. 

420. We doubtlessly require non-linear responses for larger effect levels, but then also need to include 
more types of effects. Interesting extensions include receptor-mediated effects. The biochemistry of 
receptors is rather complex. Two popular models are frequently used to model receptor-mediated effects 
and concentration: the Michaelis Menten model boils down to a hyperbolic relationship, rather than a 
linear one (which has one parameter more, Muller & Nisbet (1997)); the Hill model boils down to a log-
logistic relationship (and has two parameters more than the linear model, Hill (1910), Garric et al (1990), 
Vindimian et al (1983)). Such extensions are particularly interesting if toxicokinetics is fast, and the 
internal concentration is proportional to the external one (such as in cell cultures). The assumption that the 
target parameter is linear in the internal concentration does not translate into a linear response of the 
endpoint; it usually translates into sigmoid concentration-endpoint relationships, which are well known 
from empirical results. Notice that the linear model is a special case of the hyperbolic one, which is a 
special case of the log-logistic one. 

7.2.4. Change in endpoint 

421. The DEB model specifies how changes in one or more target parameters translate into changes in a 
specified endpoint. Popular choices for endpoints are reproduction rates (number of offspring per time), 
cumulative number of offspring (in daphnia-reproduction tests), body length (in fish-growth tests) and 
survival probability. Survival and reproduction together determine steady state population growth, if they 
are known for all ages. Reproduction rates depend on age, namely, and the first few offspring contribute 
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much more to population growth than later offspring. This is a consequence of the principle of interest-
upon-interest; early offspring start reproduction earlier than later offspring. As will be discussed below, 
indirect effects on reproduction come with a delay of the onset of reproduction, while direct effects on 
reproduction do not. The DEB model takes care of these more complex, but important, aspects of 
reproduction. Given the DEB model, there is no need to study all ages of the test organism once the DEB 
parameters are known. This application requires some basic eco-physiological knowledge about the species 
of test organism, but the acquisition of this knowledge does not have to be repeated for each toxicity test.  

7.3. Survival 

422. The effects on the survival probability of individuals are specified via the hazard rate. A hazard rate 
(dimension: probability per time) is also known as the instantaneous death rate. The hazard rate h(t) relates 
to the survival probability q(t) as 
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423. The product h  times dt has the interpretation of the probability of dying in a small time increment 
dt  given that the organism is alive at time t . If the hazard rate is constant, which is the standard 
assumption for the death rate in the control, the relationship between the survival probability and the 
hazard rate reduces to q(t) = exp{-ht}. Generally, the hazard rate increases with time, however. The 
mortality process can be modelled via the hazard rate, as is standard in survival analysis (Miller, 1981; Cox 
& Oakes, 1984). The hazard rate can depend on ageing and toxicity, as implied by the present model for 
survival, and can decrease in time, if , for instance, the concentration of a toxic compound decreases in 
time. If the concentration is constant, the ultimate LC50 equals the NEC.  

424. The following assumptions specify the survival probability at any concentration of test compound: 

• Assumptions on control behaviour  

− The hazard rate in the control is constant  

− The organisms do not grow during exposure  

• Assumption on toxico-kinetics  

− The test chemical follows first order kinetics  

• Assumption on effects  

− The hazard rate is linear in the internal concentration  

• Assumptions on measurements/toxicity test  

− The concentrations of test-compound are constant during exposure.  

− The measured numbers of dead individuals in subsequent time intervals are independently 
multinomially distributed  

425. In summary the model amounts to: the hazard rate is linear in the internal concentration, which 
follows first order kinetics. These assumptions result in sigmoidal concentration-survival relationships, not 
unlike the log-logistic one, with a slope that increases during exposure (see Figure 7.2). 
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Figure 7.2 The time and concentration profiles of the hazard model, together with the data of Figure 7.7.  

The resulting ML estimates are: control hazard rate = 0.0083 1/d, NEC = 5.2 µg/l, killing rate 0.037 (µg.d)-1, elimination 
rate = 0.79 d-1. From the last three parameters, LCx-time curves can be calculated, curves for the LC0, LC50 and 
LC99 are shown. (Calculated with DEBtox and DEBtool, see 7.9). For long exposure times, the LCx curves will tend 
towards the NEC, for all x, in absence of blank mortality. 

426. As is shown, the three exposure- time-independent parameters of the hazard model completely 
determine the response surface, thus the LCx-time curves. It is even possible to reverse the reasoning. If 
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the LC50.1d = 50 mM, LC50.2d = 30 mM and LC50.3d = 25 mM, the NEC = 17.75 mM, the killing rate = 
0.045 1/(mM.d), the elimination rate = 2.47 1/d. Such reconstructions are not very reliable, however, but 
they improve somewhat if more LC50 values are used.  

427. If the observation times are very close together, the resulting huge matrix of survival-count data 
can be reduced to time-to-death data. Concentration-response modelling is traditionally considered to be 
different from time-to-death modelling, c.f. Newman et al (1989), Dixon & Newman (1991), Diamond et 
al (1991), but in the framework of biology-based models, these two approaches are just extreme cases of 
analyses of response-surfaces; their distinction vanishes and we generally deal with mixtures of both. The 
log likelihood function then reduces to 
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where the first summation is across the individuals that actually died at the observed time points, excluding 
the ones that are taken alive out of the experiment. This can happen, for instance at the end of the 
experiment, or because their internal concentration is measured in a destructive way. The second one is 
across all individuals (the ones that died, as well as the ones that were removed alive). This sampling 
scheme allows that the concentrations for all individuals differ. An example of application is as follows: 

Time-to-death and concentration pairs (in d and mM, respectively):  

(21,1); (20,1.1); (20,0.9);(18,1.2); (16,1.3); (16,1.4); (15,1.5); (10,2); (9,1.8); (6,2.2); (5,2.5); (2,3); (2,4.3); 
(1,5); (1,4.5). Time-of-removal and concentration pairs: (21,0); (21,0); (21,0); (21,1). The ML estimates for 
this combined data set for 19 individuals in total are: control hazard rate = 0.061 d 1− , NEC = 1.93 mM, 
killing rate = 0.33 1/(mM.d), elimination rate 0.75 d 1− . This means, for instance, that the LC50.2d = 5.6 mM 
and the LC50.21d = 2.06 mM. (Calculations with DEBtool, see 7.9.2) 

428. The link between the DEB theory and the survival model is in the ageing module of the DEB 
model, where the hazard rate, as affected by the ageing process, depends on the respiration rate in a 
particular way due to the action of free radicals; genotoxic compounds have a very similar mode of action 
and these compounds accelerate the ageing process (Kooijman, 2000). The processes of tumour induction 
and growth have direct links with the ageing process (van Leeuwen and Zonneveld, 2001). These effects 
on survival are beyond the scope of the present document, which deals with survival during (short) 
standardised exposure experiments. 

429. On the assumption that test animals do not recover from immobilisation, the concept “death” can 
be replaced by “initiation of immobilisation” in this model. Due to the non-linearity that is inherent to 
toxico-kinetics, this model does not belong to the class of generalised linear models for survival, which has 
been proposed for the analysis of toxicity data (Newman 1995, McCullagh & Nelder 1989). 

430. The model for effects on survival, and details about the statistical properties of parameter estimates 
(especially that of NECs) are discussed in Andersen et al (2000), Bedaux & Kooijman (1994), Klepper & 
Bedaux (1997, 1997a), Kooijman & Bedaux (1996, 1996a). Effects at time-varying concentrations are 
discussed in Péry et al (2001, 2002), Widianarko & van Straalen (1996). 

7.4. Body growth  

431. The DEB model allows for (at least) three routes for affecting body growth:  
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1. a decrease of the assimilation rate. Assimilation deals with the transformation from food into 
reserves, and can be affected by a decrease of the feeding rate, or a decrease of the digestion 
efficiency. 

2. an increase of the somatic maintenance costs. These costs comprise protein turnover, the 
maintenance of intracellular and intra-organismal concentration gradients of compounds, osmo-
regulation, heating of the body (mainly in birds and mammals), activity, and other drains on 
resources that are not linked to processes of net synthesis. Somatic maintenance costs directly 
compete with body growth for resources (in the DEB model). Thus an increase of maintenance 
costs directly results in a decrease of body growth, due to conservation of mass and energy. 

3. an increase in the specific costs for growth. This is the case where the resource allocation to body 
growth is not affected, but the conversion of these resources to new tissue is.  

432. This list does not exhaust all possibilities. An interesting alternative is in the change of the 
allocation to somatic maintenance plus body growth versus maturity maintenance and maturation (or 
reproduction). Under control conditions, the DEB model takes the relative investments in these two 
destinations to be constant (the absolute investments can change in time). Parasites and endocrine 
disrupting compounds (e.g. Andersen et al 2001, Kooijman, 2000) are found to change these relative 
investments. It is possible that a large number of compounds have similar effects. A practical problem in 
the application of a model that accounts for changes in the allocation fraction is that standardised tests for 
body growth do not include measurements that are necessary to quantify the effect appropriately. Detailed 
modelling of effects on mammalian development has been developed and applied (Setzer et al 2001, Lau et 
al 2000), but such approaches require adequate data and are specific for the compound as well as the test 
organism. 

433. The following assumptions specify the effect on body growth at any concentration of test 
compound: 

• Assumption on control behaviour  

− the test-organisms follow a von Bertalanffy growth curve in the control.  

• Assumption on toxico-kinetics 

− the test chemical follows first order kinetics. 
(Dilution by growth is taken into account.)  

• Assumption on effects 
One of three modes of action occur  

− the assimilation rate decreases linearly in the internal concentration.  

− the maintenance rate increases linearly in the internal concentration.  

− the costs for growth increases linearly in the internal concentration.  

• Assumptions on measurements/toxicity test  

− the concentrations of test-compound are constant during exposure.  

− the measured body lengths are independently normally distributed with a constant variance  

434. The von Bertalanffy growth curve is given by }exp{)()( 0 trLLLtL b−−−= ∞∞ , where L(t) is the 
length at time t,  0L  is the initial length, ∞L  is the ultimate length, and br is the von Bertalanffy growth 
rate. The DEB model predicts that body growth is of the von Bertalanffy type only at constant food 
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densities, in the case of isomorphs (i.e., organisms that hardly change in shape during growth). An implied 
assumption is, therefore, that food density is constant, or high. Food intake depends hyperbolically on food 
density in the DEB model; variations in food density, therefore, hardly result in variations in food intake as 
long as food remains abundant. Examples of application of the model of effects on growth by an increase 
of the maintenance costs and by a decrease of assimilation are as follows: 

     

 

Figure 7.3 The time and concentration profiles for effects on growth of Pimephalus promelas via an increase 
of specific maintenance costs by sodium pentachlorophenate (data by Ria Hooftman, TNO-Delft).  

The parameters estimates are: NEC = 7.65 g/l; control ultimate length = 37 mm; tolerance conc = 43.5 g/l; elimination 
rate = large; Fixed parameters are: initial length = 4 mm; von Bertalanffy growth rate = 0.01 d.   The profile likelihood 
function for the NEC is given left.  The EC0.36d = 766g/l; EC50.36d = 176 g/l. The use of the profile likelihood graphs 
to obtain confidence intervals is explained in the legend to Figure 7.8. 
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Figure 7.4 The time and concentration profiles for effects on growth of Lumbricus rubellus via a decrease of 
assimilation by copper chloride (data from Klok & de Roos 1996).  

The parameters estimates are: NEC = 13 g/g; control ultimate length = 11.6 mm; tolerance conc = 1.2 mg/g; 
elimination rate = large; Fixed parameters are: initial length = 0 mm; von Bertalanffy growth rate = 0.018 d.  The profile 
likelihood function for the NEC is given left.  The EC0.100d = 13g/g; EC50.100d = 605 g/g. 

