
OECD Education Working Papers No. 136

The Neuroscience
of Mathematical Cognition

and Learning

Chung Yen Looi,
Jacqueline Thompson,

Beatrix Krause,
Roi Cohen Kadosh

https://dx.doi.org/10.1787/5jlwmn3ntbr7-en

https://dx.doi.org/10.1787/5jlwmn3ntbr7-en


 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unclassified EDU/WKP(2016)10 
   
Organisation de Coopération et de Développement Économiques   
Organisation for Economic Co-operation and Development  17-Jun-2016 

___________________________________________________________________________________________

_____________ English - Or. English 
DIRECTORATE FOR EDUCATION AND SKILLS 

 
 

 

 

 

THE NEUROSCIENCE OF MATHEMATICAL COGNITION AND LEARNING 

 

OECD Education Working Paper No. 136 

 

By Chung Yen Looi, Jacqueline Thompson, Beatrix Krause, and Roi Cohen Kadosh, Department of 

Experimental Psychology, University of Oxford 

 

 

 

This working paper has been authorised by Andreas Schleicher, Director of the Directorate for Education and 

Skills, OECD. 

 

 

Roi Cohen Kadosh, Department of Experimental Psychology, University of Oxford - 

roi.cohenkadosh@psy.ox.ac.uk 

 

 JT03398400  

Complete document available on OLIS in its original format  

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of 

international frontiers and boundaries and to the name of any territory, city or area. 

 

E
D

U
/W

K
P

(2
0
1
6
)1

0
 

U
n

cla
ssified

 

E
n

g
lish

 - O
r. E

n
g

lish
 

 

 

 



EDU/WKP(2016)10 

 2 

OECD EDUCATION WORKING PAPERS SERIES 

OECD Working Papers should not be reported as representing the official views of the OECD or of its 

member countries. The opinions expressed and arguments employed herein are those of the author(s). 

 

Working Papers describe preliminary results or research in progress by the author(s) and are published to 

stimulate discussion on a broad range of issues on which the OECD works. Comments on Working Papers 

are welcome, and may be sent to the Directorate for Education and Skills, OECD, 2 rue André-Pascal, 

75775 Paris Cedex 16, France. 

 

This document and any map included herein are without prejudice to the status of or sovereignty over any 

territory, to the delimitation of international frontiers and boundaries and to the name of any territory, 

city or area. 

 

You can copy, download or print OECD content for your own use, and you can include excerpts from 

OECD publications, databases and multimedia products in your own documents, presentations, blogs, 

websites and teaching materials, provided that suitable acknowledgement of OECD as source and 

copyright owner is given. All requests for public or commercial use and translation rights should be 

submitted to rights@oecd.org. 

 

Comment on the series is welcome, and should be sent to edu.contact@oecd.org. 

 

This working paper has been authorised by Andreas Schleicher, Director of the Directorate for Education 

and Skills, OECD. 

 

------------------------------------------------------------------------- 

www.oecd.org/edu/workingpapers  

-------------------------------------------------------------------------- 

 
Copyright © OECD 2016. 

 

  



 EDU/WKP(2016)10 

 3 

ABSTRACT 

The synergistic potential of cognitive neuroscience and education for efficient learning has attracted 

considerable interest from the general public, teachers, parents, academics and policymakers alike. This 

review is aimed at providing 1) an accessible and general overview of the research progress made in 

cognitive neuroscience research in understanding mathematical learning and cognition, and 

2) understanding whether there is sufficient evidence to suggest that neuroscience can inform mathematics 

education at this point. We also highlight outstanding questions with implications for education that remain 

to be explored in cognitive neuroscience. The field of cognitive neuroscience is growing rapidly. The 

findings that we are describing in this review should be evaluated critically to guide research communities, 

governments and funding bodies to optimise resources and address questions that will provide practical 

directions for short- and long-term impact on the education of future generations.  

RÉSUMÉ 

Le potentiel synergétique des neurosciences cognitives et de l’éducation pour l’efficacité de 

l’apprentissage suscite un vif intérêt de la part du grand public, des enseignants, des parents, des 

universitaires et des décideurs. Cet examen entend : 1) offrir un aperçu général accessible des progrès 

réalisés par la recherche en neurosciences cognitives dans la compréhension des processus d’apprentissage 

et de cognition en mathématiques ; et 2) déterminer s’il existe des données suffisantes pour étayer la 

possibilité, à ce stade, d’une contribution des neurosciences à l’enseignement des mathématiques. Nous 

mettons également en lumière certaines questions en suspens ayant des implications en termes d’éducation 

et restant à explorer dans les neurosciences cognitives, domaine connaissant un essor rapide. Les résultats 

que nous présentons dans cet examen doivent faire l’objet d’une évaluation critique afin de guider les 

communautés de chercheurs, les pouvoirs publics et les organismes de financement dans leurs efforts pour 

optimiser les ressources et répondre aux questions qui orienteront l’incidence à court et long termes sur 

l’éducation des générations futures. 
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THE NEUROSCIENCE OF MATHEMATICAL COGNITION AND LEARNING 

Introduction 

The aim of this review is to provide an overview of the progress in the field of cognitive neuroscience 

of mathematical cognition and learning. However, before undertaking with this ambitious aim, we would 

like to start by defining the key concepts in this review. 

In the field of cognitive neuroscience of mathematical learning, the terms “mathematics”, “arithmetic” 

and “numeracy” are often used interchangeably. Mathematics (or maths) refers to the abstract science of 

number, quantity and space, arithmetic is the branch of mathematics that deals with the logical properties 

and manipulation of numbers, whereas numeracy is the ability to understand and work with numbers in 

everyday life. Arithmetic belongs to the intersection between numeracy and mathematics in the classroom 

(see Figure 1). Mathematics is important not only for academic achievement, but also predicts many 

aspects of an individual’s other life achievements (Parsons and Bynner, 2005). At a societal level, the 

standard of numeracy greatly affects science and technological progress, which is crucial for national 

economic outcomes (Gross, Hudson, and Price, 2009). 

Figure 1. The relationship between mathematics in the classroom, arithmetic and numeracy 

 

Source: Adapted from www.nationalnumeracy.org.uk. 
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In referring to the term education, we include formal education, referring to organised, intentional, 

structured modes of education with learning objectives, such as degree programmes at universities, 

informal education, cited as education that is not organised, with no set objectives and is not intentional, 

for example self-learning at home, and non-formal education, which encompasses a wide variety of 

approaches, is rather organised, and can have learning objectives, such as workshops, seminars, and short 

courses (OECD, 1996). 

Cognitive neuroscience is the scientific study of the biological substrates underlying cognition, 

specifically the neural basis of mental processes. It is an interdisciplinary field involving disciplines such 

as molecular neuroscience, cognitive and experimental psychology, physiology, computer science, and 

psychiatry, to name a few. It employs a wide range of methods from basic neuropsychological measures, to 

psychophysics, neuroimaging, electrophysiology, and more recently, behavioural and cognitive genomics 

to explore the relationship between neural processes, cognition and human behaviour. As the field of 

cognitive neuroscience expands rapidly, it has become evident that knowledge of the brain and its 

functions could be applied to improve learning. The outlook for combining the expertise, theories and 

methods of cognitive neuroscience to enhance learning and education is promising. With global policies, 

together these could transform education and human learning as a whole. 

Before we begin reviewing the contribution of cognitive neuroscience to mathematical cognition and 

learning, we would like to briefly highlight a theory of learning at the neuronal network level.  

 

Hebbian Learning 

In 1949 a learning model was proposed by Donald Hebb to account for “associative learning” (1949) 

at the brain level through neuroplasticity, which is a term referring to changes in neural pathways and 

synapses due to changes in environment and behaviour. Before we attempt to understand this theory, we 

would first like to describe the basic workings of the brain. A neuron is a single nerve cell within the 

central nervous system (CNS), which is connected to other neurons by dendrites (incoming connections) 

and axons (outgoing, fast connections). A connection between two neurons is called a synapse, and 

communication between neurons occurs via the transfer of neurotransmitters from the axon of one neuron 

to the dendrite of another.  

Neuronal activity can be expressed in both electrical and chemical processes. The neuron’s membrane 

is semi-permeable, which means that the neuron allows for free access for some molecules but not others. 

Information travels through neurons via the exchange of such molecules with different electrical charges 

(i.e. some are positively charged while some are negatively charged) between the inside and outside of the 

neuron in one direction. If sufficient activity, i.e. inside-outside exchange along the dendrites, reaches the 

cell body, an action potential is generated at the root of the axon, which sends fast-traveling electrical 

signals to the axon terminal end.  

Activity reaching the axon terminal stimulates the release of neurotransmitters into the gap between 

the two neurons. If the subsequent neuron has received sufficient amounts of specific neurotransmitter(s) 

on its relevant receptors, it forwards the activity to its own cell body. This way, information cascades 

through a network of neurons that work together to achieve a certain task, for instance, numerical 

processing (Nieder and Miller, 2004). Once the information transfer has been completed, the neuron has a 

brief refractory period, during which time it cannot be active. The resting equilibrium between the 

electrical charges on the outside and the inside of the neuron can only be changed by new incoming 

signals.  
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Figure 2. Learning at the neuronal level 

 

Note: When an action potential in the pre-synaptic neuron arrives at the synapse, it triggers the release of neurotransmitters. This 
release will influence the post-synaptic neuron and might cause it to fire too. If the post-synaptic neuron fires when the pre-synaptic 
neuron releases neurotransmitters, then the synaptic efficiency will be increased. The synaptic efficiency refers to the probability of 
being stimulated into further firing or, in other words, the strength of connection between neurons.   

Hebb’s model postulates that learning is mediated by the modification of the efficiency between 

synapses in the brain. A synapse grows in efficiency when the postsynaptic neuron reliably fires following 

the repeated and persistent release of neurotransmitters by the presynaptic neuron, or in other words 

“neurons that fire together, wire together.” The more often the postsynaptic neuron is activated by 

presynaptic release, the stronger the synaptic connection becomes. Such increased synaptic strength is 

termed synaptic efficiency. In psychology and in education, the use of strategies such as repetition of 

learning material, reward or punishment to reinforce behaviour (termed conditioning), and 

environmental/material priming (e.g. Anderson, 2000) are in line with this idea to reinforce associative 

learning. This model is highly popular in cognitive neuroscience, and is supported by a large body of 

evidence from both animal (e.g. Black, 1990) and human studies (e.g. Zatorre, Fields and Johansen-

Berg, 2012) showing how experiences can shape the brain at the neural level. 

Having reviewed the progression of theoretical frameworks of learning in general, we can now 

evaluate the contribution of neuroscience specifically in the context of mathematical cognition and 

learning. For a more holistic view of mathematics learning, literature concerning this subject ranging from 

psychology to genetics will be reviewed.  

The Meaning of Numbers 

Before we delve into the details of numerical cognition, we would like to briefly explain the meaning 

of numbers. A licence plate number is a number or numerical label, but it is does not represent a quantity. 

In other words, the licence plate number “7743” is not somehow smaller or “less” than the licence plate 

number “9823”. The meaning of numbers has been interchangeably referred to as magnitude and 
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numerosity (Wiese, 2003), but there is a subtle difference between the two: “numerosity” refers to exact 

quantities that are potentially countable, whereas “magnitude” denotes continuous dimensions that are not 

necessarily countable (for a dissociation between these abilities at the neural level see Castelli, Glaser, and 

Butterworth, 2006). With magnitude, comparing between two numbers can be similar to comparing two 

lengths or two weights and results in an approximate quantification.  

The meaning of numbers is abstract. It is the “Threeness” that associates three animals, three oranges 

and three events together. It is also generally conceived that number meaning is independent of the format 

that represents it (e.g. 3, III, “three”, “trois” or three fingers). However, it has been recently proposed that 

the representation of numerosities in the brain is primarily non-abstract, and this has been supported by 

neuroimaging evidence that showed differences in brain activation depending on the format of stimuli, 

e.g. symbolic digits vs. non-symbolic dot arrays (R. Cohen Kadosh and Walsh, 2009). 

