Table of Contents

  • Climate change is emerging as one of the greatest long-term challenges facing society. Its impacts have already been felt worldwide, and much worse is looming. Compounding the problem is the uncertainty that surrounds the measurement of climate change and even the phenomenon itself, notably with respect to variations observed in the oceans, seasonal precipitations and extreme weather patterns. This chapter presents some of the main drivers of climate change, reviews trends in extreme weather events, describes possible wild cards for the future, and identifies key challenges in understanding, measuring and forecasting climate change.

  • Water management has become a key issue for the 21st century, as growing pressures are hindering the delivery of already scarce fresh water to millions of people. Expanding populations, economic growth, pollution and seasonal climatic conditions are all factors behind diminishing water resources. In addition however, a number of effects linked to climate change, such as lengthy droughts and extreme weather events, are worsening the situation. The link between water management and climate change makes monitoring and forecasting the global water cycle increasingly important. This chapter points to some of the key challenges related to the management and delivery of water-related services. The first section focuses on the growing pressures surrounding access to fresh water; the second highlights some of the socio-economic impacts of “water troubles” (such as the lack of water access and costs of water-related disasters); and the last explores some of the interactions between fresh water and climate change.

  • This chapter summarises the current contribution of space technologies to climate change research and monitoring, for fresh water, marine resources and maritime transport. Space systems and their ground infrastructure are tools that need to be used in combination with other assets. At the same time however, these systems have their own unique capabilities and can be put to uses ranging from snowmelt runoff measurement to improving safety at sea.

  • The demands for climate information, resource sustainability, transport efficiency, etc. are growing quickly. Can the space sector deliver the research, technology and management to keep pace with so much rapid change, now and in the future? The many successes of space assets may obscure some of the technical limitations as well as governance related restrictions, and so run the risk of overselling what satellites can and will do. This chapter shows that more applications are in the pipeline or are already coming on stream; if gaps are to be remedied, substantial investments in earth observation and meteorological satellite systems will be required over the next ten years. In addition, replacement and network expansion investments will be required thereafter to address the mounting challenges to 2025 and beyond.

  • Investment in space systems must be sustained in order to meet the challenges of climate change, natural resources management and activities that affect the environment, such as maritime transport. However, it cannot be taken for granted that the funding will be forthcoming, not least because cost-benefit evaluations of future investments are far from straightforward. This chapter suggests how improvements might be made to the policy makers’ tool box for assessing and deciding on space-related investments. The first section discusses some key notions useful for defining space programmes (e.g. R&D, infrastructure, notion of costs); a second reviews methodologies used to evaluate benefits of space programmes in more detail, using specific case studies as illustrations; a third section develops an innovative infrastructure approach; and a final section provides prospective views on the use of risk management approaches for decision making in the field of space investments.