435. The first example shows that it is not necessary to have observations in time; the second example 
shows that it is not absolutely necessary to have a control. Although inclusion of a control is always 
advisable, the control is treated in the same way as positive concentrations in the DEBtox method. The 
statistical properties of the parameter estimates and the confidence one has in them obviously improve if 
controls and positive concentrations are available. 

436. At high concentrations, the test compound probably not only affects body growth, but usually also 
survival. The DEBtox software (see section 7.9) accounts for differences in number of individuals of which 
the body size has been measured. 

437. The models for effects on body growth, and details about the statistical properties of parameter 
estimation (especially that of NECs) are discussed in Kooijman & Bedaux (1996, 1996a) 

7.5. Reproduction 

438. The DEB model allows for (at least) five routes that affect reproduction. The first three routes are 
identical to that for growth and are called the indirect routes. The DEB model assumes namely that food 
intake is proportional to surface area, so big individuals eat more than small ones. This means that if 
growth is affected, feeding is directly or indirectly affected as well, which leads to a change in resources 
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that are available for reproduction. The routes not only lead to a reduction of reproduction, but also to a 
delay of reproduction. In addition there are two direct routes for affecting reproduction 

1. an increase in the costs per offspring, so an effect on the transformation from reserves of the 
mother to that of the embryo 

2. death of early embryos, before they leave the mother. Dead embryos can be born, or are 
absorbed; only the living ones are counted. 

439. These two direct routes assume that the allocation to reproduction is not affected by the compound, 
but that the compound affects the conversion of these resources into living embryos. 

440. The following assumptions specify the effect on reproduction at any concentration of test 
compound: 

• Assumptions on control behaviour  

− the test-organisms follow a von Bertalanffy growth curve in the control  

− reproduction depends on assimilation, maintenance and growth as specified by the Dynamic 
Energy Budget (DEB) theory  

• Assumption on toxico-kinetics  

− the test chemical follows first order kinetics (Dilution by growth is taken into account.)  

• Assumptions on effects: One of five modes of action occur   

− the assimilation rate decreases linearly in the internal concentration  

− the maintenance rate increases linearly in the internal concentration  

− the costs for growth increases linearly in the internal concentration  

− the costs for reproduction increases linearly in the internal conc.  

− the hazard rate of the neonates increases linearly in the internal conc.  

• Assumptions on measurements/toxicity test  

− the concentrations of test-compound are constant during exposure.  

− the measured cumulative numbers of young per female are independently normally 
distributed with a constant variance  

441. An implication of the DEB theory is that indirect effects on reproduction (the first three modes of 
action) are a reduction of the reproduction rate as well as a delay of the start of reproduction, while direct 
effects (the last two modes of action) involve a reduction of reproduction only. All three indirect effects on 
reproduction also have effects on growth, despite the fact that just a single target parameter is affected. The 
delay of the onset of reproduction is, therefore, coupled to effects on growth. The measurement of body 
lengths at the end of the test on reproduction can be used as an easy check and as an identification aid to 
the mode of action. This mode of action is of importance to translate effects on individuals into those on 
growing populations (Kooijman 1985, Nisbet et al 2000). 

442. The DEBtox software (see section 7.9) accounts for possible reductions of numbers of survivors in 
the reproduction test via weight coefficients; the more females contribute to the mean reproduction rate per 
female, the more weight that data point has in the parameter estimation. An example of application is from 
the OECD ring-test for effects of cadmium on Daphnia reproduction (Fig 7.5); the full results are reported 
in Kooijman at al (1998):  
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Figure 7.5 Effects of cadmium on the reproduction of Daphnia magna through an increase of the costs per 
offspring.  

Data from the OECD ring-test. The figures show the time and concentration profiles. The Parameter estimates are: 
NEC = 3.85 nM, tolerance conc = 5.40 nM, max reproduction rate = 14.4 d, elimination rate = 3.0  d. Fixed parameters 
are: von Bertalanffy growth rate = 0.1 1/d, scaled length at birth = 0.13, scaled length at puberty = 0.42, energy 
investment ratio = 1. The NEC does not differ significantly from 0 on the basis of these data. If a more accurate 
estimate is required, lower test concentrations should be selected. These parameter values imply: EC0.21d = 0.1 mM 
and EC50.21d = 0.336 mM. 

443. The models for effects on reproduction, and details about the statistical properties of parameter 
estimation (especially that of NECs) are discussed in Kooijman & Bedaux (1996b, 1996c). 

7.6. Population growth 

444. If individuals follow a cycle of embryo, juvenile and adult stages, one needs the context of 
physiologically structured population dynamics to link the behaviour of population dynamics to that of 
individuals. If the individuals only grow and divide, a substantial simplification is possible in the context 
of the DEB model. This is the case in the algal growth inhibition tests, and in tests with duckweed, for 
instance.  

445. Three modes of action of the compound are delineated here. The following assumptions specify the 
model for effects on populations:   

• Assumptions on control behaviour  

− the viable part of the population grows exponentially (the cultures are not nutrient or light 
limited during the test)  

• Assumption on toxico-kinetics  

− the internal concentration is rapidly in equilibrium with the medium  

• Assumptions on effects 
One of three modes of action occur  

− the costs for growth are linear in the (internal) concentration  

− the hazard rate is linear in the (internal) concentration during a short period at the start of the 
experiment 

− the hazard rate is linear in the (internal) concentration during the experiment  
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• Assumptions on measurements/toxicity test  

− the concentrations of test-compound are constant during exposure.  

− the inoculum size is the same for all experimentally tested concentrations  

− biomass measurements include living and dead organisms 

− the measured population sizes are independently normally distributed with a constant 
variance  

446. The rationale of the second mode of action (death only at the start of the experiment) is that effects 
relate to  

• the transition from control culture to stressed conditions, not to the stress itself  

• the position of the transition in the cell cycle; Cells are not synchronised, so the transition occurs  
at different moments in the cell cycle, for the different cells. If cells are more sensitive for the 
transition during a particular phase in the cell cycle, only those cells are affected that happen to 
be in that phase. 

447. The ECx values for this type of test can be calculated in various ways, with different results. One 
way to do this is on the basis of biomass as a function of time. This should not be encouraged, however 
because the result depends on experimental design parameters that have nothing to do with toxicity 
(Nyholm 1985). Another way to do this is on the basis of specific population growth rates, which are 
independent of time (Kooijman et al 1996a).  An example of application of the DEBtox method is as 
follows 

 



 ENV/JM/MONO(2006)18 

 119

     

  

Figure 7.6. The effect of a mixture of C,N,S-compounds on the growth of Skeletonema costatum via an 
increase of the costs for growth (data from the OECD ring test).  

The figures show the data, and the time and concentration profiles (note that this data set contains two blanks). The 
estimated parameters are: inoculum = 494 cells/ml, specific growth rate = 2.62 1/d, NEC = 0.053 mg/l, tolerance conc 
= 0.0567 mg/l. The profile likelihood function for the NEC is given in the figure left. The EC50 = 0.0624 mg/l. The 
robustness of this approach is demonstrated by the fact that removal of the highest concentration leads to the same 
point estimate for the NEC (but with a larger confidence interval). 

448. The model for effects on population growth, and details about the statistical properties of parameter 
estimation (especially that of NECs) are discussed in Kooijman et al (1996a). Toxic effects on logistically 
growing populations in batch cultures are discussed in Kooijman et al (1983); a paper on the interference 
of toxic effects and nutrient limitation is in preparation. 

7.7. Parameters of effect models 

449. The parameters of effect models can be grouped into a set that relates directly to the effects of the 
test compound and a set that relates to the eco-physiological behaviour of the test organisms. 

7.7.1. Effect parameters 

450. The basic biology-based models have two toxicity parameters and a single dynamic parameter:  

• NEC = EC0(∞): No-Effect Concentration, which is the 0% effect level at very long exposure 
times (dimension: external concentration). 

• killing rate (for effects on survival; dimension: per external concentration per time) or tolerance 
concentration (for sublethal effects; dimension: external concentration).  
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• elimination rate of first order kinetics (for survival, body growth and reproduction tests; not for 
population growth inhibition tests. Dimension: per time). Large values mean that the internal 
concentration rapidly reaches equilibrium with the concentration in the medium. If the internal 
concentration is in equilibrium, the effects no longer change. Notice that the elimination rate has 
no information about the toxicity of the test compound. 

451. The killing rate is the increase in the hazard rate per unit of concentration of test compound that 
exceeds the NEC:  

• 
+







 −+= NEC

BCF
ionconcentrat internal rate killing  rate hazard control  rate hazard   

where BCF = Bio-Concentration Factor and where the symbol +  means that if internal conc./BCF is below 
NEC, then hazard rate equals control hazard rate. The BCF stands for the ratio of the internal and external 
concentration in equilibrium. No assumptions are made about its value; it can be very small for compounds 
that hardly penetrate the body. 

452. The tolerance concentration quantifies the change in the target parameter per unit of 
concentration of test compound that exceeds the NEC:  

• parameter value  =  control parameter value ×  (1 + stress value)   

• 
+
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where BCF = Bio-Concentration Factor. 

453. The target parameter value in this specification of the tolerance concentration can be the specific 
costs for growth, the specific maintenance costs or another physiological target parameter. This depends on 
the mode of action of the compound.  

454. The name “tolerance concentration” refers to the fact that the higher its value, the less toxic the 
chemical compound. Notice that the ratio “internal concentration/ BCF” has the interpretation of an 
external concentration that is proportional to the internal concentration; the tolerance concentration, like 
the NEC, has the dimension of an external concentration. This is done because internal concentrations are 
generally unknown in practice. The internal concentration, and so the stress value, depends on the 
(constant) external concentration and the (changing) exposure time. The stress value is a dimensionless 
quantity, which is only introduced to simplify the specification of the change in the target parameter.  

455. The NEC, the elimination rate and the tolerance concentration (or killing rate) are parameters that 
do NOT depend on the exposure time. This is in contrast to ECx values, which do depend on exposure 
time. Notice that the accumulation rate (a toxico-kinetic parameter) does not occur in the parameter set of 
effect models. This is because less toxic compounds that accumulate strongly cannot be distinguished from 
toxic compounds that hardly accumulate if only effects, and no internal concentrations, are observed. This 
is also the reason why NECs, killing rates and tolerance concentrations are in terms of external 
concentrations, while the mechanism is via internal concentrations. Effect models treat internal 
concentrations as hidden variables. 

456. The kinetic parameters depend on the properties of the chemical compound. The elimination rate is 
inversely proportional to the square-root of the octanol-water partition coefficient (Pow), while the uptake 
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rate is proportional to the square-root of this coefficient (Kooijman & Bedaux 1996, Kooijman 2000). 
Since effects depend on internal concentrations, so on toxico-kinetics, effect parameters depend on the 
partition coefficient as well; the NEC, tolerance concentration and inverse killing rate are all inversely 
proportional to the Pow (Gerristen 1997, Kooijman & Bedaux 1996, Kooijman 2000). Such relationships 
can be used in practice to test parameter estimates against expectations.  

457. The prediction of how the toxicity parameters depend on the octanol-water partition coefficient can 
be used for selecting appropriate concentrations to be tested. An example is as follows. 

Suppose that compound 1 with Pow = 106 has been tested for its effects on survival, which resulted in the 
parameter estimates: NEC  = 1.3 mM; killing rate = 1.5 1/(mM.d); elimination rate = 0.5 1/d. Now have to 
test compound 2, with a physiologically similar mode of action and a  Pow = 107. Expect to find the 
parameter estimates NEC = 0.13 mM; killing rate = 15 1/(mM.d); elimination rate = 0.5/√10= 0.16 1/d. 
These three parameters imply that the LC0.2d = 0.47 mM and the LC99.2d = 1.9 mM, which gives some 
guidance for choosing the concentration range to be tested in a test of 2 d. 