Integers or whole numbers are properties of a collection of items. Two collections can be combined to 

produce a single collection represented by a different number. Similarly, each collection or each integer 

consists of smaller collections added together. Counting is the action of putting each item in the collection 

in one-to-one correspondences with a number or some other internal/external tally (“one, two, three, four, 

five- there are five apples!”) (Gelman and C.R., 1978). Most fractions can be explained in terms of 

collections. In other words, 4/9 refers to 4 parts of 9. Other types of number (e.g., zero, infinity, negative 

numbers, complex numbers) are harder to grasp and are learned later in formal educational if at all. 

Although basic concepts of numbers and numerosity seem to be self-evident to the typically developing 

individual, some special populations find them difficult to grasp and relate to (see section on 

Developmental Dyscalculia). 

The Triple-Code Model 

One of the most popular cognitive models of numerical processing is the triple-code model proposed 

by Dehaene and colleagues (Dehaene and Cohen, 1995; Dehaene et al., 2003; for other models, see 

Campbell and Epp, 2004; McCloskey, 1992). According to this theoretical model, three distinct codes of 

representations might be recruited in mathematical cognition depending on the task to be solved.  

The first system, the quantity system, commonly referred to as the “number sense” in cognitive 

neuroscience, employs a non-verbal semantic representation of size and distance associations between 

numbers on a number line. It facilitates in magnitude comparisons (e.g. more vs. less), and approximation 

(i.e. estimation) tasks, and recruits both the right and left sides of the intraparietal sulcus, a brain structure 

that has previously been associated with the processing of numerical information amongst other cognitive 

functions (see sections on Representation of Numbers in the Brain and Parietal Cortex).   

The second system, the verbal system, represents numbers in a verbal format (i.e. lexically, 

phonologically, and syntactically). This system is engaged when familiarised, arithmetic facts learned 

through rote learning such as addition and multiplication tables are retrieved. This system is thought to rely 

on the left angular gyrus (see sections on Temporo-Parietal Junction, Angular Gyrus, and Left Superior 

Temporal Gyri). 

The visual system has been proposed to be involved in the representation and spatial manipulation of 

numbers in symbolic format (e.g. Arabic numerals). It is recruited in tasks that demand orientation of 

spatial attention, such as in number comparison, approximation, subtraction and counting. The posterior 

superior parietal lobe is thought to support this system (see section on Parietal Cortex). 

This model has been most frequently referred to in order to test hypotheses on arithmetic learning and 

to speculate about neural networks that support numerical cognition. It has also inspired the design of 



 EDU/WKP(2016)10 

 9 

intervention programmes to remediate mathematical learning difficulties and to promote numerical 

development (see section on Intervention for Academic Improvement). 

We will now begin the review with a step-by-step introduction to the literature on numbers, numerical 

cognition and learning, interventions, and the synergy of research and practice for better learning.  

Universality of Numbers  

Numbers are the building blocks of mathematics, and they are omnipresent; they appear on the clock, 

price tags, calendar, and bank notes, to name a few. In order to become competent in mathematics, one is 

required to learn and associate initially arbitrary notations and their meaning (e.g. 2, 7, +, -, x and >), and 

but also to understand the use of specific arithmetic principles, such as the different operations. However, 

even before the acquisition of such knowledge, humans as well as other species, appear to possess a 

fundamental set of numerical abilities that allow them to estimate quantity and execute basic calculations. 

At this more fundamental level, numeracy can be said to be universal or shared across species, and to some 

degree in humans, can exist before formal education takes place.  

For instance, human babies of just one day old can distinguish between small quantities of objects 

(Antell, 1983) and they can judge whether quantities are equal even when they are presented to two 

different senses (e.g. sight and hearing). For example, in one experiment, the majority of infants preferred 

looking at a 2-object display followed by sequence of 2 drum beats compared to a 3-object display 

accompanied by 2 drumbeats (Starkey, Spelke, and Gelman, 1983; see section on Infants). This illustrates 

that infants at this age are able to discriminate between the different quantities of 2 and 3, and prefer to 

look at quantities that are matched across different perceptual modalities (i.e. different senses). Human 

infants can discriminate between, as well as represent and remember, small numbers of items. This 

suggests that some number abilities, such as non-verbal counting and precursors of verbal counting might 

have been present during infancy (Simon, 1995). For example, infants as young as a few hours are 

sensitive to small numerosity arrays (McCrink and Wynn, 2007). In one study, infants looked over 

stimulus cards with smaller numbers for longer than those with larger numbers, suggesting that they can 

recognise differences in quantities (Geary, Frensch, and Wiley, 2000; Wynn, 1992). By the age of six 

months, infants have shown the capacity to discriminate up to three or four physical objects (Lemaire and 

Siegler, 1995) and determine numerical similarity between sets of numbers across perceptual modalities 

(Izard, Dehaene-Lambertz, and Dehaene, 2008; Starkey et al., 1983). 

Further research has shown that even illiterate cultures have developed counting and trading systems.  

For example, people from indigenous Amazonian groups who lack cultural transmission of number 

symbols, and thus cannot count (e.g. cannot represent exact quantities exceeding two or three items), can 

still quantify objects (e.g. estimate quantities or breaking larger number of items into smaller, manageable 

chunks) (Gordon, 2004), carry out arithmetic operations in an approximate manner (Pica et al., 2004), and 

possess intuition of Euclidean geometry (Izard et al., 2011). Archaeological evidence suggests that 

European Early Modern Humans (EEMH) or “Cro-Magnon” around 30 000 years ago made collections of 

marks on bones to keep track of phases of the moon (Marshack, 1991).  

Research on animals provides another line of support for the universality of numbers. It has been 

shown that primates such as monkeys have the ability to perform simple arithmetic operations such as 

“1+1” and “2-1” (Hauser, MacNeilage, and Ware, 1996; see also Wynn, 1992 for similar evidence in 

babies, and Berger, Tzur, and Posner, 2006 for the neural correlates), and that they could generalise skills 

gained from training on a specific set of quantities and apply them to a new situation that also involves 

quantities with little training (Brannon and Terrace, 1998). Such crude ability to calculate provides animals 

such as lions the ability to decide between “fight or flight” based on the size of their group in comparison 

to their rivals’ (McComb, Packer and Pusey, 1994).  
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These examples provide an illustration of the universality of numbers that varies from basic 

comparison abilities to rudimentary arithmetic, and even geometry. In the next section, we will discuss the 

issue of number semantics. 

Extraction of Numerosity 

To represent numerosity or the non-symbolic quantity of things, the physical properties of the 

elements in a set need to be ignored (e.g. three apples and three watermelons must have the same 

numerosity even though they differ in size). Similarly, in order to judge the numerical amount of a 

collection of objects or events, a similar process that will ignore non-numerical physical magnitude 

properties such as size, density, and luminance, is required (Durgin, 2008; Gebuis and Reynvoet, 2012).  

Researchers have proposed a computer simulation model of how the brain may extract non-symbolic 

quantity for a visual set of objects (Dehaene and Changeux, 1993). This model suggests that, first, the 

locations of each separate item are coded by separate neurons. Then, these neurons relay their information 

to a system that is tuned into a specific numerosity (e.g. the number 7).  

Both animals and human studies have supported the model above. Single-cell recordings in the lateral 

intraparietal area of the macaque monkey (Roitman, Brannon and Platt, 2007) have supported the evidence 

for a numerosity summation coding system (see also Nieder and Miller, 2004). A number-selective neuron 

system has also been identified within and near the intraparietal cortex of the macaque monkey (Nieder, 

Freedman and Miller, 2002; Nieder and Miller, 2004; Sawamura, Shima and Tanji, 2002). In humans, two 

similar types of cerebral pathways have been described for symbolic and non-symbolic numerosities (see 

Santens et al., 2010).   

Automaticity of Number Processing 

A large body of evidence suggests that the meaning of a number (i.e. 7 is a collection larger than 6 

and smaller than 8) is automatically retrieved when one perceives it. Through number Stroop tasks (see 

Table 2), it has been shown that there is interference, for example exhibited through longer reaction times, 

when the numerical size of digits or their meaning is incompatible with the physical size of the font 

(Girelli, Lucangeli, and Butterworth, 2000; Henik and Tzelgov, 1982; Rubinsten et al., 2002). Notably, the 

emergence of numerical automaticity seems to depend on formal education for symbolic numbers 

(i.e. numerals or words) (Girelli et al., 2000; Henik and Tzelgov, 1982; Rubinsten et al., 2002), and seems 

to be less-dependent on formal education for non-symbolic numbers or numerosities, for example, 

represented as clusters of dots (Gebuis et al., 2009). 

People who suffer from developmental dyscalculia, a learning disorder characterised by specific and 

persistent poor achievement in mathematics learning (R. Cohen Kadosh and Walsh, 2007), show 

impairment in automatic processing of symbolic numbers (Rousselle and Noel, 2007; Rubinsten and 

Henik, 2005). The intact ability to automatically process symbolic numbers has been examined using 

functional magnetic resonance imaging (fMRI)-guided transcranial magnetic stimulation (TMS). R. Cohen 

Kadosh et al. (2007) showed that the right intraparietal sulcus (IPS) is central for automatic magnitude 

processing. Only disruption of the right, but not the left, IPS activity induced dyscalculia-like performance 

in automatic accessing of numerical magnitude. That is, when participants without dyscalculia received 

stimulation to their right IPS, their performance became similar to those with developmental dyscalculia. 

The evidence from automaticity also points to the dissociation of automatic processing as a function of 

format; while symbolic processing is impaired in individuals with dyscalculia, non-symbolic automatic 

processing seems to be intact (Rousselle and Noel, 2007).  
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We will now refer to experimental data that support the view that numerical processing is subserved 

by a non-unitary system.    

Basic Numerical Skills 

Humans are thought to have basic numerical abilities that are sustained by two different systems: an 

approximate number system shared with non-human animals, which is also present in infants, that enables 

them to discriminate and approximately represent visual and auditory numerosities without verbal 

counting, and an exact representation system that allows the precise representation of small numerosities 

(Feigenson, Dehaene and Spelke, 2004). There is a general view that higher mathematical abilities, which 

are usually acquired years later compared to basic number processing, depend on the proficiency in early 

numerical activities such as counting and numerical estimation (e.g. Libertus, Feigenson and Halberda, 

2013). Therefore, exploring the relationship between basic skills and higher mathematical abilities could 

inform us of the degree to which higher mathematical abilities are linked to basic numerical skills. The 

following sections are aimed at providing a general overview of such basic skills explored in the context of 

cognitive neuroscience.   

Non-Symbolic Quantities  

Approximate Number System (ANS) 

According to Piazza and colleagues (Piazza et al., 2004), numerosities are represented in an 

increasingly imprecise manner, with larger numerosities represented less precisely than smaller ones at 

both the behavioural and neuronal level. It is an intuitive process, as it is fast, automatic, and inaccessible 

to introspection (Dehaene, 2009). Two behavioural effects that have been replicated consistently in 

different languages and numerical notations (Buckley, 1974; Dehaene, 1996) reflect this representational 

system:  

 

a. The distance effect: Performance, as measured by reaction times and error rates, in numerical 

comparison tasks (e.g. which of two Arabic numerals or sets of dots is larger in magnitude?) 

increase as the numerical distance between the two numbers decreases. That is, e.g. comparing 

“2 vs. 8” yields faster and more accurate responses than “2 vs. 3”. Note that the distance effect 

could be reversed when symbolic numbers are properly ordered in an increasing or decreasing 

count-list (Lyons and Beilock, 2013). This finding suggests that ordinality could be an 

important property for understanding the representation of numbers symbolically. 

 

b. The size effect: In the same comparison task, reaction times and error rates increase as the 

absolute size or numerical magnitude of the two numbers increases, while the numerical 

distance between the two numbers is held constant. For instance, individuals are faster when 

comparing “2 vs. 3” than “7 vs. 8” (Moyer and Landauer, 1967; Restle, 1970). 