Suppose now that we tested compound 1 for effects on reproduction in Daphnia with a control max 
reproduction rate of 15 offspring per day. Let us assume that the compound increases the maintenance 
costs. This resulted in NEC = 1.3 mM, tolerance concentration = 10 mM; elimination rate = 0.5 1/d.  We 
expect to find for compound 2: NEC = 0.13 mM, tolerance concentration = 1 mM; elimination rate = 0.16 
1/d. These three parameters imply that the EC0.21d =  0.18 mM and the EC99.21d =  1.9 mM, which gives 
some guidance for choosing the concentration range to be tested in a reproduction test of 21 d. 
(Calculations with DEBtool, see 7.9.2) 

458. Contrary to the more usual techniques to establish Quantitative Structure Activity Relationships 
(QSARs), the influence of the Pow on the parameters of biology-based models can be predicted on the basis 
of first principles; these QSARs are not derived from regression techniques that require toxicity data for 
other compounds. The reason why traditional regression techniques for establishing QSARs are somewhat 
cumbersome is in the standardisation of the exposure period. For any fixed exposure period (usually 2d or 
14d) the LC50 (or EC50) for a compound with a low Pow is close to its LC50 for very long exposure times; 
for compounds with a large Pow, however, the ultimate LC50 is much lower than the observed one. If we 
compare LC50s for low and high Pow values, we observe complex deviations from simple relationships, 
which are masked in log-log plots and buried in the allometric models that are usually applied to such data. 
(An allometric model is a model of the type y(x) = a xb where a and b are parameters.) 

459. Effects of modifying factors, such as pH, can be predicted, and taken into account in the analysis of 
toxicity data (corrections on measured or nominal concentrations, and on measured or modelled pH 
values). If the compound affects the pH at concentrations where small effects occur, and the NEC and/or 
the killing rate of the molecular and ionic forms differ, the relationships 
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apply, where pK is the ion-product constant, and  are the NECs of the molecular and ionic forms, and are 
the killing rates of the molecular and ionic forms (Kooijman 2000, Könemann 1980). The pH is affected 
much more easily in soft than in hard water (see e.g. Segel 1976, Stumm & Morgan 1996). Compounds 
may affect internal pH to some extent; in that case the relationship is approximately only. 

460. On the assumption that the chemical environment inside the body of the test organisms is not 
affected (due to homeostatic control), the observed survival pattern can be used to infer about the toxicity 
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of the molecular and the ionic form. The partitioning between the molecular and ionic form is fast, relative 
to the uptake and elimination (both in the environment and in the organism); this means that the 
elimination rate relates to both the molecular and the ionic form. An example is as follows. 

PH 7.5 7.5 7.4 7.2 6.9 6.6 6.3 6.0 

Conc 0 3.2 5.6 10 18 32 56 100 

0 20 20 20 20 20 20 20 20 

1 20 20 20 20 20 20 19 18 

2 20 20 19 19 19 18 18 18 

3 20 20 17 15 14 12 9 8 

4 20 18 15 9 4 4 3 2 

5 20 18 9 2 1 0 0 0 

6 20 17 6 1 0 0 0 0 

7 20 5 0 0 0 0 0 0 

 

461. Suppose that we found the numbers of survivors as in the left table for a compound with ionisation 
product constant of 9.0. The parameter estimates are (calculations with DEBtool, see 7.9.2): 

 Molecule Ion 

 ML sd ML Sd 

Control mort rate 0.009 0.005  

NEC 24.9 16.9 0.17 0.03 

Killing rate 0.039 0.013 2.82 2.16 

Elimination rate 1.48 0.50  
 

462. The elimination rate is proportional to the ratio of a surface area and a volume of the test organism, 
which yields an inverse length measure. This relationship implies predictable differences between 
elimination rates in organisms of different sizes, which have been tested against experimental data (see e.g. 
Gerritsen 1997). This is rather straightforward in the case of individuals of the same species, but also 
applies to individuals of different, but physiologically related, species. The body size scaling relationships 
as implied by the DEB theory suggest predictable differences in the chemical body composition, in lipid 
content and in elimination rate and toxicity parameters. Such relationships still wait for testing against 
experimental data, but are helpful in developing an expectation for parameter values; such expectations can 
be used in experimental design, and in checking results of parameter estimations. 

463. The prediction of how the three parameters of the hazard model depend on the body size of the test 
organisms can also be used for selecting appropriate concentrations to be tested. An example is as follows: 
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Suppose that a compound has been tested using fish of a weight of 1 mg, which resulted in the parameter 
estimates: NEC = 1.3 mM; killing rate = 1.5 1/(mM.d); elimination rate = 0.5 1/d. Now we have to test the 
compound for fish of 1 g of the same species.  We expect to find a difference in the elimination rate only, 
i.e. 0.5/10= 0.05 1/d.  These three parameters imply that the LC0.2d = 1.4 mM and the LC99.2d = 5.5 mM, 
which gives some guidance for choosing the concentration range to be tested in a test of 2 d.  (Calculations 
with DEBtool, see 7.9.2) 

7.2.2. Eco-physiological parameters 

464. The model for effects on survival has the control mortality rate as a parameter, which results in 
an exponentially decaying survival probability. This means that the model delineates two causes for death: 
death due to background causes (for instance manipulation during the assay) and death due to the 
compound. This obviously complicates the analysis of the death rate at low exposure levels, because we 
can never be sure about the actual cause of death in any particular case. Not only the data in the control, 
but all data are used to estimate the control mortality rate; if no death occurs in the control, this does not 
imply that the control mortality rate is zero. The profile likelihood function for the NEC quantifies the 
likelihoods of the two different causes of death. Figures 7.2, 7.3 and 7.4 show how background causes can 
be distinguished from those by the compound.  

 

Figure 7.7 A typical table of data that serves as input for the survival model, as can be used in the software 
package DEBtox (Kooijman & Bedaux 1996).  

The data in the body represent the number of surviving guppies. The first column specifies the observation times in 
days, the first row specifies the concentrations of dieldrin in g/l. Figure 7.8 shows how an answer can be found to the 
question whether the two deaths in the concentrations 3.2 and 5.6g/l are due to dieldrin, or to “natural” causes. 
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Figure 7.8 This profile likelihood function of the NEC (right panel) for the data in Figure 7.7 results from the 
software package DEBtox (Kooijman & Bedaux 1996).  

It determines the confidence set for the NEC (first select the confidence level of your choice in the left panel, then read 
the ln likelihood; the concentrations in the right panel for which the ln likelihoods are below this level comprise the 
confidence set of the NEC; the confidence set for the NEC is a single interval for low confidence levels, but a set of two 
intervals for high confidence levels). The maximum likelihood estimate for the NEC is here 5.2 g/l, and corresponds to 
the interpretation of death in concentration 3.2g/l due to “natural” causes; the second local extreme at 2.9g/l 
corresponds to the interpretation of this death due to dieldrin. The figure shows that this interpretation is less likely, but 
the figure shows that we cannot be excluded this possibility for high confidence levels. If the lowest concentration 
would have no deaths in this data set, the profile likelihood function would not have a second local extreme. 

465. The model for effects on growth have a single eco-physiological parameter each (the ultimate 
body length, and the maximum reproduction rate), that is estimated from the data, and a scatter 
parameter that stands for the standard deviation of the normally distributed deviations from the model 
predictions. The latter parameter also occurs in the models for effects on population growth. 

466. The models for effects on body growth and reproduction have some parameter values that cannot 
be estimated from (routine) tests. Their values should be determined by preliminary eco-physiological 
experiments. These parameters are 

• von Bertalanffy growth rate (dimension: per time). This parameter quantifies how fast the 
initial length approaches the ultimate length at constant food density. (The food density affects 
this parameter.) In principle, its value could be extracted from length measurements in the 
control, provided that enough observation times are included. Under standardised experimental 
conditions, its value should always be the same, however. Moreover, the lengths are usually only 
measured at the end of the test only. These data do not have information about the value of the 
von Bertalanffy growth rate. 

• initial body length (dimension: length), which is the body length at the start of the test. It is 
assumed that this applies to all individuals in all concentrations. The DEB model for reproduction 
has a scaled length at birth as parameter, which is dimensionless. This scaled length is the ratio of 
the length at birth and the maximum length of an adult at abundant food. Since the daphnia 
reproduction test uses neonates, the initial body length equals the length at birth. 

• scaled length at puberty (dimensionless). This is the body length at the start of reproduction in 
the control as a fraction of the maximum body length of an adult at abundant food. The DEB 
model takes this value to be a constant, independent of the food density. At low food density, it 
takes a relatively long time to reach this length. The start of reproduction, therefore, depends on 
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food density. The model for effects on reproduction needs the length at puberty. That on body 
growth does not use this parameter.  

• energy investment ratio (dimensionless). This parameter stands for the ratio between the 
specific energy costs for growth and the product of the maximum energy capacity of the reserves 
and the fraction of the catabolic energy flux that is allocated to somatic maintenance plus growth. 
The maximum (energy) capacity of the reserves is reached after prolonged exposure to abundant 
food. The catabolic flux is the flux that is mobilised from the reserves to fuel metabolism (i.e. 
allocation to somatic and maturity maintenance, growth, maturation or reproduction; the relative 
allocation to somatic maintenance plus growth is taken to be constant in the DEB model). The 
value of the parameter does not affect the results in a sensitive way. The logic behind the DEB 
theory requires its presence, however; the parameter plays a more prominent role at varying food 
densities. 

467. The DEBtox software (see below) fixes these parameters at appropriate default values for the 
standardised tests on fish growth and daphnia reproduction. The user can change these values.  

468. The models for population growth have two eco-physiological parameters that are estimated from 
the data 

• the inoculum size (dimension: mass or number per volume), which is taken to be equal in all 
concentrations 

• the control specific population growth rate (dimension: per time) 

7.8. Recommendations 

7.8.1. Goodness of fit 

469. As applies to all models that are fitted to data, one should always check for goodness of fit (as 
incorporated in DEBtox), inspect the confidence intervals of the NEC, and mistrust any conclusion from 
models that do not fit the data (see also Section 6.4). The routine presentation of graphs of model fits is 
strongly recommended. “True” models, however, do not always fit the data well, due to random errors. If 
deviations between data and model-fits are unacceptably large, it makes sense to make sure that the 
experimental results are reproducible. Problems with solubility of the test compound, pH effects, varying 
concentrations, varying conditions of test animals, interactions between test animals and other factors can 
easily invalidate model assumptions. It might be helpful to realise that one approach for solving this 
problem is in taking such factors into account in the model (and apply a more complex model), but another 
approach is to change the experimental protocol such that the problems are circumvented. The models are 
designed to describe small effects; if the lack of fit relates to large effects, it can be recommended to 
exclude the high concentration(s) from the data analysis. 

470. Any model might fit data well for the wrong reasons; a good fit does not imply the “validity” of 
that model. This should motivate to explore all possible means for checking results from data analysis; an 
expectation for the value of parameters is a valuable tool. 

471. The assumption of first order kinetics is not always realistic in detail. A general recommendation is 
to consider more elaborate alternatives only if data on toxico-kinetics are available. Depending on the 
given observation times, the elimination rate is not always accurately determined by the data. In such cases 
one might consider to fix this parameter at a value that is extracted from the literature, and/or derived from 
a related compound, after correction for differences in Pow values. 
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7.8.2. Choice of modes of action 

472. Experience teaches that the mode of action usually has little effect on the NEC estimates. Models 
for several modes of action frequently fit well to the same experimental data set; if additional type of 
measurements would have been available (such as feeding rate and/or respiration rate), it is much easier to 
choose between modes of action. These modes of action are of importance to translate effects on 
individuals to those on population dynamics, and how food availability interferes with toxic effects. The 
DEB theory deals with this translation.  

473. Measurements of feeding and respiration rates, and of body size (in reproduction tests) greatly help 
identifying the mode of action of the compound. The proper identification of the mode of action is less 
relevant for estimates of the NEC.  

7.8.3. Experimental design 

474. DEBtox has been designed to analyse the results from toxicity tests as formulated in OECD 
guidelines (numbers 201, 202, 203, 204, 211, 215, 218, 219) and ISO guidelines (numbers 6341, 7346-3, 
8692, 10229, 10253, 12890, 14669). The experimental design described in these guidelines is suitable for 
the application of DEBtox. Confidence intervals for parameter estimates are greatly reduced if not only the 
responses at the end of the toxicity experiments are used, but also observations during the experiment. 
Ideally, one should be able to observe how fast effects build up during exposure in the data, till the effect 
levels satiate. Note that this does not require additional animals to be tested, only that they are followed for 
a longer period of time. 

475. Large extrapolations of effects, especially in the direction of longer exposure times, are generally 
not recommended; this is because, ideally, the assumptions need to be checked for all new applications. It, 
therefore, makes sense to let the optimal choice for the exposure period depend on the compound that is 
tested, and the test organisms that are used. The higher the solubility in fat of the test compound (e.g. 
estimated from Pow), and the larger the body size of the test organisms, the longer the exposure should last.  

476. As stated in the introduction, it is strongly recommended to include all available observations into 
the analysis; not only those at the end of the experiment, but also the observations that have been collected 
during the experiment (for instance when the media are refreshed). It is generally recommended that the 
number of observations during exposure, the concentrations of test compound and the number of used test 
animals are such that the model parameters can be estimated within the desired accuracy.  

477. Experimental design should optimise the significance of the test; the significance of single-species 
tests is discussed in Anonymous (1999). From a data analysis point of view, it makes sense to extend the 
exposure period till no further effects show up. The length of the exposure period then relates to the 
physical-chemical properties of the compound.  

7.8.4. Building a database for raw data 

478. Since biology-based methods not only aim at a description, but also at an understanding of the 
processes that underlie effects, it is only realistic to assume that this understanding will evolve over the 
years. In the future, it might be useful to reanalyse old data in the light of new insights. In anticipation of 
this, it is recommended to build a raw database. 

7.9. Software support 

479. The models that are used by biology-based methods are fully derived and discussed in all 
mathematical detail in the open literature; a summary of the specification is given in the appendix of this 
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report. There is, therefore, no need to use any of the software that is mentioned in this section. On the other 
hand, fitting sets of differential equations to data (as required by the models for effects on body growth and 
reproduction), the calculation of profile likelihoods for NECs, and the more advanced methods of fitting 
several datasets simultaneously, is beyond the capacity of most standard packages. Even if packages can do 
the job, the optimisation of numerical procedures (such as solving initial value problems) can be somewhat 
laborious. 

480. The computations for biology-based methods have been coded in two packages, DEBtox and 
DEBtool, which can be downloaded freely from the electronic DEB-laboratory at 
http://www.bio.vu.nl/thb/deb/. Both packages are updated at varying intervals; the user has to check the 
website for the latest version. These packages are used in (free) international internet-courses that are 
organised by the Dept Theoretical Biology at the Vrije Universiteit, Amsterdam. 

481. A MS Excel macro able to estimate Hill parameters using nonlinear regression is available under 
the GPL license on the site: http://perso.wanadoo.fr/eric.vindimian  

7.9.1. DEBtox 

482. DEBtox is a load-module for Windows and Unix that is meant for routine applications. 

483. The user cannot define new models. The package has many options for parameter estimation, 
confidence intervals and profile likelihoods (for the NEC for instance), fixation of parameters at particular 
values (such as NEC = 0) while estimating the other parameters, calculation of statistics (such as ECx.t and 
ETx.c values and their confidence intervals), hypothesis testing about parameter values (such as NEC ≠ 0), 
graphical representations to check goodness of fit, residual analysis, etc. Example data-files are provided 
for each toxicity test. 

484. DEBtox is a user-friendly package, and the numerical procedures are optimised for the various 
models (modes of action) that can be chosen. The elimination rate, for instance, is not always accurately 
determined by the data, especially if a single observation time is given. DEBtox always calculates three 
sets of parameter estimates, corresponding with the elimination rate being a free parameter, or zero, or 
infinitely large. Only the best result is shown. The initial values for the parameters that are to be estimated 
are selected automatically. In fact many trials (some hundred) are performed, and only the best result is 
shown. The user does not have to bother about these computational “details”. (The likelihood function can 
have many local maxima, depending on the model and on the observations. The result of the numerical 
procedure to find a local maximum depends on the initial value; we are only interested in the global 
maximum, however. This problem complicates non-linear parameter estimation in practice; it is an extra 
reason to check the result graphically in all applications.) 

485. The present version of DEBtox can handle a single endpoint only (i.e. a single table of observations 
of responses at the various combinations of concentration and exposure time). In the period 2002-2006, 
DEBtox will be extended to include multiple samples to allow the analysis of effects on survival and 
reproduction simultaneously, and to test hypotheses about differences of parameter values between 
samples.  

7.9.3. DEBtool 

486. DEBtool is source code (in Octave and Matlab) for Windows and Unix that is meant for research 
applications. Octave is freely downloadable, Matlab is commercial. DEBtool is much more flexible than 
DEBtox, but requires more knowledge for proper use; it is less user-friendly than DEBtox. Initial values 
for parameter estimations are not automatic, for instance. DEBtool has many domains that deal with the 
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various applications of DEB models in eco-physiology and biotechnology; the domain “tox” deals with 
applications in ecotoxicology. The package can handle multiple data sets; several numerical procedures 
can be selected to find parameter estimates. DEBtool allows researchers to estimate parameters if the 
variance is proportional to the squared mean, to calculate the NEC, killing rate and elimination rate from 
LC50 values for three exposure times, to estimate parameters from time-to-death data, and to extract the 
toxicity parameters for the molecular and the ionic form when the pH is measured for each concentration, 
etc. Many specific models are coded, and the user can change and add models.   



 ENV/JM/MONO(2006)18 

 129

8. LIST OF EXISTING GUIDELINES WITH REFERENCE TO THE CHAPTERS OF THIS DOCUMENT  

Guideline/standard Test Endpoint Reference 
(NOEC) 

Reference 
(dose response modelling) 

Reference 
(biological based models) 

Growth rate 5.3 6.3 7.6 OECD 201 ISO 8692: 1989 
ISO 14593: 1999 
ISO 13829: 2000 

Alga growth inhibition 
Area under growth curve 
(biomass) 

5.3 6.3 (not recommended) 

OECD 202 ISO 6341: 1996 Daphnia immobilisation Immobilisation 5.2 6.2 7.3 
OECD 203 ISO 7346-1, 2, 3: 1996 Fish acute Mortality 5.2 6.2 7.3 

Mortality 5.2 6.2 7.3 OECD 204  Fish prolonged 
Body weight, length 5.3 6.3 7.4 

OECD xxx  Avian acute Mortality 5.2 6.2 7.3 
Mortality 5.2 6.2 7.3 
Body weight 5.3 6.3 7.4 

OECD 205  Avian dietary 

Food consumption 5.3 6.3 7.4 (theory covered, but not coded) 
Body weight (F0, F1), 
organ weight,  
food consumption,  
egg-shell thickness,  
egg-shell strength 

5.3 6.3 7.4 (body weight) 

Egg production,  
14-day old survivors 
(counts) 

5.2/5.3 6.3 7.5 

OECD 206 
OECD xxx 

 Avian-1-generation 

Egg abnormality rate, 
egg fertility, viability, 
hatchability,   
chick survival rate 
(proportions) 

5.2 6.2 7.3 (chick survival) 

Mortality 5.2 6.2 7.3 OECD 207 ISO 11268-1: 1993 Earthworm acute 
Body weight 5.3 6.3 7.4 
Emergence 5.2 6.2 7.3 (as survival) 
Biomass, Root Length 5.3 6.3 theory covered, but not coded 

OECD 208 ISO 11269-1: 1993 
ISO 11269-2: 1995 

Non-target terrestrial 
plant 

Visual phytotoxicity 5.3 6.3  



ENV/JM/MONO(2006)18 

 130

Guideline/standard Test Endpoint Reference 
(NOEC) 

Reference 
(dose response modelling) 

Reference 
(biological based models) 

   Mortality 5.2 6.2 7.3 
 ISO 15522: 1999 Activated sludge Microorganism cell 

growth 
5.3 6.3 7.6 

Mortality 5.2 6.2 7.3 
Days to hatch 5.2/5.3 6.3 7.4 (theory covered, but not coded) 
Hatching success 5.2 6.2 7.3 
Days to swim-up 5.2/5.3 6.3 7.4 (theory covered, but not coded) 

OECD 210  Fish ELS 

Weight, length 5.3 6.3 7.4 
Immobilisation 5.2 6.2 7.3 OECD 211 ISO 10706: 2000 Daphnia reproduction 
Fecundity 5.2/5.3 6.3 7.5 
Mortality 5.2 6.2 7.3 
Days to hatch 5.2/5.3 6.3 7.4 (theory covered, but not coded) 

OECD 212 ISO 12890: 1999 Fish embryo and sac-fry 
stage 

Length 5.3 6.3 7.4 
OECD 213  Honeybee, acute oral Mortality 5.2 6.2 7.3 
OECD 214  Honeybee, acute contact Mortality 5.2 6.2 7.3 

Mortality 5.2 6.2 7.3 OECD 215 ISO 10229: 1994 Fish juvenile growth test 
Body weight, Length 5.3 6.3 7.4 
Emergence 5.2 6.2 7.3 
Days to hatch 5.2/5.3 6.3 7.4 
Survival 5.2 6.2 7.3 

OECD 
218/219 

 Chironomid toxicity 

Weight 5.3 6.3 7.4 
Mortality 5.2 6.2 7.3 OECD 220 ISO/CD  Enchytraeidae 

reproduction Fecundity 5.2/5.3 6.3 7.4 
Mortality 5.2 6.2 7.3 
Body weight 5.3 6.3 7.4 

OECD xxx ISO 11268-2: 1998 Earthworm reproduction 

Fecundity 5.2/5.3 6.3 7.5 
 ISO 11268-3: 1999 Earthworm population 

size (field test) 
Number of individuals 
(for various species) 

5.2/5.3 6.3 7.6 

Average growth rate 5.3 6.3 7.4 OECD 221 ISO/CD 20079 Lemna growth inhibition 
Area under growth curve 5.3 6.3 not recommended 
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Guideline/standard Test Endpoint Reference 
(NOEC) 

Reference 
(dose response modelling) 

Reference 
(biological based models) 

   Final biomass 5.3 6.3 7.4 
Growth rate 5.3 6.3 7.6  ISO 10253: 1995 Marine algal growth 

inhibition test Biomass  5.3 6.3 7.6 
 ISO 14669: 1999 Marine copepods Immobilisation 5.2 6.2 7.3 
 ISO 11348-1,2,3: 1998 Light emission of Vibrio 

fischeri 
Luminenscence 5.3 6.3 7.6 (for zero growth) 

 ISO 10712: 1995 Pseudomonas putida 
growth inhibition 

Growth rate 5.3 6.3 7.6 

 ISO 13829: 2000 Genotoxicity (umu-test) Induction rate 5.3 6.3  
Offspring number 5.2/5.3 6.3 7.5  ISO 11267: 1999 Collembola reproduction 

inhibition Mortality 5.2 6.2 7.3 
 



ENV/JM/MONO(2006)18 

 132

REFERENCES 

References for chapter 1 to 4 

Akritas, M.G. and I. Van Keilegom. (2001) - ANCOVA methods for heteroscedastic nonparametric 
regression models. Journal of the American Statistical Association. 96, 453, 220-231. 