 

These characteristics of the ANS have been observed across the human lifespan (e.g. Halberda 

et al., 2012; Halberda, Mazzocco and Feigenson, 2008; Libertus and Brannon, 2010) and across a range of 

non-human animal species (e.g. Cantlon and Brannon, 2006; see also Libertus et al., 2013). The acuity of 

the ANS in humans has been shown to increase until about 30 years of age (Halberda and Feigenson, 2008; 

Halberda et al., 2012; Lipton and Spelke, 2003), although baseline acuity varies considerably among 

individuals (e.g. Halberda et al., 2008; Piazza et al., 2010). Such individual differences in ANS acuity have 

been shown to correlate with concurrently measured individual differences in mathematics ability in 

preschool children (Libertus, Feigenson and Halberda, 2011), and this association extends to secondary 

school (Halberda et al., 2008), college (Libertus, Odic and Halberda, 2012) and beyond (Halberda 
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et al., 2012). More recently, it has also been found that early ANS acuity predicted mathematical ability six 

months later, when individual differences in age, expressive vocabulary, and baseline mathematical ability 

at the initial testing were controlled (Libertus et al., 2013). However, performance in this task might be 

affected by the level of inhibition, as there is a need to suppress non-numerical cues that co-vary with 

numerical information (Fuhs and McNeil, 2013). 

On the other hand, many studies have not found correlations between ANS acuity and mathematical 

ability. For example, Lyons et al. (2014) examined the relationship between eight basic numerical skills 

and early arithmetic ability in over a thousand children across grades 1-6 (7-12.3 years old) and did not 

find that ANS could predict arithmetic ability at any grade. Sasanguie et al. (2013a) also did not find such 

correlations in 6-8 year-old children. In another study, Gilmore et al. (2013) found that inhibition skills, 

rather than the precision of ANS, accounted for the relationship between ANS and mathematics 

achievement.  

Price et al. (2012) suggested that the mixed findings on the relationship between ANS acuity and math 

achievement might be due to differences between studies, such as sample size, age groups, type of 

arithmetic test, and the measures used to assess ANS. Overall, it remains unclear how acuity in ANS might 

cause improvements in formal mathematical ability, the directionality of the relation between ANS and 

mathematics ability over time, how domain-general functions such as inhibition skills interact with acuity 

in ANS, and how the frequency of using number symbols might increase ANS acuity (for a full review see 

Libertus et al., 2013). 

Subitising 

It has been widely documented that pre-verbal infants, children and adults can automatically estimate 

the size of a collection of up to approximately four items in an array without serial and attention-

demanding counting processes. However, beyond this amount, the duration of estimation times increases 

as a function of the number of additional items, based on serial counting (Chi, 1975; Kaufman, 1949; 

Mandler, 1982). This quick and accurate subitising process, around 40-100 msec/item, has been found not 

only for visual (e.g. Chi, 1975), but also auditory (Camos, 2008) and tactile presentation (Riggs, 2006). 

Beyond the 4-item range, counting involves a slower, more effortful and error-prone process, around 250-

350 msec/item (Trick, 1994). It has been suggested that children with low numerical competence, such as 

those with dyscalculia, show atypical subitising ability (Koontz and Berch, 1996; Reeve et al., 2012), 

underscoring its potential importance as a foundation for number learning. 

At the neural level, a study using Positron Emission Tomography (PET) has shown that subitising and 

counting may share a common network involving the bilateral middle occipital and parietal areas, 

challenging the common perception that both processes are based on two separate networks. The intensity 

and spatial extent of activation in these areas increase with the number of dots and are dependent on their 

spatial arrangement (random>canonically arranged items); it was shown that activation reached a 

maximum peak and extent when counting larger numerosities that were randomly arranged 

(Piazza et al., 2002). To summarise, it seems that humans share with animals the ability to approximate 

numbers of objects in the real world. 

However, everyday maths needs to be exact, and requires the understanding of quantity based on 

symbolic understanding. In the next section, we will refer to studies that have focused on the processing of 

symbolic numbers.  
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Symbolic Quantities 

Exact Number System (ENS) 

The ability to represent numbers using symbols is thought to enable the mapping between symbolic 

number codes and the ANS. Such acquisition has been shown to involve profound changes in the cerebral 

network responsible for numerical processing, through a progressive shift from predominance of the right 

IPS to bilateral IPS for both symbolic and non-symbolic processing (Ansari, Dhital and Siong, 2006; 

Cantlon et al., 2006; Izard et al., 2008; Piazza et al., 2007), as well as an activation in and around the left 

IPS, which increases with age for arithmetic processing (Rivera et al., 2005).  

These changes are thought to reflect a fine-tuning of the ANS into a second, symbolic, number system 

for exact number representation and processing, termed the exact number system (ENS). A body of 

evidence from behavioural studies supports the idea that the ENS is a refinement of the ANS upon the 

acquisition of symbolic numerical knowledge (see Castronovo, 2012). For instance, Ashcraft and Moore 

showed that children (mean age between 6.75 and 10.71 years old) and college students (mean age 

23 years old) showed an increasingly linear pattern of number line estimation with age (Ashcraft and 

Moore, 2012). They also found that the strength of linear estimation correlated significantly with children’s 

maths achievement, suggesting that education and the acquisition of symbolic number knowledge might be 

crucial for the development of the ENS from the ANS (e.g. Siegler and Booth, 2004).  

This shift from ANS to ENS as a function of development and mathematical abilities has been found 

in several studies. One of the indications is that the representation of numbers shifts with age from 

logarithmic to a mixture of logarithmic and linear, and finally to a primarily linear representation (Ashcraft 

and Moore, 2012; Dehaene, 1997; Siegler and Booth, 2004; Siegler and Opfer, 2003). More specifically, 

children tend to represent numbers in an unevenly spaced logarithmic or “compressed” mental number 

line, in which the smaller values are represented further apart than they should be and larger values are 

compressed closer together (see Moeller et al., 2009). As children develop, it has been shown that at the 

average age of 6.9 years old, their representation of numbers shifts towards a more linear one-to-one 

representation (Siegler and Booth, 2004). However, the logarithmic representation continues to be 

exhibited by children with mathematical learning difficulties (Geary et al., 2008). 

More recently, it has been suggested that the left IPS is critical for the mapping between ENS and 

ANS. Sasanguie, Göbel and Reynvoet (2013b) showed that the disruption of activity in the left, but not the 

right IPS using repetitive TMS impaired the processes that are crucial for priming between symbolic and 

non-symbolic number representations (Sasanguie et al., 2013b). This result is in line with previous studies 

indicating that acquisition of ENS relies on the left IPS, rather than the right IPS (Rivera et al., 2005). 

Accurate numerical understanding can also be achieved without using symbols, and before symbolic 

acquisition. It has been suggested that the ability to represent numbers in an exact fashion has been 

accomplished using counting (Carey, 2004).We will now discuss the phenomenon of counting, an ability 

that is paramount for intact mathematical development.  

Counting with Fingers, Body Parts, and Bases  

In order to count beyond a small collection of items, humans have developed various aids to keep 

track of their counting such as the tally system (e.g. tally marks found on artefacts), symbols such as 

written numerals and number names, the abacus, and most recently, the calculator. Despite large cultural 

diversity, two common ways of counting are employed: the use of body parts and base systems.  

Fingers and other body parts are typically used to keep record of the number of items counted. It is 

not surprising that the word “digit” is used to refer not only to numbers, but also to fingers and toes. 
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Anthropological evidence can provide support for this reference; in Papua New Guinea for example, the 

Yupno have no specialised names for numbers. They use the names of body parts to count and represent 

numbers. For example, “one” is the left little finger (Lancy, 1978). For the people of Kilenge in Papua 

New Guinea, body parts are combined and used as bases. For instance, 5 is represented by one “hand”, 10 

is “two hands”, and 20 is “man”. These terms can be combined, to represent quantity i.e. 30 is a “man and 

two hands” (Lancy, 1978; Wassmann, 1994). 

When body parts are exhausted to represent larger quantities, bases are used. Bases are derived from a 

core property of numbers that is culturally independent. Any given number except 1 or 0 can be 

decomposed into a collection of collections. For example, in base-10 system, the number “45” refers to 4 

collections of 10 and 5 collections of 1. Base-10 system is not the only base system, cultures such as the 

Maya uses base 20 with subunits of 5. Traces of a base-20 system can be heard in some European 

languages such as in French (e.g. “quatre-vingt-dix-sept”, literally “four twenties and seventeen”). The 

ancient Babylonians used a base-60 system with subdivisions of 10 units that has been retained in our 

measurement of angles and time (Hodgkin, 2005).  

The tendency to use body parts for counting might have a close evolutionary relationship with 

numerical cognition (Butterworth, 1999). For example, in Gerstmann syndrome (Mayer et al., 1999), 

damage to the left parietal cortex produces not only the inability to perform arithmetic, termed acalculial; 

but also finger agnosia, classified as impairment in identifying fingers by touch; agraphia, which means the 

inability to write; and left-right disorientation (see section on Gerstmann Syndrome). In this respect, a 

number of studies have suggested that use of numbers has emerged from other “older” evolutionary 

cognitive functions (R. Cohen Kadosh, Lammertyn and Izard, 2008; Dehaene and Cohen, 2007). For 

example, representations of space, along with those of number, are subserved by the parietal lobes in 

partially overlapping structures (Walsh, 2003). 

Numbers and Space 

One of the general functions of the parietal lobes is the representation of space, time, and quantity 

(Walsh, 2003). Numbers can be represented as ordinal, when rank is based on a sequential order, e.g., first, 

second, third; cardinal, as in the size of sets or quantities; and nominal, when the numerals are used for 

identification only and do not represent quantity, rank, or other measurement, information. There is a body 

of evidence that suggests that the representation of numbers has a strong spatial element (van Dijck et al., 

in press).  

The most consistently replicated finding that supports the spatial feature of number representation is 

the Spatial Numerical Association of Response Codes (SNARC) effect. This effect is demonstrated in tasks 

that require individuals to make judgments about numbers (e.g. odd/even judgments). It refers to the 

consistent finding that Western (i.e. left-to-right reading) participants respond more quickly to small 

numbers with the left hand, and to large numbers with the right hand. Recently, it has been reported that 

the directionality of writing contributes to the directionality of the SNARC effect; Arabic monoliterates 

who use only the right-left writing system showed a right-to-left bias, whereas Arabic-English biliterates 

showed weaken right-to-left bias, and illiterate Arabic speakers showed no SNARC effects 

(Zebbian, 2005). Furthermore, this effect is based on the side of the response and not the responding hand. 

Therefore, if the hands are crossed, larger numbers will be processed with a faster response on the right 

side of space even though it is made with the left hand, and vice versa (Dehaene, Bossini and Giraux, 

1993). This supports the idea that numbers may be represented through a “spatial number line” 

(Restle, 1970) that extends from left to right. 

Numbers can even affect the orientation of visuospatial attention. For example, Fisher et al. (2003) 

showed that, when presented in the centre of the screen, small numbers such as 1 and 2 direct attention to 
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the left, while larger numbers such as 8 and 9 direct attention to the right. The influence of visuospatial 

attention on number ability is further supported by studies with patients with visuospatial neglect, that is, 

patients with right parietal lesions that cause them to ignore the left hemisphere of space. When these 

patients, who are neither dyscalculic nor acalculic, are asked to bisect a line, they show spatial-numerical 

biases similar to their visuospatial biases (e.g. when asked what number is midway between 11 and 19, 

they might provide the answer “17”) (Zorzi, Priftis and Umilta, 2002). 

The representation of numbers from the left to right in the form of a spatial “mental number line” 

might be associated with two different possible properties of numbers: (i) their numerical cardinality or 

quantity; or (ii) their ordinality—that is, numbers are an ordered set and the fact that they represent 

quantities is irrelevant. In the latter case, similar effects should be found with stimuli such as alphabets or 

months of the year, which form an ordered set but do not represent quantity. Current data support the latter 

possibility. For example, Gevers, Reynvoet, and Fias (2003) found that the SNARC effect also applies for 

stimuli such as months. For instance, a faster left-sided response was given for “January”, and a faster 

right-sided response for “December”.  

More recently, empirical evidence has also illuminated the sensory and bodily aspect of numerical 

cognition, termed embodied numerosity (see Moeller et al., 2012). Some examples of this concept include 

finger counting and finger-based representations. It has been proposed that embodied representations of 

number (magnitude) influence number processing in a systematic and functional way, and that it can be 

trained to increase the efficiency of numerical learning (Moeller et al., 2012). A spatial-numerical training 

by Fischer et al. (2011) was shown to be more effective than performance on a non-spatial control training 

in enhancing children’s performance on a number line estimation task and a subtest of a standardised 

mathematical achievement battery. The improvements were driven by enhanced mental number line 

representation and not by attention or motivation factors, suggesting the benefits of spatial-numerical 

connections. More recently, it has also been reported that embodied training, involving bodily movement, 

is more effective than non-kinesthetic training in improving number line estimation performance, and is 

especially beneficial to children with low cognitive abilities. These embodied training improvements also 

transferred to performance in solving addition problems (Link et al., 2013). 