Armitage A.C. and Berry G. (1987) - Statistical methods in medical Research. Oxford, Blackwell. 

Atkinson A.C. (1987) - Plots, transformations and regression. Oxford: Oxford University press. 

Azzalini A. and Bowman A. W. (1997) - Applied Smoothing Techniques for Data Analysis, Oxford, pp. 
48-85  

ASTM (2000) -  E1847-96 - Standard Practice for Statistical Analysis of Toxicity Tests Conducted under 
ASTM Guidelines. ASTM Annual Book of Standards, Vol. 11.05. ASTM, West Conshohocken, 
Pennsylvania. 

Belsey D.A., Kuh E. and Welsch R.E. (1980) - Regression diagnostics: Identifying Influential Data and 
Sources of Collinearity. New York: Wiley. 

Box, G.E.P. and Cox, D.R. (1964) - An analysis of transformations, J. Roy. Statist. Soc. B-26, 211-252. 

Box, G.E.P. and Hill, W.J. (1974) - Correcting inhomogeneity of variance with power transformation 
weighting, Technometrics 16, 385-389. 

Box, G.E.P. and Tidwell, P.W. (1962) - Transformations of the independent variables, Technometrics 4, 
531-550. 

Carroll, R. J., Maca, J. D. and Ruppert, D. (1999), “Nonparametric regression with errors in covariates”, 
Biometrika, 86, 541–554. 

Chapman P.F., Crane M., Wiles J.A., Noppert F. and McIndoe E.C. (1995) - Asking the right questions: 
ecotoxicology and statistics. In: Report of a workshop held at Royal Holloway University of London, 
Egham, Surrey, United Kingdom, , SETAC Eds, 32 p. 

Chapman P.M., Caldwell R.S. and Chapman P.F. (1996). - A warning: NOECs are inappropriate for 
regulatory use. Environ. Toxicol. Chem. Vol. 15, No.2, pp. 77-79  

Cook R.D. and Weisberg S. (1982) - Residuals and Influence in Regression. New York: Chapman Hall. 

Draper, N.R. and Cox, D.R. (1969) - On distributions and their transformations to normality, J. Roy. 
Statist. Soc. B-31, 472-476. 

Easton D, Peto J. (2000); Presenting statistical uncertainty in trends and dose–response relations. American 
Journal of Epidemiology, 152:393–394. 



 ENV/JM/MONO(2006)18 

 133

Environment Canada (2003) - Guidance document on statistical methods for environmental toxicity tests. 
Fifth draft, Environmental Protection Series, Method development and application section, 
Environmental technology centre, Environmental protection service, Ottawa, Ontario.  

Fan J. and Gibjels  I. (1996), Local Polynomial Modelling and Its Applications, London: Chapman& Hall. 

Finney D.J. (1978) - Statistical method in biological assay. London., Griffin. 

Green, P. J. and Silverman, B. W. (1994), Nonparametric Regression and Generalized Linear Models: A 
Roughness Penalty Approach, Chapman and Hall, London. 

Hardle, W. (1991), Smoothing Techniques, London: Springer-Verlag. 

Hoekstra J.A. and Van Ewijk P.H. (1993) - Alternatives for the no-observed-effect level. Environ. Toxicol. 
Chem. Vol. 12, No.2, pp. 187-194  

Hochberg Y. and Tamhane A.C. (1987) - Multiple comparison procedures, Wiley, New York. 

Hurlbert S.H. (1984) - Pseudoreplication and the design of ecological field experiments. Ecological 
Monographs 54, 187-211.  

Kerr D.R. and Meador J.P. (1996) - Modelling dose response using generalized linear models. Environ. 
Toxicol. Chem., 15, 3, 395-401.  

Kooijman S.A.L.M. and Bedaux J.J.M. (1996) - The analysis of aquatic ecotoxicity data. VU University 
Press, ISBN 90-5383-477-X  

Laskowskj R. (1995) - Some good reasons to ban the use of NOEC, LOEC and related concepts in 
ecotoxicology. OIKOS 73:1, pp.140-144 

Mc Cullagh P. and Nelder J.A. (1983) - Generalized linear models. London, Chapman and Hall, p 261. 

Newman M.C. (1994) - Quantitative Methods in Aquatic Ecotoxicology. Lewis Publishers. 

OECD (1998) - Report on the OECD workshop on statistical analysis of aquatic toxicity data. Series on 
testing and assessment, N° 10. Environmental Health and Safety Publications. Series on testing and 
Assessment. ENV/MC/CHEM(98)18. 

OECD (2000) - Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. 
OECD Environmental Health & Safety Publication, Series on Testing & Assessment No. 23. 
Organisation for Economic Cooperation & Development (OECD), Paris. 53 pp. 

Pack S. (1993) - A review of statistical data analysis and experimental design in OECD aquatic toxicology 
Test Guidelines.  

Piegorsch W. W. and Bailer A. J. (1997) - Statistics for Environmental Biology and Toxicology, Boca 
Raton, FL: Chapman & Hall/CRC Press.Silverman, B. (1985) Some aspects of the spline smoothing 
approach to non-parametric regression curve fitting (with discussion).  Journal of the Royal 
Statistical Society B 47: 1-52 

Smith-Warner, S.A., Spiegelman, D., Yaun, S.S., van den Brandt, P.A., Folsom, A.R., Goldbohm, R.A., 
Graham, S., Holmberg, L., Howe, G.R., Marshall, J.R., Miller, A.B., Potter, J.D., Speizer, F.E., 



ENV/JM/MONO(2006)18 

 134

Willett, W.C., Wolk, A., Hunter, D.J., 1998. Alcohol and breast cancer in women: a pooled analysis 
of cohort studies. Journal of the American Medical Association 279, 535–540. 

Sparks T. (2000) - Statistics in Ecotoxicology. John Wiley and Sons, Ltd., West Sussex, England. 320 p. 

Tukey J.W., Ciminera J.L. and Heyes J.F. (1985) - Testing the statistical certainty of a response to 
increasing doses of drug. Biometrics, 41, 295-301.  

Williams D.A. (1971) - A test for differences between treatment means when several dose levels are 
compared with a zero dose control. Biometrics, 27, 103-117.  

References for chapter 5 

These references serve both for quantal and continuous response hypothesis testing. Not all references 
included have been cited in the text. The additional references are included to provide the interested reader 
sources to further explore the issues and procedures that have been presented. 

Agresti A. (1990) - Categorical Data Analysis, Wiley, New York. 

Aitkin M., Anderson D., Francis B. and Hinde J. (1989) - Statistical analysis in GLIM, Oxford Science 
Publications, Clarendon Press, Oxford. 

Aiyar R.J., Guillier C.L. and Albers, W. (1979) - Asymptotic relative efficiencies of rank tests for trend 
alternatives, J. American Statistical Association 74, 226-231. 

Alldredge J. R. (1987) - Sample size for monitoring of toxic chemical sites, Environmental Monitoring and 
assessment 9, 143-154. 

Armitage P. (1955) - Tests for linear trends in proportions and frequencies, Biometrics 11, 375-386. 

Barlow R.E., Bartholomew D.J., Bremmer J.M. and Brunk, H.D. (1972) - Statistical inference under order 
restrictions, Wiley 1972. 

Bartholomew D.J. (1961) - Ordered tests in the analysis of variance, Biometrika 48, 325-332. 

Bauer P. (1997) - A note on multiple testing procedures in dose finding, Biometrics, 53, 1125–1128. 

Berenson B.M. (1982a) - A comparison of several k sample tests for ordered alternatives in completely 
randomized designs, Psychometrika 47, 265-280. 

Berenson M. L. (1982b) - A study of several useful tests for ordered alternatives in the randomized block 
design, Comm. Statistical (B) 11, 563-581. 

Berenson M. L. (1982c) - Some useful nonparametric tests for ordered alternatives in randomized block 
experiments, Comm. Statistical (A) 11, 1681-1693. 

Birch J.B. and Myers R.H. (1982) - Robust Analysis of Covariance, Biometrics 38, 699-713. 

Bliss C.L. (1957) - Some principals of bioassay, Am. Sci. 45, 449-466. 

Box G.E.P. and Cox, D.R. (1964) - An analysis of transformations, J. Roy. Statist. Soc. B-26, 211-252. 



 ENV/JM/MONO(2006)18 

 135

Box G.E.P. (1953) - Non-normality and tests on variances. Biometrika 40: 318-335. 

Box G.E.P. and Hill W.J. (1974) - Correcting inhomogeneity of variance with power transformation 
weighting, Technometrics 16, 385-389. 

Box G.E.P. and Tidwell P.W. (1962) - Transformations of the independent variables, Technometrics 4, 
531-550. 

Breslow N. (1990) - Tests of hypotheses in overdispersed Poisson regression and other quasi-likelihood 
models, JASA 85, 565-571. 

Bretz F. (1999) - Powerful modifications of Williams’ test on trends, Dissertation, University of Hanover. 

Bretz F. and Hothorn L.A. (2000) - A powerful alternative to Williams’ test with application to 
toxicological dose-response relationships of normally distributed data, Environmental and 
Ecological Statistics 7, 135-254. 

Brown M. B. and Forsythe A. B. (1974) - The small sample behavior of some statistics which test the 
equality of several means, Technometrics 16, 129-132. 

Budde M. and Bauer P. (1989) - Multiple test procedures in clinical dose finding studies, J. American 
Statistical Association 84, 792-796. 

Capizzi T., Oppenheimer L.,  Mehta H., Naimie H. and Fair J. L. (1984) - Statistical considerations in the 
evaluation of chronic aquatic toxicity studies, Envir. Sci. Technol. 19, 35-43. 

Chase G.R. (1974) - On testing for ordered alternatives with increased sample size for a control, 
Biometrika 61, 569-578. 

Cochran W. G. (1943) - Analysis of variance for percentages based on unequal numbers, JASA 38, 287-
301. 

Cochran W. G. (1954) - Some Methods for Strengthening the Common χ2-Tests, Biometrics 10, 417-451. 

Collett D. (1991) - Modelling Binary Data, Chapman and Hall, London. 

Conover W. J. and Iman R.L. (1982) - Analysis of Covariance Using the Rank Transform, Biometrics 38, 
715-724. 

Crump K.S., Guess H.A. and Deal K.L. (1977) - Confidence intervals and tests of hypotheses concerning 
dose response relations inferred from animal carcinogenicity data, Biometrics 33, 437-451. 

Crump K.S. (1984) - A new method for determining allowable daily intakes, Fundam. Appl. Toxicol. 4, 
854-871. 

Crump K. S. (1979) - Dose response problems in carcinogenesis, Biometrics 35, 57-167. 

Davis J.M. and Svendsgaard D.J. (1990) - U-Shaped Dose-Response Curves: Their Occurrence and 
Implications for Risk Assessment, J. Toxicology and Environmental Health 30, 71-83. 

Draper N.R. and Smith H. (1981) - Applied Regression Analysis, 2nd edition, Wiley, New York. 



ENV/JM/MONO(2006)18 

 136

Draper N.R. and Cox D.R. (1969) - On distributions and their transformations to normality, J. Roy. Statist. 
Soc. B-31, 472-476. 

Dunnett C. W.  (1964) - New tables for multiple comparisons with a control, Biometrics 20, 482-491. 

Dunnett C. W. (1955) - A multiple comparison procedure for comparing several treatments   with  a  
control,  J.  American  Statistical  Association  50, 1096-1121. 

Dunnett C. W. (2000) - Power and Sample Size Determination in Treatment vs. Control Multiple 
Comparisons, Submitted. 

Dunnett C. W. and Tamhane A. C. (1998) - New multiple test procedures for dose finding, Journal of 
Biopharmaceutical Statistics, 8, 353 366. 

Dunnett C. W. and Tamhane A. C. (1995) - Step-up multiple testing of parameters with unequally 
correlated estimates, Biometrics 51, 217-227. 

Dunnett C. W. and Tamhane A. C. (1992) - A step-up multiple test procedure, Journal of the American 
Statistical Association, 87, 162–170. 

Dunnett C. W. and Tamhane A. C. (1991) - Step-down multiple tests for comparing treatments with a 
control in unbalanced one-way layout, Statistics in Medicine 10, 939-947. 

Dunnett C.W. (1980) - Pairwise multiple comparisons in the unequal variance case, J. Amer. Statist. 
Assoc. 75, 796-800. 

Dunn O. J. (1964 ) - Multiple Comparisons Using Rank Sums, Technometrics 6, 241-252. 

Fairweather P.G. (1991) - Statistical power and design requirements for environmental monitoring, Aust. J. 
Mar. Freshwater Res. 42, 555-567. 

Fleiss J.L. (1986) - The design and analysis of clinical experiments, Wiley, New York. 

Freeman M.F. and Tukey J.W. (1950) - Transformations Related to the Angular and the Square Root, 
Annals of Mathematical Statistics 21, 607-611. 

Gad S.C. and Weil C.S. (1986) - Statistics and experimental design for toxicologists, Telford Press, 
Caldwell, NJ, p. 86. 

Gaylor D.W. (1983) - The use of safety factors for controlling risk, J. Toxicology and Environmental 
Health 11, 329-336. 

Genz A. and Bretz F. (1999) - Numerical computation of multivariate t-probabilities with application to 
power calculation of multiple contrasts, J. Stat. Comp. Simul. 63, 361-378 

Good P. (1994) - Permutation Tests, Springer-Verlag, New York. 

Harwell M.R. and Serlin R.C. (1988) - An Empirical Study of a Proposed Test of Nonparametric Analysis 
of Covariance, Psychology Bulletin, 268-281. 

Henderson C.R. (1982) - Analysis of Covariance in the Mixed Model: Higher-Level, Nonhomogeneous, 
and Random Regressions, Biometrics 38, 623-640. 



 ENV/JM/MONO(2006)18 

 137

Hirji K. F. and Tang M.-L. (1998) - A comparison of tests for trend, Commun. Statist. – Theory Meth. 27, 
943-963. 

Hochberg Y. and Tamhane A.C. (1987) - Multiple comparison procedures, Wiley, New York. 

Hocking R. R. (1985) - The Analysis of Linear Models, Brooks/Cole, Monterey, CA. 

Hollander M. and Wolfe D.A. (1973) - Nonparametric Statistical Methods, Wiley, New York. 

Holm S. (1979) - A simple sequentially rejective multiple test procedure, Scand. J. Statist., 6, 65-70. 

Hoppe F.M. ed. (1993) - Multiple Comparisons, Selection, and Applications in Biometry, Marcel-Dekker, 
New York. 

Hosmer D. W. and Lemeshow S. (1989) - Applied logistic regression, Wiley, New York. 

Hothorn, L.A., and Hauschke, D. (2000): Identifying the maximum safe dose: a multiple testing approach. 
J. Biopharmaceutical Statistics 10 15-30.  

Hsu J.C. (1992) - The Factor Analytic Approach to Simultaneous Confidence Interval for Multiple 
Comparisons with the Best, Journal of Computational Statistics and Graphics, 1, 151 -168.  

Hsu J. C. and Berger R. L. (1999) - Stepwise confidence intervals without multiplicity adjustment for dose 
response, and toxicity studies, Journal of the American Statistical Association, 94, 468 482. 

Hubert J.J., Bohidar N.R. and Peace K.E. (1988) - Assessment of pharmacological activity, 83-148 in 
Biopharmaceutical statistics for drug development, K.E. Peace, ed, Marcel Dekker, New York. 

Hubert J.J. (1996) - Environmental Risk Assessment, Department of Mathematics and Statistics, 
University of Guelph, Guelph, Ontario.  

John P.W.M. (1971) - Statistical Design and Analysis of Experiments, Macmillan, New York. (especially 
section 4.7) 

Jonckheere A. R. (1954); A distribution-free k-sample test against ordered alternatives, Biometrika 41, 
133. 

Klaassen C.D. (1986) - Principals of toxicology, Chapter 2 in Casarett and Doull's Toxicology the basic 
science of Poisson, third ed., C.D. Klaassen, M.O. Amdur and J. Doull, editors, MacMillan, New 
York. 

Knoke J.D. (1991) - Nonparametric Analysis of Covariance for Comparing Change in Randomized Studies 
with Baseline Values Subject to Error, Biometrics 47, 523-533. 

Koch G.C., Tangen C.M., Jung J.-W. and Amara I. (1998) - Issues for Covariance Analysis of 
Dichotomous and Ordered Categorical Data from Randomized Clinical Trials and Non-Parametric 
Strategies for Addressing Them, Statistics in Medicine 17, 1863-1892. 

Kodell R.L. and Chen J.J. (1991) - Characterization of Dose-Response Relationships Inferred by 
Statistically Significant Trend Tests, Biometrics 47, 139-146. 

Korn E.L. (1982) - Confidence Bands for Isotonic Dose-Response Curves, Appl. Statis. 31, 59-63. 



ENV/JM/MONO(2006)18 

 138

Lagakos S. W. and Lewis, T.A. (1985) - Statistical analysis of rodent tumorigenicity experiments, in 
Toxicological Risk Assessment, Volume I Biological and Statistical Criteria, CRC Press, Boca 
Raton, Florida, 149-163. 

Lehmann E. I. (1975) - Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco. 

Litchfield J.T. and Wilcoxon F. (1949) - Simplified method of evaluating dose-effect experiments, J. 
Pharmacol. Exp. Ther. 96, 99-113. 

Littell R. C. (2002) - Analysis of Unbalanced Mixed Model Data: A Case Study Comparison of ANOVA 
versus REML/GLS, J. Agriculture, Biological, and Environmental Statistics 7, 472-490. 

Marascuilo L.A. and McSweeney M. (1967) - Non-parametric post-hoc multiple comparisons for trend, 
Psychol. Bull 67, 401-412. 

Marcus R., Peritz E. and Gabriel, K.R. (1976) - On closed testing procedures with special reference to 
ordered analysis of variance, Biometrika 63, 655-660. 

Marcus R. and Peritz E. (1976) - Some simultaneous confidence bounds in normal models with restricted 
alternatives, J. Roy. Statistical Soc., Ser. B 38, 157-165. 

Marcus R. (1976) - The powers of some tests of the equality of normal means against an ordered 
alternative, Biometrics 63, 177-183. 

Marcus R. (1982) - Some results on simultaneous confidence intervals for monotone contrasts in one-way 
ANOVA model, Commun. Statist., Ser. A 11, 615-622. 

Maurer W., Hothorn L. A. and Lehmacher W. (1995) - Multiple comparisons in drug clinical trials and 
preclinical assays: a priori ordered hypotheses, Biometrie in der chemisch-pharmazeutischen 
Industrie 6 (Ed. J. Vollmar), 3–18, Stuttgart: Gustav Fischer Verlag. 

McCullagh P. and Nelder J.A. (1989) - Generalized linear models, second edition, Chapman and Hall, 
London. 

Mehta C. and Patel N. (1999) - LogXact 4 for Windows, Cytel Software Corporation, Cambridge, MA. 

Mehta C. and Patel N. (1999) - StatXact 4 for Windows, Cytel Software Corporation, Cambridge, MA. 

Miller R. J. (1981) - Simultaneous statistical inference, second edition, Springer-Verlag, New York.  

Milliken G.A. and Johnson D.A. (1984) - Analysis of Messy Data Volume I: Designed Experiments, 
Lifetime Learning Publications, Belmont, CA. 

Morgan B.J.T. (1992) - Analysis of quantal response data, Chapman and Hall, London. 

Mukerjee H., Robertson T. and Wright F. T. (1987) - Comparison of several treatments with a control 
using multiple contrasts, Journal of the American Statistical Association, 82, 902 -910.  

Odeh R.E. (1972) - On the power of Jonckheere’s k-sample test against ordered alternatives, Biometrika 
59, 467-471. 



 ENV/JM/MONO(2006)18 

 139

Odeh R.E. (1971) - On Jonckheere’s k-Sample Test Against Ordered Alternatives, Technometrics 13, 912-
918. 

Olejnik S.F. and Algina J. (1984) - Parametric ANCOVA and the Rank Transform ANCOVA when the 
Data are Conditionally Non-Normal and Heteroscedastic, Journal of Educational Statistics 9, 129-
149. 

Oris J. T. and Bailer A. J. (1992) - Statistical analysis of the Ceriodaphnia toxicity test: sample size 
determination for reproductive effects, Environmental Toxicology and Chemistry 12, 85-90. 

Peritz E. (1970) - A note on multiple comparisons, unpublished manuscript, Hebrew University. 

Peritz E. (1965) - On inferring order relations in analysis of variance, Biometrics 21, 337-344. 

Poon A.H. (1980) - A Monte-Carlo study of the power of some k-sample tests for ordered binomial 
alternatives, J. Statist. Comp. Simul. 11. 

Potter R.W. and Sturm G.W. (1981) - The Power of Jonckheere’s Test, The American Statistician 35, 249-
250. 

Potthoff R. F. and Whittinghill M. (1966) - Testing for homogeneity I. The binomial and multinomial 
distributions, Biometrika 53, 167-182. 

Puri M.L. (1965) - Some distribution-free k-sample rank tests of homogeneity against ordered alternatives, 
Commun. Pure Applied Math. 18, 51-63. 

Puri M.K. and Sen P.K. (1985) - Nonparametric Methods in General Linear Models, Wiley, New York. 

Quade D. (1982) - Nonparametric Analysis of Covariance by Matching, Biometrics 38, 597-611. 

Rao J.N.K. and Scott A.J. (1992) - A simple method for the analysis of clustered binary data, Biometrics 
48, 577-585. 

Robertson T., Wright F.T. and Dykstra R.L. (1986) - Advances in order-restricted statistical inference, 
Springer-Verlag. 

Robertson, T., Wright F.T. and Dykstra R.L. (1988) - Order restricted statistical inference, Wiley. 

Rodda B.E., Tsianco M.C., Bolognese J.A. and Kersten M.K. (1988) - Clinical development, pp 273-328 
in Biopharmaceutical statistics for drug development, K. E. Peace, ed., Marcel Dekker, New York. 

Rom D. M., Costello R.J. and Connell L.T. (1994) - On closed test procedures for dose-response analysis, 
Statistics in Medicine, 13, 1583 -1596. 

Rossini A. (1995, 1997) - Nonparametric Statistical Methods: Supplemental Text, 
http://software.biostat.washington.edu/~rossini/courses/intro-nonpar/text/. 

Roth A.J. (1983) - Robust trend tests derived and simulated analogs of the Welch and Brown-Forsythe 
tests, J. American Statistical Association 78, 972-980. 

Ruberg S.J. (1989) - Contrasts for identifying the minimum effective dose, Journal of the American 
Statistical Association, 84, 816–822.  



ENV/JM/MONO(2006)18 

 140

Rothman K.J. (1978) - A show of confidence, New England Journal of Medicine 299, 1362-1363. 

Salsburg D.S. (1986) - Statistics for Toxicologists, Marcel Dekker, New York, 85-86. 

Sasabuchi S. and Kulatunga D.D.S. (1985) - Some approximations for the null distribution of the 2E  
statistic used in order-restricted inference, Biometrika 72. 