Therefore, it seems that the link between space and numbers is widely supported, and may be rooted 

at the ordinal level. We will now discuss the issue of numerical representation at the neural level, with 

most of the studies examining numerical magnitude. 

Representation of Numbers in the Brain 

Research has led to a convincing body of evidence that suggests the presence of specialised neural 

networks for numerical cognition (R. Cohen Kadosh et al., 2008; Dehaene, 2009; Zamarian, Ischebeck and 

Delazer, 2009). These networks appear mainly in the parietal and prefrontal cortices, but also involve other 

brain regions including occipital cortex, subcortical regions, and the cingulate cortex.  

Parietal Cortex 

When humans engage in quantity processing and calculation, the parietal lobe is systematically and 

bilaterally activated (for reviews see Arsalidou and Taylor, 2011; R. Cohen Kadosh et al., 2008; Kaufmann 

et al., 2011; Menon, in press). The IPS, in particular, has been consistently associated with numerical 

representation in the brain (R. Cohen Kadosh et al., 2008). For example, it is activated when participants 

decide whether a given quantity is smaller or larger than a standard and even during subliminal 

presentation of numbers [presentation of numbers below the threshold of conscious perception, without 

participant’s being aware of it, e.g. during a priming task (see Table 2, Appendix)] (Naccache and 
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Dehaene, 2001). The latter finding lends further support to previous studies that have suggested that 

quantity information is automatically accessed by the perception of symbolic numbers.  

Further studies have supported the role of the IPS in numerical representation (Piazza et al., 2004). 

For example, fMRI studies have demonstrated that IPS activity is sensitive to quantity information by 

using a neural adaptation paradigm. They show that IPS activity adapts, or slowly decreases, in response to 

repetition of the same numerical stimulus, and that it increases again in response to other, or deviant, 

quantities (Cantlon et al., 2006; R. Cohen Kadosh et al., 2011; Piazza et al., 2007). Further research has 

shown that stimulating the IPS using TMS can also modulate numerical representation of specific numbers, 

therefore supporting the view that neurons in the human brain are more sensitive to specific numbers than 

other numbers; for example, some neurons are more optimally tuned to a given number, such as 4 and less 

to a closer number, like 3 and 5, and even less to, for example, 7 (R. Cohen Kadosh et al., 2010a), similar 

to monkeys’ brains (Nieder and Miller, 2004). It has been suggested that the right IPS is recruited for 

numerical processing early in life (Cantlon et al., 2006; Izard et al., 2008), remains fundamentally 

unaltered by education, and is mainly influenced by genetic factors (Pinel and Dehaene, 2013). Meanwhile, 

activation in the left IPS during a number comparison task has been found to correlate with children’s 

arithmetic performance at school (Bugden et al., 2012).  

As we mentioned previously, it is important to acknowledge that the specificity of IPS activation for 

numerical processing has been questioned, as the IPS is also activated during activities such as grasping, 

pointing, eye movements, orientation of attention, general attention or response-selection mechanisms 

(Shuman and Kanwisher, 2004), and during tasks involving other physical dimensions such as size, 

location, angle and luminance (R. Cohen Kadosh and Henik, 2006; R. Cohen Kadosh et al., 2005; Fias et 

al., 2003; Kaufmann et al., 2005; Pinel, Piazza, Le Bihan, and Dehaene, 2004; Zago et al., 2008); for a 

review and meta-analysis see R. Cohen Kadosh et al., 2008. This has led to two interpretations: i) there is a 

sub-system in the IPS that subserves numerical processing that is only partially independent of, and is 

intertwined with, other specific magnitude systems (R. Cohen Kadosh et al., 2008); or ii) the IPS is the 

headquarters of a general system committed to the assessment of magnitude of time, space and numbers 

(Walsh, 2003), and such a magnitude system supports the primary role of the parietal lobes in visuomotor 

abilities (R. Cohen Kadosh et al., 2011). 

Although there is a general emphasis on the role of the IPS in magnitude processing, some researchers 

have stressed its role in the processing of order. The anterior part of the IPS is activated by both numerical 

and non-numerical order such as letters and months (Fias et al., 2007), supporting the proposed role of IPS 

in working memory for information involving order (Marshuetz et al., 2006a; Marshuetz et al., 2006b). 

However, dissociation between numerical and non-numerical order has been found in the IPS, suggesting 

that while this general area may have a role in processing both types of order, their processing may be 

largely separate (Zorzi, Di Bono and Fias, 2011). 

Temporo-Parietal Junction  

Following the finding that the left angular gyrus is involved in language processing (Dehaene 

et al., 2003; C. J. Price, 2000), researchers have proposed that this area might be involved in the retrieval of 

verbally stored arithmetic facts, such as multiplication facts, from long-term memory. The left angular 

gyrus has been reported to display greater activation during exact compared to approximate addition 

(Dehaene et al., 1999), during processing of relatively smaller problems compared to larger ones 

(Stanescu-Cosson et al., 2000), when solving multiplication compared to subtraction problems (Lee, 2000), 

and after training on arithmetic facts (Delazer et al., 2003). Based on brain imaging data and self-reports of 

strategy use, (Grabner et al., 2009) suggested that the left angular gyrus mediates the retrieval of arithmetic 

facts when individuals solve addition, multiplication, subtraction, and division.  
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It has been proposed that the angular gyrus and the left superior temporal gyri are strongly implicated 

in the representation of symbolic arithmetic, as both regions are more activated for symbolic (i.e. numerals 

and words) compared to non-symbolic (i.e. clusters of dots) numerical magnitude judgements (Holloway 

and Ansari, 2009). However, all these results can be explained by automatisation, which is greater in the 

case of symbolic numbers, and by fact retrieval (Zamarian and Delazer, in press). 

Prefrontal Cortex 

The prefrontal cortex, in the anterior region of the frontal lobes, is known to be involved in 

orchestrating a range of core domain-general processes, such as executive functions, which include 

inhibitory control, working memory, cognitive flexibility, and higher-order functioning such as reasoning, 

problem solving, and planning (e.g. Lehto, 2003; Miyake, 2000; Collins, 2012; Diamond, 2013).  

It has been consistently reported that parietal and prefrontal cortices are activated simultaneously 

when individuals perform arithmetic tasks (Grabner et al., 2009; Pesenti et al., 2000; Rivera et al., 2005; 

for meta-analysis see Arsalidou and Taylor, 2011). Menon et al. (2000b) was the first to show that such 

co-activation could be dissociated quantitatively; the main effect of arithmetic complexity was reported in 

the left and right IPS, whereas the main effect of domain-general task difficulty was found in the left 

ventrolateral prefrontal cortex. Menon et al. (2002) further highlighted the role of the prefrontal cortex in 

detecting incorrect arithmetic expressions and incongruity between internally computed and externally 

presented incorrect answers.  

Other studies have also reported the role of prefrontal regions in numerical magnitude processing. For 

example, it has been shown that there is a negative correlation between the strength of the numerical 

distance effect and the level of activation in the prefrontal and precentral regions (Ansari et al., 2005; Pinel 

et al., 2001). These areas were modulated to a significantly larger extent in children compared to adults, 

possibly due to involvement of other cognitive functions such as attention, and executive functions.   

Visual Streams  

It has been reported that ventral visual stream areas such as the lateral occipital cortex and the 

fusiform gyrus are commonly activated together with the IPS, and their responses have been observed to 

increase as a function of arithmetic complexity, when other processing demands are controlled (e.g. Keller 

and Menon, 2009; Rickard et al., 2000). Rosenberg-Lee (2011b) has reported functional dissociations 

across different arithmetic operations in the inferior temporal cortex, areas thought to be crucial in 

recognition and discrimination of number-letter strings (Allison, 1999; Milner, 2008). It was proposed that 

deconstruction of arithmetic problems, especially those with unfamiliar problem format and involving less 

automatised procedures, are likely to demand dynamic interactions between dorsal and ventral visual areas 

(Rosenberg-Lee et al., 2011; see Menon, in press). 

Arithmetic Task-Specific Functional Dissociations 

When referring to arithmetic, it is easy to give the false impression that it is a unitary process. As the 

following examples will illustrate, this is clearly not the case (see section on Arithmetic Ability is not 

Unitary). Distinct functional dissociations between different areas of the brain have been reported for 

specific arithmetic operations such as number comparison, addition, subtraction, and multiplication.  

For example, a study by Chochon and colleagues (1999) showed that, compared to digit naming only 

(which does not involve intentional quantity processing), number comparison activated the bilateral 

parieto-fronto-cingular network. When the authors analysed differential activations among the tasks of 

naming, comparison, multiplication, and subtraction, they found that each task in this list, respectively, 

added a specific area of activation to the immediately preceding task. Compared to digit naming, number 
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comparison activated the depth of the right postcentral sulcus; meanwhile, multiplication added a strong 

additional left intraparietal activation compared to number comparison, and subtraction resulted in a 

greater right postcentral and bilateral prefrontal activation relative to multiplication (Chochon et al., 1999). 

However, this type of result might stem from differences in task difficulty, as more difficult tasks are more 

metabolically demanding. 

In another example, Rosenberg-Lee et al. (2011b) found that compared to a number identification 

control task, all arithmetic operations apart from addition yielded a consistent activation of the left 

posterior IPS and deactivation in the right posterior angular gyrus. Contrary to the common view that the 

left angular gyrus differentially facilitates retrieval during multiplication, that is to say via verbal 

processing instead of quantity processing, as proposed by the “triple-code” model (Dehaene and 

Cohen, 1997; Dehaene et al., 2003), the same study found that multiplication and subtraction evoked 

significantly different activity in the right, but not in the left angular gyrus. The authors also found that 

even though addition and multiplication both depend on retrieval processes, multiplication elicited a 

greater activation in the right posterior IPS, prefrontal cortex, lingual and fusiform gyri. Such subtle 

differences have been proposed to account for different retrieval processes employed for both operations.  

Overall, these findings suggest that the various arithmetic operations evoke different levels and areas 

of activation in parietal cortex, but that neural responses associated with these different numerical 

operations cannot be distinctively and directly mapped to specific posterior parietal cortex regions. It is 

important to note that with the current resolution of neuroimaging tools, there remains uncertainty and 

debate about the extent and nature of the associations and dissociations between specific functions and 

specific brain regions. Nevertheless, these findings suggest that arithmetic ability is not a single entity but 

rather a composite of related but distinct components (Dowker, in press-a). 

Involvement of Other Cognitive Domains 

Numbers are not a cognitive module. That is, the successful implementation of basic numerical tasks 

and complex maths relies on a plethora of cognitive abilities. Domain-general cognitive processes such as 

executive functions (Baddeley, 1996), inhibitory control, shifting of attention, updating, and working 

memory are all critical for numerical cognition. These functions have been suggested to provide the 

framework for the development of more efficient strategies during the early stages of arithmetic skill 

acquisition (Bull, Espy and Wiebe, 2008). 

Working memory, the limited capacity to control, regulate and actively maintain information during 

goal-driven cognitive tasks, has been regarded as an important contributor to mathematical outcomes even 

when other cognitive and academic factors are controlled for (K. M. Wilson and Swanson, 2001; for a 

review see Raghubar, Barnes and Hecht, 2010). For example, working memory uniquely predicted solution 

accuracy on word problems in both children with and without significant mathematics difficulties 

(Swanson, 2004), while verbal working memory predicted end of year performance on mathematics 

curriculum tests (Fuchs, 2005). It is likely that further research on the contribution of working memory to 

maths learning and performance will have implications for interventions for mathematical learning 

difficulties. Meanwhile, executive functions have been connected to age-related improvements in 

children’s skills in maths problem solving strategy choice. Specifically, the extent of inhibitory control and 

cognitive flexibility correlated with strategy selection and age-related differences in strategy selection 

(Lemaire and Lecacheur, 2011). 
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Development of Human Numerical Cognition 

Infants  

Human infants can discriminate between, as well as represent and remember, small numbers of items. 

This suggests that some number abilities, such as pre-verbal counting and precursors of verbal counting, 

might have been present during infancy (Starkey and Cooper, 1980). For example, infants as young as a 

few hours (Izard et al., 2009) are sensitive to small numerosity arrays, such as 2 to 3, but not to larger sets 

like 4 to 6 (Antell, 1983; Starkey, Spelke and Gelman, 1990). By the age of 6 months, infants have shown 

the capacity to enumerate or count a small (e.g. 2 or 3) series of discrete actions (Sharon, 1998; 

Wynn, 1996) and by age 18 months, they can enumerate up to 3 or 4 physical objects (Starkey, 1992) and 

determine numerical correspondences between sets of entities across perceptual modalities (Starkey 

et al, 1983; 1990; Izard et al., 2009). These findings suggest that infants can discriminate, see the 

relationships between numerosity and objects, and represent small quantities before they are formally 

educated on numeracy.  

Five-month-old infants have demonstrated sensitivity to simple arithmetic such as addition and 

subtraction operations on small sets of physical objects (Wynn, 1992); replicated by Simon, 1995). They 

seem to have already developed the expectation of a decrease in quantity when one item is removed from a 

set of 2 items and an increase in quantity when one item is added to another item. More recently, it has also 

been documented that infants at the age of 9 months can successfully perform large-number addition and 

subtraction (McCrink and Wynn, 2007), suggesting that they already have a magnitude-based estimation 

system for the representation of numerosities at an early age. 

Children 

Pre-School 

Preschool children’s understanding of quantity relationships, such as “more than” and “less than”, 

develops as they mature, along with their ability to add and subtract. Starkey (1992) showed that infants’ 

understanding of addition and subtraction expands gradually to include set sizes of up to 4 items by the age 

of 4, and larger sets from then on (see also Geary et al., 2000). 

Later, the preverbal number system becomes integrated with children’s emerging language abilities 

through the use of number words (e.g. “one,” “two,” etc.) and verbal counting to solve basic addition and 

subtraction problems (e.g. to solve 2+3, counting “one, two, three, four, five”) although the system can also 

operate without language (Geary et al., 2000).  

By the end of pre-school years, most children have a good understanding of counting concepts (see 

Table 3). They can use these counting skills to compute relatively large sets of items and to support adding 

and subtracting items from these sets. Additionally, they have a basic understanding of ordinality 

(e.g. 1<2<3<4) and cardinality (i.e. that the last number word in a counting sequence defines the number of 

items in a set). Importantly, they can use these skills in practical ways, such as for measurements (Geary, 

Frensch and Wiley, 1994). 

Primary and Secondary School 

At this level, most of the quantitative skills that children and adolescents are expected to learn are 

culturally determined, and can be classified as secondary abilities (see Table 4) that are built from more 

universal primary systems (Geary et al., 2000). A distinction between the two systems is important because 

the developmental trajectory of the secondary abilities can vary between generations and cultures, 

depending on the educational practices.  
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Between six to eight years old, numerical representation seems to shift gradually from a logarithmic 

to a primarily linear format, thereby reflecting a more exact numerical understanding. A strong correlation 

has been found between individual differences in numerical representation, as indicated by the 

performance in a number-line estimation task, and mathematics achievement test scores (Siegler and 

Booth, 2004). That is, increased maths performance is associated with increased linearity in estimation. It 

has been suggested that exposure to relevant experiences (e.g. with the formal number system in counting, 

arithmetic and other numerical contexts) tends to support improvement on estimation accuracy (Siegler and 

Booth, 2004).  

While most developmental number cognition studies have focused on basic numerical skills, some 

have shed light on the developmental changes in arithmetic strategy use. For example, compared to 

younger children who tend to rely on time-consuming step-by-step procedures (e.g. counting from 1 for 

each sum), children receiving formal education show an increasing degree of optimisation in their 

strategies, such as the use of “min strategy”, i.e. counting from the larger addend (Groen, 1977), 

“tie-strategy”, e.g. 2+2, 3+3, 4+4 (Barrouillet and Fayol, 1998; Lemaire and Siegler, 1995), and eventually 

direct retrieval of arithmetic facts from memory. Unsurprisingly, older children are also quicker and more 

accurate than younger children when solving mathematical problems (Imbo, 2007), and show a decrease in 

the problem size effect, a well-replicated observation of increasing reaction time with problems involving 

large numbers (e.g. Roussel, Fayol and Barrouillet, 2002).  

Siegler and Shrager (1984) have shown that even children at an early kindergarten age already possess 

a variety of strategies to solve addition problems, including min-procedure, retrieval, tie-strategy, and 

more. The majority of studies suggest that for an individual type of problem, individuals progress over 

time from counting to using other strategies (e.g. min-, tie-strategies), to direct retrieval (see Imbo, 2007). 

Children’s initial associative network of problem-answer associations strengthens into a more 

automatically activated long-term memory knowledge as they develop (Campbell and Graham, 1985). This 

idea is supported by studies that have shown increased frequency of interference between different 

problem-answer associations, such as for different types of arithmetic operations, as children develop 

(e.g. LeFevre, 1991; Lemaire, Barrett, Fayol, and Abdi, 1994). 
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Table 1. Biologically Primary Quantitative Abilities 

Numerosity 

The ability to determine accurately the quantity of small sets of items, or events, without counting. In humans, 

accurate numerosity judgments are typically limited to sets of four or fewer items, from infancy to old age. 

 

Ordinality 

A basic understanding of more than and less than and, later, an understanding of specific ordinal relationships. For 
example, understanding that 4 > 3; 3 > 2; and 2 > 1. For human infants, the early limits (i.e. before learning number 
words) of this system are not known, but appear to be limited to quantities of < 5. 

Counting 

Early in development there appears to be a preverbal counting system that can be used for the enumeration of sets 
up to 3, perhaps 4, items. With the advent of language and the learning of number words, there appears to be a 
pan-cultural understanding that serial-ordered number words can be used for counting, measurement, and simple 

arithmetic. 

Simple Arithmetic 

Early in development there appears to be sensitivity to increases (addition) and decreases (subtraction) in the 
quantity of small sets. In infancy, this system appears to be limited to the addition or subtraction of items within sets 
of 2, and gradually improves to include larger sets, although the limits of this system are not currently known. 

Source: Geary, D.C., Frensch, P.A., and Wiley, J.G. (2000), “From infancy to adulthood: The development of numerical abilities”, 
European child and adolescent psychiatry, Vol. 9/2, S11-S16, https://web.missouri.edu/~gearyd/ECAPsychiatry.pdf . 

Table 2. Biologically Secondary Number, Counting, and Arithmetic Competencies 

Number and Counting 

In most, if not all, industrialised nations, primary school children are expected to master the counting system (e.g. 
learning the associated number words), gain an understanding of the base-10 system, and learn to translate, or 
transcode, numbers from one representation to another (e.g. verbal – “two hundred ten” – to Arabic – “210”). In the 
early grades, counting errors are common for teen values (e.g. forgetting the number word) and for decade transitions 
(e.g. 29 to 30, often misstated as “twenty nine, twenty ten”). Number transcoding errors (e.g. transcoding “two hundred 
ten” as “20010”) are common in primary school children, especially in the first few grades. Learning the base-10 
system appears to be the most difficult counting and number concept that primary school children are expected to 
learn, and many of these children never gain a full understanding of the system. 

Arithmetic: Computations 

In most industrialised nations, primary school children are expected to learn the basic arithmetic facts and learn 
computational procedures for solving complex arithmetic problems (e.g. 472+928). With sufficient practice, nearly all 
academically normal children will memorise most basic arithmetic facts; in some countries, however, the level of 
practice is not sufficient to result in the memorisation of these facts, which, in turn, results in retrieval errors and 
prolonged use of counting strategies. The ability to solve complex arithmetic problems is facilitated by the 
memorisation of basic facts, the memorisation of the associated procedures, and an understanding of the base-10 
system. The latter is especially important for problems that involve borrowing or carrying (e.g. 457+769) from one 
column to the next. 

Arithmetic: Word Problems 

In most, if not all, industrialised nations, primary school children begin to solve simple word problems in kindergarten 
and first grade, although the complexity of the problems they are expected to solve in later grades varies greatly from 
one nation to the next. The primary source of difficulty in solving these problems is identifying problem type (e.g. 
comparing two quantities vs. changing the value of one quantity) and translating and integrating the verbal 
representations into mathematical representations. In secondary school, the complexity of these problems increases 
greatly and typically involves multi-step problems, whereby two or more verbal representations must be translated and 
integrated. Without sufficient practice, the translation and integration phases of solving word problems remain a 
common source of errors, even for college students. 

Source: Geary, D.C., Frensch, P.A., and Wiley, J.G. (2000), “From infancy to adulthood: The development of numerical abilities”, 
European child and adolescent psychiatry, Vol. 9/2, S11-S16, https://web.missouri.edu/~gearyd/ECAPsychiatry.pdf . 
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Adults 

In comparison to children and adolescents, basic quantitative skills in adults have not been studied as 

extensively (see Geary et al., 2000). It has been proposed that adults’ competence in quantitative abilities is 

best predicted by the extent to which these skills were mastered in primary and secondary schools 

(Bahrick HP, 1991). For example, the frequency and distribution of practice on algebraic skills during 

secondary school were found to be the best predictors of algebraic skills in middle- and old-age even when 

individual differences in basic maths skills were controlled (Bahrick HP, 1991).  

In terms of strategy use, although it is generally expected that adults are able to compute arithmetic 

problems automatically, they continue to use retrieval and a variety of non-retrieval strategies (Campbell 

and Epp, 2004; Campbell and Timm, 2000; Campbell and Xue, 2001; Geary, Frensch and Wiley, 1993; 

Kirk and Ashcraft, 2001; Siegler and Shrager, 1984), including implicit activation of their fingers, which 

might indicate finger counting (Sato, 2007). The rate of retrieval, compared to other calculation strategies, 

varies depending on the operations involved (Campbell and Alberts, 2009). For example, for multiplication 

and small addition problems, retrieval is the most commonly used strategy, while it is common that adults 

rely on other strategies, such as counting, when solving subtraction and division (see section on Strategy 

Use). With training, adults take less time to solve arithmetic problems, and provide more accurate answers 

(see Mathematics Learning), suggesting that performance can be further improved even at ages beyond 

formal education.  

The Developmental Shift in Activation Pattern 

During tasks involving numerical symbols such as digits, children rely more on prefrontal areas 

compared to adults (Ansari, 2008; Kaufmann et al., 2006; Kucian et al., 2008). As children grow older, 

distinct parietal networks begin to form in the bilateral IPS and the left temporo-parietal cortex for 

numerical processing; an increase in brain activation as a function of age in the left supramarginal gyrus 

and anterior IPS and the left lateral temporo-occipital cortex has been reported in children and adolescents 

asked to verify simple addition (e.g. 4+2=6?) and subtraction (e.g. 4-2=3?) equations (Kawashima 

et al., 2004). This localised increase was accompanied by a decrease in activation in the frontal brain 

regions, subcortical structures such as the basal ganglia and thalamus, brainstem, and the left medial 

temporal lobe, which suggests that the arithmetic procedures might have become more automatised.  

Similarly, in a cross-sectional study of subjects aged 8-19, Rivera et al. (2005) reported age-related 

changes in activation of many of these same brain regions during calculation tasks. This included increases 

in the recruitment of the left inferior parietal cortex (left supramarginal gyrus), anterior IPS, and left lateral 

temporo-occipital cortex, along with decreases in activation in the bilateral regions of the frontal cortex, 

hippocampus and the basal ganglia (Rivera et al., 2005). The decrease in the reliance on frontal regions has 

been suggested to reflect automatisation, a change characterised by reduced reliance on processes of 

cognitive control, attention and working memory with development. On the other hand, the decrease in 

reliance on the hippocampus might be the result of increased consolidation of arithmetic facts into long-

term memory (Rivera et al., 2005; see also Menon, in press).  

This fronto-parietal-shift has also been viewed as a more general development of learning processes, 

shifting from a main reliance on controlled executive processing to more task-specific processes (see 

section on Mathematics Learning). For example, Delazer et al. (2005) trained adults to perform two new 

types of arithmetic operations. One was learnt via rote learning, the drill condition, and the other through 

the use of strategy. After the initial learning phase, participants in the drill condition showed a strong 

activation in the angular gyrus, while those in the strategy condition demonstrated larger network 

activation including bilateral occipito-parietal area including the precuneus, which is the medial area of the 

superior parietal cortex.  
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It is important to note that the reduced activation in general cognitive areas and more focal 

activation in number-relevant areas are very similar to development in other domains such as in cognitive 

control (e.g. S. Durston et al., 2006; Schlaggar et al., 2002), or face processing (K. Cohen Kadosh and 

Johnson, 2007). This suggests that cognitive development is achieved through fine-tuning of relevant 

neural systems (for discussion, see S. Durston and Casey, 2006). 