Schoenfeld D. (1986) - Confidence intervals for normal means under order restrictions, with applications 
to dose-response curves, toxicology experiments and low dose extrapolation, J. American Statistical 
Association 81, 186-195. 

Seaman S.L., Algina J. and Olejnik S.F. (1985) - Type I Error Probabilities and power of the Rank and 
Parametric ANCOVAL Procedures, Journal of Educational Statistics 10, 345-367. 

Searle S. R. (1987) - Linear Models for Unbalanced Data, Wiley, New York. 

Selwyn M. R. (1988) - Preclinical Safety Assessment, in K. E. Peace, ed., Biopharmaceutical Statistics for 
Drug Development, Marcel Dekker, New York. 

Shapiro S.S. and Wilk M.B (1965) - An analysis of variance test for normality (complete samples). 
Biometrika 52: 591-611. 

Shirley E. A. (1979) - The comparison of treatment to control group means in toxicology studies, Applied 
Statistics 28, 144-151. 

Shirley E. A.C. (1981) - A Distribution-free Method for Analysis of Covariance Based on Ranked Data, 
Appl. Statist. 30, 158-162. 

Shoemaker L.H. (1986) - A Nonparametric Method for Analysis of Variance, Comm. Statist.-Simula. 15, 
609-632. 

Simpson D.G. and Margolin B.H. (1986) - Recursive nonparametric testing for dose-response relationships 
subject to downturns at high doses, Biometrika 73. 

Stephenson W.R. and Jacobson D. (1988) - A Comparison of Nonparametric Analysis of Covariance 
Techniques, Communications in Statistics - Simulations 17: 451-461. 

Swallow William H. (1984) - Those overworked and oft-misused mean separation procedures-Duncan’s, 
LSD, etc., Plant Disease 68, 919-921. 

Tamhane A.C. (1979) - A comparison of procedures for multiple comparison of means with unequal 
variances, J. Amer. Statist. Assoc. 74, 471-480 

Tamhane A. and Dunnett C.W. (1996) - Multiple test procedures for dose finding, Biometrics, 52, 21–37.  

Tamhane A.C, Dunnett C.W., Green J.W. and Wetherington J.D. (2001) - Multiple Test Procedures for 
Identifying a Safe Dose, JASA 96, 835-843. 

Tarone R.E. and Gart J.J. (1980) - On the robustness of combined tests for trends in proportions, JASA 75, 
110-116. 



 ENV/JM/MONO(2006)18 

 141

Thall P.F. and Vail S.C. (1990) - Some Covariance Models for Longitudinal Count Data with 
Overdispersion, Biometrics 46, 657-671. 

Thomas P.C. (1983) - Nonparametric estimation and tests of fit for dose response relations, Biometrics 39, 
263-268. 

Toft C.A. and Shea P.J. (1983) - Detecting community-wide patterns: estimating power strengthens 
statistical inference, The American Naturalist 122, 618-625. 

Tukey J.W., Ciminera J.L. and Heyes J.F. (1985) - Testing the statistical certainty of a response to 
increasing doses of a drug, Biometrics 41, 295-301.  

Tukey J. W. (1977) - Exploratory Data Analysis, Addison-Wesley, Reading, MA. 

Tangen C.A. and Koch G.C. (1999) - Nonparametric Analysis of Covariance for Hypothesis Testing with 
Logrank and Wilcoxon Scores and Survival-Rate Estimation in a Randomized Clinical Trial, Journal 
of Biopharmaceutical Statistics 9, 307-338. 

Tangen C.A. and Koch G.C. (1999) - Complementary Nonparametric Analysis of Covariance for Logistic 
Regression in a Randomized Clinical Trial, Journal of Biopharmaceutical Statistics 9, 45-66. 

U.S.EPA (1995) - The Use of the Benchmark Dose Approach in Health Risk Assessment, Risk Assessment 
Forum, EPA/630/R-94/007, United States Environmental Protection Agency, Washington, DC. 
Principal authors: K. Crump, B. Allen, E. Faustman. 

Weller E.A. and Ryan L.M. (1998) - Testing for trend with count data, Biometrics 54, 762-773. 

Westfall P.H. (1999) - A course in multiple comparisons and multiple tests, Texas Tech University 

Westfall, P.H., Tobias R.D., Rom D., Wolfinger R.D. and Hochberg Y. (1999) - Multiple comparisons and 
multiple tests, SAS Institute, Cary, North Carolina. 

Westfall P.H. and Young S.S. (1993) - Resampling-Based Multiple Testing, Wiley, New York. 

Wilcox R.R. (1991) - Non-parametric analysis of covariance based on predicted medians, British Journal 
of Mathematical and Statistical Psychology 44, 221-230. 

Williams D.A. (1971) - A test for differences between treatment means when several dose levels are 
compared with a zero dose control, Biometrics 27, 103-117 

Williams D.A. (1972) - The comparison of several dose levels with a zero dose control, Biometrics 28, 
519-531. 

Williams D. A. (1975) - The Analysis of Binary Responses from Toxicological Experiments Involving 
Reproduction and Teratotlogy, Biometrics 31, 949-952. 

Williams D.A. (1977) - Some inference procedures for monotonically ordered normal means, Biometrika 
64, 9-14. 

Wolfe R.A., Roi L.D. and Margosches E.H. (1981) - Monotone dichotomous regression estimates, 
Biometrics 37, 157-167. 



ENV/JM/MONO(2006)18 

 142

Wright S.P. (1992) - Adjusted P-values for Simultaneous Inference, Biometrics 48, 1005-1013. 

References for chapter 6  

Akaike, H. (1974) - A New Look at the Statistical Model Identification. IEEE Transaction on Automatic 
Control, AC -19, 716 -723. 

Bailer A.J. and Oris J.T. (1997). – Estimating inhibiting concentrations for different response scales using 
generalized linear models. Environ. Toxicol. Chem. 16: 1554-1559. 

Box G.E.P. and Tidwell P.W. (1962) - Transformations of the independent variables,  Technometrics 4, 
531-550. 

Bozdogan, H. (1987) - Model Selection and Akaike's Information Criterion (AIC): The General Theory 
and Its Analytical Extensions. Psychometrika, 52, 345 -370. 

Brain P. and Cousens R. (1989). – An equation to describe dose responses where there is stimulation of 
growth at low doses. Weed res. 29: 93-96. 

Bruce R.D. and Versteeg D.J. (1992). – A statistical procedure for modeling continuous toxicity data. 
Environ. Toxicol. Chem. 11: 1485-1494.  

Cox D.R. and Oakes D. (1984). – Analysis of survival data. London: Chapman and Hall.  

Crump K.S., Hoel D.G., Langley C.H. and Peto, R. (1976) - Fundamental carcinogenic processes and their 
implications to low dose risk assessment. Cancer Research 36, 2973-2979.  

Crump K.S. (1984) - “A new method for determining allowable daily intakes”, Fundamental and Applied 
Toxicology, 4, 845-871. 

Crump K.S. (1995) - Calculation of Benchmark Doses from Continuous Data. Risk Anal 15, 79-89. 

Efron B. (1987). - Better bootstrap confidence intervals. J Am Stat Assoc 82: 171-200. 

Efron B. and Tibshirani R. (1993). – An introduction to the bootstrap. Chapman and Hall, London, UK.  

Fieller E.C. (1954). - Some problems in interval estimation. J R Stat Soc B 16, 175-185. 

Gaylor D.W., and Slikker W. (1990) - Risk assessment for neurotoxic effects. NeuroToxicology 11, 211-
218. 

Hoekstra J.A. (1993) - Statistics in Ecotoxicology.  PhD thesis, Free University Amsterdam. 

Miller R.G. (1981) – Survival Analysis. New York: WIley. 

Moerbeek M., Piersma A.H. and Slob W. (2004) – A comparison of three methods for calculating 
confidence intervals for the benchmark approach. Risk Anal. 24: 31 – 40.  

Scholze M., Boedeker W., Fuast  M., Backhaus T., Altenburge R. and Grimme L.H. (2001) - A general 
best-fit method for concentration-response curves and the estimation of low-effect concentrations. 
Environ. Toxicol. Chem. 20: 448-457 



 ENV/JM/MONO(2006)18 

 143

Teunis P.F.M. and Slob W. (1999) - The Statistical Analysis of Fractions Resulting From Microbial 
Counts. Quantitative Microbiology , 1: 63-88 

Slob W. and Pieters M.N. (1998) - A probabilistic approach for deriving acceptable human intake limits 
and human health risks from toxicological studies: general framework. Risk Analysis 18: 787-798. 

Slob W. (2003. PROAST) - a general software tool for dose-response modelling. RIVM, Bilthoven.  

Slob W. (2002) - Dose-response modelling of continuous endpoints. Toxicol. Sci., 66, 298-312 

Tableman M. and Kim J.S. (2004). – Survival analysis using S. London: Chapman and Hall.  

References for chapter 7 

Andersen H.R., Wollenberger L, Halling-Sorensen B. and Kusk K.O. (2001) - . Development of copepod 
nauplii to copepodites  - A parameter for chronic toxicity including endocrine disruption. Environ. 
Toxicol. Chem. 20: 2821 – 2829 

Andersen J.S., Bedaux J.J.M., Kooijman S.A.L.M. and Holst H. (2000) - The influence of design 
parameters on statistical inference in non-linear estimation; a simulation study. Journal of 
Agricultural, Biological and Environmental Statistics 5: 28 - 48  

Anonymous (1999) - Guidance document on application and interpretation of single-species tests in 
environmental toxicology. Report EPS 1/RM/34, Minister of Public Works and Government 
Services, ISBN 0-660-16907-X 

Bedaux J.J.M. and Kooijman S.A.L.M. (1994) - Statistical analysis of bioassays, based on hazard 
modelling. Environ. & Ecol. Stat. 1: 303 - 314  

Chen C.W. and Selleck R.E. (1969) - A kinetic model of fish toxicity threshold. Res. J. Water Pollut. 
Control Feder. 41: 294 – 308. 

Cox, D. R. and Oakes, D. (1984) - Analysis of survival data. Chapman & Hall, London. 

Diamond, S.A., Newman, M. C., Mulvey, M. and Guttman, S.I. (1991)- Allozyme genotype and time to 
death of mosquitofish, Gambusia holbrooki, during acute inorganic mercury exposure: a comparison 
of populations. Aqua. Toxicol. 21: 119-134. 

Dixon, P. M. and Newman, M. C. (1991) – Analyzing toxicity data using statistical models for time-to-
death. In: Newman, M. C. and McIntosh, A. W. (eds) An introduction, in metal ecotoxicology, 
concepts and applications. Lewis Publishers, Chelsea, MI. 

Elsasser W.M. (1998) - Reflections on a theory of organisms; Holism in biology. John Hopkins University 
Press, Baltimore. 

Gerritsen A. (1997) - The influence of body size, life stage, and sex on the toxicity of alkylphenols to 
Daphnia magna. PhD-thesis, University of Utrecht 

Garric J, Migeon B. and Vindimian E. (1990) - Lethal effects of draining on brown trout. A predictive 
model based on field and laboratory studies. Water Res. 24: 59-65 



ENV/JM/MONO(2006)18 

 144

Hallam T.G., Lassiter R.R. and Kooijman S.A.L.M. (1989) - Effects of toxicants on aquatic populations. 
In: Levin, S. A., Hallam, T. G. and Gross, L. F. (Eds), Mathematical Ecology. Springer, London: 
352 – 382 

Harding G.C.H. and Vass W.P. (1979) - Uptake from seawater and clearance of  p,p’-DDT by marine 
planktonic crustacea. J. Fish. Res. Board Can. 36: 247 – 254. 