 

The developmental shift from frontal to parietal activations has also been observed during basic 

numerical tasks, such as symbolic and non-symbolic comparison tasks (Ansari and Dhital, 2006), and in an 

fMRI adaptation task with numerosities, where deviant numerosities activated bilateral IPS in adults, but 

only the right IPS in 4-year-old children (Cantlon et al., 2006). This suggests that children at that age have 

yet developed a more refined neural representation of quantities. Overall, the development and refinement 

of the IPS activation from childhood to adulthood suggests that there is an increasing functional 

specialisation for numerical processing over the course of development.  

Elderly 

Compared to young adults, older individuals have been reported to employ different strategies, and 

use them in different ways, when solving complex arithmetic problems (Lemaire and Arnaud, 2008). 

Elderly individuals show reduced flexibility in using strategies and tend to rely on the same strategy for 

different problems. Brain activity also differs between elderly and younger populations; an 

electroencephalography (EEG) study has shown that both right and left hemispheres in elderly brains work 

more symmetrically than young adults’ brains when engaged in complex arithmetic (El Yagoubi, Lemaire 

and Besson, 2003).  

One possible reason for these age-related changes in strategy use, and their resultant poorer 

performance, might be age-related declines in memory-retrieval and processing speed, along with other 

higher-level cognitive functions (Sasson, 2012). Elderly individuals have shown the capacity to learn 

associations between problems and solutions, but show slower acquisition compared to younger adults. 

These older individuals are slower in acquiring strategies based on memory retrieval and show low 

confidence in their memory (Touron, 2004). Therefore, they might be less likely to use retrieval-based 

strategies. Declines in other cognitive functions may also be to blame for poorer performance; these 

include working memory, associative learning that involves visual, but not verbal, task material, and 

greater difficulty in learning new materials (Jenkins, 2000). Neurological evidence supports the 

behavioural evidence of drop in cognitive functions; for instance, memory-related brain areas such as 

frontal and temporal brain regions undergo ageing-related decline (Sasson, 2012). In addition, lower 

capacity to learn amongst the elderly might also be due to reduced efficiency of white matter connections 

between brain areas, which could result in slower information processing and response (Kerchner, 2012). 

However, it is unclear if such anatomical and functional changes are the results of cognitive decline, or the 

causal factors themselves. 

Mathematics Learning 

In the current section, we review studies under the umbrella term “mathematics”, with a focus on 

arithmetic, as it is the most widely researched area in the context of learning. We chose to not review 

studies on geometrical and algebraic reasoning as, while important, they are sadly limited in number and 

inconsistent in their research methods. 

Studies have shown that with the gain of arithmetic expertise, there is a shift from slow, effortful, and 

error-prone procedures to skilled, fast, direct memory retrieval (e.g. J. R. Anderson, Fincham and 

Douglass, 1999; Logan, 1988; Rickard, 2004). These studies have explored the learning of both simple 

(e.g. Núñez-Peña, 2006; Pauli et al., 1994) and complex arithmetic (e.g. Delazer et al., 2003; 
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Grabner et al., 2009) and have shown that intensive arithmetic training can lead to significant changes at 

the brain level (Delazer et al., 2003; Grabner et al., 2009; Ischebeck, Schocke and Delazer, 2009; 

Ischebeck et al., 2007; Ischebeck et al., 2006; Pauli et al., 1994). For example, Delazer et al. (2003) 

showed that young adults trained over five days on complex multiplication problems (e.g. 23 x 8 =?) 

showed higher proficiency post-training on trained problems than novel problems. Compared to the trained 

problems, solving untrained problems significantly activated the left IPS, inferior parietal lobule, and the 

inferior frontal gyrus, brain regions that are involved in calculation algorithm and manipulation of quantity, 

rather than rote retrieval (Delazer et al., 2003). In contrast, solving trained problems resulted in stronger 

activation within the left angular gyrus, an area that is involved in rote retrieval. Similar results emerged in 

other studies (Delazer et al., 2005; Ischebeck et al., 2007; Pauli et al., 1994), suggesting that the repetition 

of problems strengthened retrieval of the correct solution, which reduced quantity-based processing, and 

hence the demands on working memory, monitoring and attention sustained by the frontal regions. This 

view is in line with Poldrack (2000), who observed that learning tends to progress from general purpose 

processes to task-specific processes.  

The effects of learning have also been studied with respect to different learning methods, different 

content, time course of learning, and transfer between related operations (Zamarian and Delazer, in press). 

Studies on different learning methods have shown that both drill, referring to emphasis on the rote 

memorisation, such as arithmetic facts and procedures (Cowan, 2003) and strategy, referring to focusing on 

understanding basic concepts and arithmetic relationships, approaches to learning led to skilled 

performance and automatisation of memory retrieval when solving arithmetic problems (Zamarian and 

Delazer, in press). Delazer et al. (2005) showed that differences between these methods are reflected in the 

pattern of brain activation; compared to strategy-trained problems, drill-trained problems evoked a 

relatively greater activation of the left angular gyrus, supporting the idea that retrieval methods are more 

predominantly used during drill learning than strategy learning (Delazer et al., 2005).  

 With regard to differences in training effects based on the content of learning, 

Ischebeck et al. (2006) showed that comparable training on two different arithmetic procedures, complex 

multiplication and complex subtraction, did not lead to similar effects at the brain level. After training on 

multiplication problems, there was a stronger left AG activation compared to untrained multiplication 

problems. However, there were no significant differences in the activation of the left angular gyrus 

between trained and untrained subtraction problems. These differences between operations suggest that 

when problems are frequently encountered, complex multiplication might be solved most efficiently via 

direct memory retrieval, whereas even in familiarised subtraction problems, rapid and basic processing 

might continue to be employed.  

Studies have reported that the effects of learning can be observed through brain activation patterns 

during early training. For instance, Ischebeck et al. (2007) showed that after only eight problem repetitions, 

there was already a significant decrease in fronto-parietal activation and increase in temporo-parietal 

activation, including the left angular gyrus. These effects were stable throughout the course of the scanning 

duration, and were comparable to the pattern observed by previous studies that have involved longer 

training periods (Delazer et al., 2003; Delazer et al., 2005; Ischebeck et al., 2006). 
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Figure 3. Brain activation pattern reflecting changes due to practice over the duration of training 

 

Notes: The effects of training (green: repeated>novel; red: novel>repeated) became significant beginning the time window from 100-
299 scans (permission to be obtained). There was an increased recruitment of the angular gyrus (shown in green) for the repeated 
problems compared to novel problems. The activation of the area in the left middle frontal gryus (shown in red) increased in response 
to novel compared with repeated problems as a function of training. These results suggest that the neural correlates of mental 
arithmetic undergo changes at the early stages of learning.  

Source: Ischebeck et al. (2007), “Imaging early practice effects in arithmetic”, NeuroImage, Vol. 47, 
http://dx.doi.org./10.1016/j.neuroimage.2007.03.051 . 

Meanwhile, the transferability of acquired knowledge between related operations has also been 

studied. For example, Ischebeck et al. (2009) showed that after intensive training on multiplication 

problems, greater activation in the left angular gyrus was associated with division problems that were 

related to previously trained multiplication problems. This activation pattern was also positively correlated 

with the degree of transfer effects observed in their behavioural findings. These data suggest that acquired 

multiplication knowledge through initial training was applied when solving untrained related division 

problems. 

More recently, mathematics learning has also been studied using non-invasive brain stimulation 

techniques such as transcranial electrical stimulation. A recent finding by Snowball et al. (2013) has shown 

that depending on the learning regime, brain stimulation can induce long-lasting enhancement of cognitive 

and brain functions (see section on Transcranial Electrical Stimulation). In this study, tRNS during 

calculations, i.e. strategy or deep learning, but not during drill learning or shallow learning, showed 
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long-lasting improvement behaviourally and physiologically for at least six months and generalisation to 

new, untrained materials. 

Special Populations 

So far, we have reviewed findings mainly based on healthy populations. In this section, we will now 

describe the cognitive characteristics of various populations with atypical development and cognition. 

Acalculia 

Acalculia is an acquired impairment in the ability to perform mathematical tasks. It is a heterogeneous 

disorder and can manifest in different forms, i.e. patients might exhibit impairments in number processing 

or calculation or both. It differs from developmental dyscalculia (see section below), as acalculia is usually 

a result of cerebral damage (e.g. Carlomagno, 1999; Girelli et al., 1999) from neurological conditions such 

as stroke or neurodegenerative disease, whereas developmental dyscalculia is a specific developmental 

condition.  

The prevalence of acalculia in patients with left hemispheric injury is estimated between 16% 

and 33%, and about 90% amongst those with early stage Alzheimer’s disease (Carlomagno, 1999; Girelli 

et al., 1999; Humphreys et al., 2012; Mantovan et al., 1999). Findings from lesion studies showed that 

(a) damage to the parietal lobes, the central hub of numerical cognition, does not necessarily result in 

number impairments. Most patients with right parietal lesions demonstrated preserved comprehension of 

core numerical concepts (e.g. Cappelletti and Cipolotti, 2006; Cohen et al., 2007), possibly maintained by 

compensatory mechanisms from other brain regions (e.g. Cappelletti, Freeman and Cipolotti, 2009a); 

(b) damage to other brain regions could also lead to number impairments. For example, (i) damage to the 

frontal and temporal lobes has been reported to result in impaired calculation skills (e.g. Basso, 2009) and 

sometimes to impairments in processing quantity (e.g. Delazer and Butterworth, 1997); (ii) damage to 

subcortical areas can cause impaired quantity processing, arithmetic fact retrieval and conceptual 

knowledge (e.g. Delazer and Benke, 1997; Delazer et al., 2004), and (iii) lesions to posterior regions, the 

areas usually recruited in numerical symbolic and word recognition (Dehaene and Cohen, 1997), have 

shown more subtle number impairments, for example a patient with severe impaired written word 

recognition who could make accurate, albeit slow, semantic decisions on visually presented numbers 

(Cappelletti, Muggleton and Walsh, 2009b).  

Studies on acalculic patients have revealed the independence and multi-componential nature of 

number and calculation processing, through the existence of selective impairment in various particular 

abilities: the comprehension of written arithmetical symbols (e.g. Ferro, 1980; Laiacona, 1997), arithmetic 

fact retrieval (e.g. Dehaene and Cohen, 1991), calculation procedures (e.g. Ardila and Rosselli, 1994), or 

arithmetic conceptual knowledge (e.g. Warrington, 1982). These findings also emphasise the fact that there 

is no one-to-one correspondence between a specific number ability and a specific brain area (see 

Cappelletti, in press) as lesions to different areas can cause similar impairments, or lesions to the same area 

can cause different outcomes. 

Developmental Dyscalculia 

Developmental dyscalculia (DD) is a condition characterised by a specific difficulty in learning or 

understanding arithmetic in otherwise typically-developing individuals. This condition affects 

about 3.5-6.5% of the population (von Aster and Shalev, 2007). Although DD is not as well-known as 

dyslexia, some have suggested that the lack of competence in numeracy has a more severe impact on an 

individual’s life achievements compared to functional illiteracy (S. Parsons and Bynner, 2005). 
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Individuals with DD usually struggle to subitise small numbers of objects, exhibit poor sense of 

number magnitude, employ immature strategies in solving arithmetic problems and demonstrate difficulty 

in retrieving arithmetic facts (Landerl, Bevan and Butterworth, 2004; Rousselle and Noel, 2007). It is 

common that despite producing a correct solution to an arithmetic problem, individuals with DD might 

have done so mechanically and without confidence (DFES, 2001). 

Despite the consistent finding of deficits in elementary numerical processing in DD, the cause 

underlying this condition is not fully understood. Two major problems challenge the classification and 

definition of DD: the co-morbidity with other conditions such as attention-deficit hyperactivity disorder 

(ADHD) and dyslexia, which usually manifest differently in each individual, and myriad potential 

confounding factors which may occur at different and/or multiple levels, i.e. biological, such as atypical 

neural connectivity, cognitive, for example working memory, and psychological, like anxiety. 

Two main hypotheses have been proposed to account for the behaviours observed in individuals with 

DD: the defective number module hypothesis (Butterworth, 2005) and the access deficit hypothesis 

(Rousselle and Noel, 2007). According to the defective number module hypothesis, individuals with DD 

have a highly specific and innate deficit in understanding and processing numerical magnitude in general. 

In contrast, the access deficit hypothesis, as the name implies, suggests that individuals with DD have 

impairments in accessing numerical meaning, such as quantity via symbols.  

More recently however, brain-imaging studies have shown that there are deficient fibre projections in 

the brains of children with DD, and these include the connectivity between parietal, temporal, and frontal 

areas, suggesting a new hypothesis that DD might be a result of a disconnection syndrome (K. Kucian 

et al., 2013; Rykhlevskaia et al., 2009). Considering the functions of these regions, these findings highlight 

the importance of considering domain-general functions, for example, executive functions, inhibitory 

control, shifting of attention, updating, and working memory (see section on Involvement of Other 

Cognitive Domains) in the diagnosis and intervention of dyscalculia. 

Gerstmann Syndrome  

As described previously in this review, Gerstmann Syndrome is an enigmatic condition characterised 

by a tetrad of symptoms including finger agnosia, acalculia, left-right confusion and agraphia, which is the 

loss of the ability to write (Gerstmann, 1940). Over the years, claims that this is a unitary syndrome have 

been criticised and questioned (see Rusconi et al., 2010). The rarity of “pure” Gerstmann syndrome 

patients and the difficulties in characterising the constellation of symptoms challenge the definition, 

theoretical value, clinical prevalence and diagnostic relevance of this condition (Benton, 1991).  

Initially, this condition was thought to be the outcome of damage to the left angular gyrus, a region, 

which was presumed to subserve a single, speculative cognitive function that would link the four observed 

impairments (see Rusconi et al., 2010). It is now generally thought that this condition is related to damage 

of the inferior parietal lobe/superior temporal regions in the dominant hemisphere. It has also been 

proposed that the condition could arise from damage to some other common functional denominator (see 

Kleinschmidt, 2011).  

In addition to the conceptual inconsistencies, there remains a lack of neurofunctional evidence of this 

condition. Recently however, using functional and fibre tracking, Kleinshmidt and Rusconi (2011) 

identified a focal lesion in the left parietal white matter that could account for the specific symptoms 

associated with the condition. Such a lesion was proposed to affect not just a single fibre tract but also 

crossing or overlapping of different fibre tracts, resulting in disconnections in cortical networks and hence 

behavioural deficits. This finding suggests that Gerstmann syndrome could be considered as a 

disconnection syndrome (see also Mayer et al., 1999). Further investigating these clues into the 
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neurological basis of Gerstmann syndrome could potentially shed light on its component symptom of 

acalculia, and through this, the connections that are vital for normal numerical cognition. 

Finger Agnosia 

Finger agnosia is the impairment of the ability to distinguish, name, or recognise one’s own fingers, 

fingers of others, or drawings and other representation of fingers (Ardila, Concha and Rosselli, 2000). 

Individuals with finger agnosia usually have difficulty with selectively moving their fingers, whether it is 

voluntary or by imitation. It occurs as one of the four symptoms of Gerstmann syndrome, but can also exist 

on its own without the presence of other disorders (Sala, 1994). Lesions to the left angular gyrus and 

posterior parietal areas can lead to this condition (Ardila et al., 2000; Sala, 1994). 

As one of the strategies for counting involves using one’s own fingers, it has been suggested that 

mathematical difficulties might be associated with finger agnosia (see Seron, 2012). Repetitive TMS in 

healthy adults on the intraparietal sulcus, supramarginal gyrus, bilateral angular gyrus, and posterior 

parietal areas can induce “virtual” finger agnosia, which is characterised by impairment in naming, 

recognising and distinguishing fingers (Rusconi, Walsh and Butterworth, 2005). Such virtual impairment 

was associated with acalculic behaviour when the parietal lobes were stimulated. The authors concluded 

that the brain regions underlying finger agnosia and acalculia are within close proximity but distinct. 

Maths Anxiety 

Competence in maths relies not only on cognitive abilities, but also on emotional factors and attitudes 

(Dowker, Bennett and Smith, 2012; Maloney and Beilock, 2012). Studies have shown that emotional 

factors greatly affect mathematical performance, and those with mathematics anxiety are particularly 

affected (Baloglu, 2006; Miller, 2004). 

Typically, individuals with maths anxiety panic when they are confronted with a problem involving 

numerical information. It is not limited to questions in maths textbooks, but also daily activities such as 

paying for a bill and/or telling the time. Such type of activities causes worries about the situation and its 

consequences. Therefore, it is unsurprising that those with mathematics anxiety tend to avoid maths-related 

activities, which in turn contribute towards reduced practice and therefore, poor performance 

(Ashcraft, 2002). The lack of self-confidence and the worries regarding performance in maths-related 

situations introduce stress and thereby compromise cognitive resources such as working memory 

(Beilock, 2010). It is also possible that maths anxiety might arise from an individual’s repeated failures and 

poor basic numerical and spatial competence, which is the ability to represent and reason about distance, 

shape, order, and relations involving two- and three- dimensional space, and the communication of such 

information.  

On the other hand, it has been suggested that the development of maths anxiety could stem from 

social factors such as exposure to teachers who themselves experience maths anxiety. In these cases, those 

with initial difficulties in understanding maths are more likely to be affected by such negative social 

influence about maths (Maloney and Beilock, 2012). Additionally, social identity has an influence; 

previous research has shown that only the female students of highly math anxious female teachers who 

adopt the stereotypical perception of “boys are good at math, girls at reading” show such bias and 

perception (Beilock et al., 2010). Together, these findings highlight the contribution and importance of 

affect in the learning of mathematics.   
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Blindness 

Over the last few years, a new line of research has emerged on blindness and numerical cognition. 

Contrary to the common belief that vision is critical for the acquisition of numerical representation and 

skills (Burr and Ross, 2008; Ross, 2010), findings concerning blindness and numerical cognition indicate 

that vision is not necessary (e.g. Cattaneo, 2011b; Szűcs, 2005).  

Szucs and Csepe (2005) found that at the behavioural level, congenitally blind individuals exhibit 

distance and size effects comparable to sighted individuals. At the neural level, the same authors used EEG 

and showed that numerical representation and neural circuits involved in numerical comparison in blind 

individuals are similar to those of their sighted counterparts. The only difference between the two groups 

was the topography of the distance effect detected at the initial phase of numerical comparison process. 

The later stage involving parietal effects was similar between the two groups. It was suggested that the 

deprivation of vision involves the development of a “partially normal number processing network”. It has 

been suggested that blind individuals might rely on compensatory mechanisms that employ high-level 

cognitive resources such as working memory and/or attention when performing on numerical tasks 

(Salillas, 2009; Szűcs, 2005).  

Cattaneo et al. (2011) replicated Szucs and Csepe’s (2005) behavioural findings, and further showed 

that blind and sighted individuals demonstrate similar leftward bias in bisecting numerical intervals in a 

numerical bisection task. These findings suggest the existence of semantic numerical representation with 

similar spatial properties to those typically found in sighted individuals, i.e. a “mental number line” which 

extends from left to right. 

In contrast to these studies, Crollen et al. (2011a) found that although early visual deprivation does 

not prevent the development of numerical representation with similar properties as in sighted individuals, 

the ability to refer to space based on an individual’s body positioning is crucial when mapping numbers 

into space; early-blind participants showed reversed SNARC effect contrary to blind and sighted 

participants in the crossed-hand comparison task. This finding supports the hypothesis that the SNARC 

effect derives from reading habits (Dehaene et al., 1993; but see Shaki and Fischer, 2008).  

More recent research on blindness also suggests that, surprisingly, early visual deprivation might have 

a positive impact on numerical skills. Early blindness seems to involve the development of compensatory 

mechanisms which engage high-level cognitive resources such as attention (Collignon, 2006) and working 

memory (Crollen et al., 2011b; Salillas, 2009), which in combination with numerical mapping abilities, 

contribute to greater numerical skills in blind compared to sighted people. 

Low-Birth Weight and Pre-Term Children 

Advances in neonatal intensive care over the last decades have resulted in increased rate of survival of 

children born very pre-term, which refers to children born at less than 32 weeks gestational age, and/or 

with very low birth weight (<1500 g). These children have shown more and higher rates of difficulties in 

learning mathematics (e.g. Grunau, Whitfield and Davis, 2002; Taylor et al., 1995), are consistently 

reported to have scored poorly on mathematics tests, and receive lower teacher ratings in classroom 

performance in mathematics (Anderson and Doyle, 2003; Botting, 1998; Hagen, 2006; Klebanov, 1994). 

It has been suggested that the degree of low birth weight is associated with the extent of mathematical 

difficulties. For instance, Taylor et al. (1995) found that children born with <750 g birth weight had a 

higher rate of learning difficulty in applied problems than children with 750-1499 g birth weight. Johnson 

and Breslau (2000) found a similar pattern in which the rate of mathematics learning difficulties increased 

with lower birth weight throughout the ≤2500 g range.  
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Neonatal complications and postnatal neurological abnormalities have also been identified as 

contributing factors to difficulties in mathematics learning (Taylor et al, 1998). For example, the severity 

of intraventricular haemorrhage, chronic lung disease, treatment with postnatal steroids, necrotising 

enterocolities, such as infection and inflammation of the intestines, and longer neonatal hospitalisation 

have all been linked with poorer mathematics performance (Sherlock, 2005; Short, 2007; Taylor, Espy and 

Anderson, 2009; Taylor et al., 2006; B.R. Vohr et al., 2003). 

Isaacs et al. (2000) used magnetic resonance imaging (MRI) and found that adolescents who were 

born prematurely with low birth weight showed selective impairment in mathematics processing, 

accompanied by a reduction of bilateral hippocampal volumes. There were no group differences in total 

intracranial volume, suggesting that structural differences in the hippocampus might have given rise to the 

observed difficulties in mathematics learning, although such abnormalities might be due to behaviour, 

rather than the cause of it. In another study, Isaacs and colleagues (2001) discovered a reduced parietal 

grey matter density in children born prematurely, and found that such a reduction is linked with lower 

maths performance at the age of 15 years old, despite controlling for other variables such as gestational age 

and birth weight. 

Figure 4. Reduced grey matter in the left inferior parietal lobe of children with low birth weight 

 

Note: Imaging data showing a region of grey matter in the left inferior parietal lobe that is significantly reduced in size in children with 
very low birth weight. These children also show calculation difficulties 

Source: Isaacs et al. (2001), “Calculation difficulties in children of very low birth weight: A neural correlate”, Brain, Vol. 124, 
http://dx.doi.org/10.1093/brain/124.9.1701. 

To date, there is no consistent finding on whether there is a sex difference in the prevalence of 

mathematical difficulties in children born with low birth weight or prematurely. In two studies, 

O’Callaghan et al. (1996) and Johnson and Breslau (2000) found that the frequency is higher amongst 



 EDU/WKP(2016)10 

 31 

males than females, while others (e.g. Grunau, Whitfield and Fay, 2004; Saigal, 2000; Taylor et al., 2000) 

did not find significant differences between males and females.  

Changes in arithmetic skills with age have also been documented by two longitudinal studies of low 

birth weight children. Saigal et al. (2000) found that when compared to typical controls, there was a greater 

decline in standard scores on the Arithmetic subtest of the WRAT-R from ages eight years to adolescence 

(12-16 years) amongst a cohort who were born with <750 g birth weight. There was a stable mathematical 

difficulty across age according to the study by Breslau et al. (2004) who followed a sample of children 

with other outcomes (Aylward, 2005). 