Heugens, E. H. W., Hendriks, A. J., Dekker, T., Straalen, N. M. van and Admiraal, W. (2001) - A review 
of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors of use in 
risk assessment. Crit. Rev Toxicol. 31: 247-284 

Heugens, E. H. W., Jager, T., Creyghton, R., Kraak, M. H. S., Hendriks, A. J., Straalen, N. M. van and 
Admiraal. W. (2003) - Temperature-dependent effects of cadmium on Daphnia magna: 
accumulation versus sensitivity. Environ. Sci. Tehnol  37: 2145-2151. 

Hill H.V. (1910) - The possible effects of aggregation on the molecules of haemoglobin on its dissociation 
curves. J. Physiol. (London) 40: IV-VII 

Hoeven N. van der, Kooijman S.A.L.M. and Raat W.K. de (1990) - Salmonella test: relation between 
mutagenicity and number of revertant colonies. Mutation Res. 234: 289 – 302. 

Jager, T. (2003) - Worming your way into bioavailability; modelling the uptake of organic chemicals in 
earthworms. PhD thesis, Utrecht University. 

Jager, T., Baerselman, R., Dijkman, E., Groot, A. de, Hogendoorn, E., Jong, A. de, Kruitbosch, J. and 
Peijnenburg, W. (2003) - Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia 
Andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures. Environ. Tox Chem. 22: 
767-775. 

Janssen, M. P. M., Bruins, A., Vries, T. H. de and Straalen, N. M. van (1991) Comparison of Cadmium 
kinetics in 4 soil arthropod species. Arch. Environ. Cont. Toxicol 20: 305-313 

Kimerle R.A., Macek K.J., Sleight B.H. III and Burrows M.E. (1981) - . Bioconcentration of linear 
alkylbenzene sulfonate (LAS) in bluegill (Lepoma macrochirus). Water Res. 15: 251 – 256. 

Klepper O. and Bedaux J.J.M. (1997) - Nonlinear parameter estimation for toxicological threshold models. 
Ecol. Mod. 102: 315 - 324  

Klepper O. and Bedaux J.J.M. (1997a) - A robust method for nonlinear parameter estimation illustrated on 
a toxicological model Nonlin. Analysis 30: 1677 – 1686 

Klok C. and de Roos A. M. (1996) - Population level consequences of toxicological influences on 
individual growth and reproduction of Lumbricus rubellus (Lumbricidae, Oligochaeta). Ecotoxicol. 
Environm. Saf. 33: 118-127 

Könemann W.H. (1980) - Quantitative structure-activity relationships for kinetics and toxicity of aquatic 
pollutants and their mixtures for fish. PhD thesis, Utrecht University, the Netherlands. 

Kooijman S.A.L.M. (1981) - Parametric analyses of mortality rates in bioassays. Water Res. 15: 107 - 119 

Kooijman S.A.L.M. (1983) - Statistical aspects of the determination of mortality rates in bioassays. Water 
Res.: 17: 749 - 759 



 ENV/JM/MONO(2006)18 

 145

Kooijman S.A.L.M. (1985) - Toxicity at population level. In: Cairns, J. (ed) Multispecies toxicity, 
Pergamon Press, N.Y.: 143 - 164 

Kooijman S.A.L.M. (1988) - Strategies in ecotoxicological research. Environ.  Aspects Appl. Biol. 17 (1): 
11 - 17 

Kooijman S.A.L.M. (1997) - Process-oriented descriptions of toxic effects. In: Schüürmann, G. and 
Markert, B. (Eds) Ecotoxicology. Spektrum Akademischer Verlag, 483 - 519 

Kooijman S.A.L.M. (2000) - Dynamic Energy and Mass Budgets in Biological Systems. Cambridge 
University Press 

Kooijman S.A.L.M. (2001) - Quantitative aspects of metabolic organisation; a discussion of concepts. Phil. 
Trans. R. Soc. B, 356: 331 – 349 

Kooijman S.A.L.M. and Bedaux J.J.M. (1996) - Some statistical properties of estimates of no-effects 
levels. Water Res. 30: 1724 - 1728  

Kooijman S.A.L.M. and Bedaux J.J.M. (1996) - Analysis of toxicity tests on fish growth. Water Res. 30: 
1633 - 1644  

Kooijman S.A.L.M. and Bedaux J.J.M. (1996a) - Some statistical properties of estimates of no-effects 
concentrations. Water Res. 30: 1724 - 1728 

Kooijman S.A.L.M. and Bedaux J.J.M. (1996b) - Analysis of toxicity tests in Daphnia survival and 
reproduction. Water Res. 30: 1711 - 1723 

Kooijman S.A.L.M. and Bedaux J.J.M. (1996c) - The analysis of aquatic toxicity data. VU University 
Press, Amsterdam 

Kooijman S.A.L.M., Bedaux J.J.M. and Slob W. (1996) - No-Effect Concentration as a basis for ecological 
risk assessment. Risk Analysis 16: 445 - 447  

Kooijman S.A.L.M., Bedaux J.J.M., Gerritsen A.A.M., Oldersma H. and Hanstveit A.O. (1998) - Dynamic 
measures for ecotoxicity. Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity 
Data OECD Environmental Health and Safety Publications 10: 64-90. Also in: Newman, M.C. and 
Strojan, C., Risk Assessment: Logic and Measurement. Ann Arbor Press, 187 - 224 

Kooijman S.A.L.M., Hanstveit A.O. and Nyholm N. (1996a) - No-effect concentrations in algal growth 
inhibition tests. Water Res. 30: 1625 - 1632 

Kooijman S.A.L.M., Hanstveit A.O. and Oldersma H. (1983) - Parametric analyses of population growth 
in bioassays. Water Res. 17: 727 - 738 

Kooijman S.A.L.M. and Haren R.J.F. van (1990) - Animal energy budgets affect the kinetics of 
xenobiotics. Chemosphere 21: 681 - 693 

Lau C., Andersen M.E., Crawford-Brown D.J., Kavlock R.J., Kimmel C.A., Knudsen T.B., Muneoka K., 
Rogers J. M., Setzer R. W., Smith G. and Tyl R. (2000) -. Evaluation of biologically based dose-
response modelling for developmental toxicology: A workshop report. Regul. Toxicol. Pharmacol. 
31: 190 - 199  



ENV/JM/MONO(2006)18 

 146

Leeuwen I.M.M. and Zonneveld C. (2001) - From exposure to effect: a comparison of modelling 
approaches to chemical carcinogenesis. Mutation Res. 489: 17 – 45 

Legierse, K. C. H. M., Sijm, D. T. H. M. (1998) Bioconcentration kinetics of chlorobenzenes and the 
organophosphorus pesticide chlorthion in the pond snail Lymnaea stagnalis – a comparison with the 
guppy Poecilia reticulata. Aquat. Toxicol. 41: 3001-323 

Liebig J. von (1840) - Chemistry in its application to agriculture and physiology. Taylor and Walton, 
London. 

Miller, R. G. (1981) - Survival Analysis. Wiley, New York. 

Morgan B.J.T. (1992) - Analysis of quantal response data. Monographs on Statistics and Applied 
Probability 46. Chapman & Hall, London. 

McCullagh P. and Nelder J.A. (1989) - Generalised linear models. Monographs on Statistics and Applied 
Probability 37. Chapman & Hall, London. 

McLeese D.W., Zitko V. and Sergeant D.B. (1979) - Uptake and excretion of fenitrothion by clams and 
mussels. Bull. Environ. Contam. Toxicol. 22: 800 - 806 

Muller E.B. and Nisbet R.M. (1997) - Modelling the Effect of Toxicants on the Parameters of Dynamic 
Energy Budget Models. In: Dwyer, F. J., Doane, T. R. and Hinman, M. L.  (Eds.): Environmental 
Toxicology and Risk Assessment: Modelling and Risk Assessment (Sixth Volume), p 71 - 81, 
American Society for Testing and Materials 

Newman M.C. (1995) - Quantitative methods in aquatic ecotoxicology. Lewis Publ, Boca Raton. 

Newman, M. C., Diamond, S. A., Mulvey, M. and Dixon, P. (1989) – Allozyme genotype and time to 
death of mosquitofish, Gambusia affinis (Baird and Girard) during acute toxicant exposure: A 
comparison of arsenate and inorganic mercury. Aqua. Toxicol. 21: 141-156. 

Nisbet R.M., Muller E.B., Lika K. and Kooijman S.A.L.M. (2000) - From molecules to ecosystems 
through Dynamic Energy Budget models. J. Anim. Ecol. 69: 913 - 926 

Nyholm N. (1985) - Response variable in algal growth inhibition tests – Biomass or growth rate? Water 
Res. 19: 273 – 279. 

Péry A.R.R., Bedaux J.J.M., Zonneveld C. and Kooijman S.A.L.M. (2001) . Analysis of bioassays with 
time-varying concentrations. Water Res., 35: 3825 - 3832 

Péry A.R.R., Flammarion P., Vollat B., Bedaux J.J.M., Kooijman S.A.L.M. and Garric J. (2002) - Using a 
biology-based model (DEBtox) to analyse bioassays in ecotoxicology: Opportunities & 
recommendations. Environ. Toxicol. & Chem.,  21 (2): 459–465 

Purchase I.F.H. and Auton T.R. (1995) - Thresholds in chemical carcinogenesis. Regul. Toxicol. 
Pharmacol. 22: 199 - 205 

Raat K. de, Kooijman S.A.L.M. and Gielen J.W.J. (1987) - Concentrations of polycyclic hydrocarbons in 
airborne particles in the Netherlands and their correlation with mutagenicity. Sci. Total Environ. 66: 
95 - 114 



 ENV/JM/MONO(2006)18 

 147

Raat K. de, Meyere F.A. de and Kooijman S.A.L.M. (1985) - Mutagenicity of ambient aerosol collected in 
an urban and industrial area of the Netherlands. Sci. Total Environ. 44: 17 – 33 

Reindert, K. H., Giddings, J. M. and Judd, L. (2002) - Effects analysis of time-varying or repeated 
exposures in aquatic ecological risk assessment of agrochemicals. Environ. Tox. Chem., 21: 1977-
1992 

Segel I.W. (1976) - Biochemical calculations; how to solve mathematical problems in general 
biochemistry. J. Wiley & Sons, New York.  

Setzer R.W., Lau C., Mole M.L., Copeland M.F., Rogers J.M. and Kavlock R.J. (2001) - Toward a 
biologically based dose-response model for developmental toxicity of 5-fluorouracil in the rat: A 
mathematical construct. Toxicol. Sci. 59: 49 – 58 

Sibly, R. M. and Calow, P. (1989) - A life-cycle theory of response to stress. Biol. J. Linn. Soc., 37: 101-
116 

Spacie A. and Hamelink J.L. (1979) - Dynamics of trifluralin accumulation in river fish. Environ. Sci. 
Technol. 13: 817 – 822 

Sprague J.B. (1995) - Factors that modify toxicity. In: Rand, G. M. (ed.) Fundamentals of aquatic 
toxicology. Taylor & Francis, Washington, p 1012 – 1051 

Stumm W. and Morgan J.J. (1996) - Aquatic chemistry. J. Wiley & Sons, New York. 

Vindimian E., Rabout C. and Fillion G. (1983) - A method of co-operative and non co-operative binding 
studies using non linear regression analysis on a microcomputer. J. Appl. Biochem. 5: 261-268 

Widianarko B. and Straalen N. van (1996) - Toxicokinetics-based survival analysis in bioassays using 
nonpersistent chemicals. Environ. Toxicol. Chem. 15: 402 – 406 

Wong P.T.S., Chau Y.K., Kramar O. and Bengert G.A. (1981) - Accumulation and depuration of 
tetramythyllead by rainbow trout. Water Res. 15: 621 – 625. 