It is important to note that due to subtle differences in perinatal and neonatal management practices, 

the consequences of children born prematurely and with very low birth weight could differ across eras, 

cohorts and sites (Pinto‐Martin, 2004; B. R. Vohr et al., 2004). To ensure comparable samples, the 

matching of control groups should ideally include factors such as background, socioeconomic status, 

histories of educational interventions, genetic background, parenting characteristics, prenatal drug and 

alcohol exposures (Taylor et al., 2009). This is important as it has been shown, for example, that home 

environment and early learning experiences affect subsequent mathematics achievement at the age of 

10 years (Melhuish, 2008). Moreover, such factors might help to explain why and how some children, even 

those with extreme degrees of low birth weight and/or premature birth, perform well academically despite 

high-risk birth (Anderson and Doyle, 2003) Contribution of both biological and environmental factors such 

as individual differences in the degree of plasticity, or effectiveness of academic instruction, might shed 

light on ways to optimise the development of mathematics skills (Taylor et al., 2009). 

From these summaries of research on mathematical abilities in special populations, it is clear that a 

wide variety of factors can affect mathematical cognition. While much of the extant literature on 

differences in mathematical ability has focused mostly on the comparison of atypical vs. typical 

populations, more recent studies have emphasised the issue of inter- and intra-individual differences. Such 

lines of research have important implications for psychology and education. We will discuss this in the 

next section. 

Inter- and Intra-Individual Differences 

In the following sections, we refer to inter-individual differences as the factors that account for the 

variation between individuals, and intra-individual differences as the factors that account for the 

differences within the same individual. 

Inter-Variability 

Language and Culture 

One profound way in which culture can affect numerical cognition is through language. Although the 

use of Arabic numbers in mathematics is universal across most cultures, including English and Chinese, a 

functional distinction in the brain networks involved in arithmetic tasks has been found between native 

speakers of those two languages. Native English speakers showed reliance on the left perisylvian cortices 

for mental calculation during simple addition tasks, suggesting the use of language-related processes, while 

native Chinese speakers engaged a visuo-premotor association network for the same task (Tang 

et al., 2006), possibly indicating a reliance on visuospatial abilities. The authors suggested that this 

differential biological encoding of numbers, which cannot be accounted for solely by language differences, 

may arise partly from visual reading experiences throughout language acquisition, as well as from other 

factors such as mathematics learning strategies and education systems. Cultural effects on functional brain 

organisation are not limited to mathematics, but have also been reported for other cognitive domains such 
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as object processing (e.g. Goh et al., 2007; Kobayashi, 2007; Paulesu et al., 2000), thus underscoring the 

effects of culture on psychology and biology. 

Mathematics Abilities  

Inter- individual differences in the mathematical brain arise not only cross-culturally, but also vary 

widely based on individual mathematical competence. Neuroimaging studies have revealed the neural 

correlates of some such individual differences. For example, a study by Menon et al. (2000b) showed that 

individuals who performed at ceiling level, termed perfect performers, displayed less activation and 

variability in the left angular gyrus during an arithmetic verification task, but not in other brain regions 

compared to non-perfect performers. This was interpreted as higher functional optimisation in the left 

angular gyrus of perfect performers, who also showed relatively shorter reaction times on the same task 

compared to non-perfect performers, possibly due to long-term practice effects and skill mastery in the 

former group. In another study however, Wu et al. (2009) found the opposite when using the same 

verification task but presenting two different formats, i.e. Arabic vs. Romans numerals. They found that 

better performance was associated with stronger activation within bilateral AG, and greater deactivation, 

classified as neural activity below baseline level, was linked to poorer performance. In the more familiar 

format, the Arabic numerals, there was a greater response in both AG due to less deactivation compared to 

the less automated format, the Roman numerals (Wu et al., 2009). Together, these findings suggest that 

differences in individual automaticity in relation to the type of task, performance level and competence can 

influence numerical processing at the neural level. 

Similarly, Grabner et al. (2007) reported that high-achieving individuals demonstrated greater 

activation within the angular gyrus, middle temporal gyrus, supplementary motor area and medial superior 

frontal gyrus (all left-lateralised) compared to low-achieving individuals when verifying the correctness of 

single-digit and multi-digit multiplication problems. The reverse comparison did not yield any significant 

network of activation present in low- but not high-performers. The activation of the angular gyrus and 

individual level of mathematical competence were positively correlated; individuals with higher 

mathematical competence were supported by a network engaging the left angular gyrus to a higher degree 

than their less competent counterparts. In another study, Grabner et al. (2009) replicated and extended their 

previous findings by showing that after training, there were no group differences in the activation of the 

angular gyrus. This suggests that activation in the left angular gyrus during mathematical tasks may be 

related to the intensive training required in gaining mathematical expertise. 

In another study, Aydin et al. (2007) found structural differences between academic mathematicians 

and non-mathematicians in brain regions implicated in numerical processing. They found higher grey 

matter density (GMD) in the bilateral inferior parietal lobule and left inferior frontal gyrus in 

mathematicians compared to non-mathematicians. They also revealed a positive correlation between time 

spent as a mathematician and the relative increase in GMD in the parietal lobule, suggesting that persistent 

training in mathematics can result in structural modifications in brain regions that subserve numerical 

computation, arithmetic calculation and visual-spatial processing. More recently, another study reported 

that mathematicians have lower GMD in the right IPS, but higher GMD 2 cm anterior, that is, at the right 

superior parietal lobule, compared to non-mathematicians (Sader et al., submitted). This finding contradicts 

previous findings by Molko et al. (2003) that linked poor numerical performance and lower GMD in the 

right IPS, but instead suggested an inverted U-shape relationship between GMD in the right IPS and 

mathematical skills. It seems that exceptional abilities in mathematics were reflected in either increased or 

decreased GMD, depending on the specific brain areas.  

Fehr et al. (2010) later compared a calculation prodigy against typical controls and found that there 

were no significant differences in brain activation patterns during average calculation tasks. Interestingly, 

however, during exceptionally difficult tasks, the prodigy showed activation patterns in areas close to those 
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observed during normal calculation. It was proposed that with intensive practice, skill enhancement leading 

to exceptional performance is achieved through neuroplastic modifications in brain regions initially 

employed for normal calculation, where the initial strategy is increasingly used more efficiently.  

Pesenti et al. (2001) on the other hand, showed that exceptional mathematical abilities might be 

achieved by recruiting different strategies and relying on additional brain areas compared to the 

average-performing individual. Using PET, they showed that a calculation expert relied on not only the 

common brain regions implicated in mathematics processing (bilateral activation with left side 

predominance in the supramarginal gyrus, IPS, inferior occipital and middle occipital gyrus, occipito-

temporal junction and frontal areas), but also activation in the left paracentral lobule, right medial frontal 

gyrus, parahippocampal gyrus, anterior cingulate gyrus and middle occipito-temporal junction, areas 

associated with visuo-spatial working memory, visual imagery, episodic memory and numerical 

processing.  

When Hanakawa et al. (2003) compared qualified Japanese abacus masters to non-expert controls 

during mental calculation, they found that activation patterns in the cerebellum, fusiform gyrus, superior 

pre-central sulcus and posterior parietal cortex were bilaterally symmetrical for the experts but 

left-lateralised for the non-experts. It was speculated that the experts’ greater reliance on these brain areas 

that underlie visuo-spatial and visuo-motor processing might reflect their main strategy employed during 

mental calculation (Hanakawa, 2003).  

Finally, through a PET study, Wu et al. (2009), found that Chinese abacus experts might have relied 

on the same procedures when solving simple and complex addition, with almost no increased workload on 

the complex addition, while non-experts showed dissociable brain activations between simple versus 

complex calculation. The latter group showed activation in areas implicated in language, such as the 

inferior frontal cortex, and visuo-spatial processing, the left fronto-parietal network, during simple 

additions, and stronger activation in regions associated with visuo-spatial processing during complex 

addition problems. 

In sum, both quantitative and qualitative differences have been reported in the neural profiles of 

individuals with differing levels of mathematical competence, with different extent of practice, or with 

reliance on different strategies (see Zamarian and Delazer, in press). Mapping of the trajectory for 

acquisition of mathematical expertise might shed light on the neuroplasticity-related changes that underlie 

the processes of building such high competence. Additionally, such research could help uncover the extent 

to which training would be able to promote changes at both behavioural and neural levels to maximise an 

individual’s potential for mastering mathematics.   

Arithmetic Ability is Not Unitary 

According to Dowker, there is no unitary measure of individual differences in arithmetic. Instead, 

arithmetical ability is composed of a range of components from counting to understanding arithmetical 

principles. This view is supported by the following findings: 

 Patients who become acalculic from brain damage can show selective impairments in knowledge 

of arithmetical facts, in understanding arithmetical concepts, or in understanding and comparing 

the relative magnitude of numbers. Some might show impairments in one of these components 

but show little or no impairment in others (Dehaene and Cohen, 1997; Delazer et al., 2003; 

Demeyere, 2010).  

 Some patients with Alzheimer’s disease and other degenerative brain disorders have also 

demonstrated selective impairment of arithmetic components. For example, some early stage 
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Alzheimer’s disease patients have shown a range of dissociations between arithmetic facts and 

procedures and the ability to understand and compare numbers (Kaufmann et al., 2002). It has 

been suggested that no component is a necessary prerequisite for other components (Dowker, 

in press-b). 

 Neuroimaging studies have also shown that components of arithmetic, and of number 

representation, can engage different brain areas and networks (e.g., Cappelletti et al., 2010; 

Castelli et al., 2006; Chochon et al., 1999; see section on Arithmetic Task-Specific Functional 

Dissociations). 

 In typical adults, individual differences in arithmetic performance was observed even in tasks that 

were expected to result in ceiling effects, such as written and oral counting, transcoding between 

digits and written and spoken number words (Deloche, 1994).  

 Cross-cultural studies have shown that the different components of arithmetic are influenced by 

age and educational background to different degrees. For instance, Dellatolas et al. (2000) 

showed that both factors strongly predicted ability in number comparisons, mental calculation, 

word problem solving, and reading and writing numerals, but had very little influence on 

counting dots, counting backwards, and estimations. In a similar vein, Carraher et al. (1985) 

showed that individuals with little or no schooling might perform poorly at formal written 

arithmetic but extremely well at practical mental arithmetic in the workplace. 

 Some specific language features have also been shown to selectively affect certain components of 

arithmetic. For example, Welsh children studying the same mathematic curriculum as English 

children outperform their English counterparts in reading and comparing two digit-numbers 

(Dowker, Bala and Lloyd, 2008). This advantage was attributed to the relatively more transparent 

counting system in Welsh (which resembles counting in languages such as Chinese and Japanese) 

as compared to English.  

 In studies of children with typical and atypical arithmetical development, numerous studies have 

highlighted specific deficits in various aspects of arithmetic ability and emphasised that “pure” 

dyscalculia rarely occurs (e.g. Desoete, 2004; Gifford, 2012; Jordan, 2003; O. Rubinsten and 

Henik, A., 2009). 

Based on the view that arithmetic consists of different components, some of which are interrelated, 

Catch Up™ Numeracy programme (see Dowker, 2009, pp. 29-30) has been developed and used in schools 

amongst children with mathematical learning difficulties by targeting components that they underperform 

in. Overall, evidence suggests that the mathematical performance is influenced by individual differences 

and is dependent on the task assessed. These are important points to consider when designing both learning 

and intervention materials. It has been suggested individual variability in arithmetic in both typical and 

atypically developing populations might be affected by genetic and environmental factors.  

Genetic and Environmental Contributions to Arithmetic Variability 

Understanding individual differences is also one of the main focuses of genetic studies of learning 

abilities and disabilities. In terms of maths ability, familial studies on developmental dyscalculia have 

revealed a high prevalence of this developmental condition amongst siblings (Alarcon, et al., 1997; Shalev 

et al., 2001), and quantitative genetic studies have suggested concordances (the probability that one twin 

will be affected if the other is affected) of about 70% for monozygotic (MZ) or identical twins, and 50% 

for dizygotic (DZ) or fraternal twins (Oliver, 2004). Such twin studies are valuable source of information 

because considering that twins share many aspects of their environment such as parental upbringing style 
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and education, and “identical” or monozygotic twins share almost 100% of their genes, most of the 

differences between them are likely to be due to experiences that affects one but not the other. Meanwhile, 

“fraternal” or dizygotic twins share only about 50% of their genes and this allows us to study the effects of 

genetic differences and its interaction with environmental effects. A review of twin studies by Plomin and 

Kovas (2005) reported that the average phenotypic variance that is attributed to genetics is about 0.63 for 

mathematics learning abilities and 0.61 for mathematics disabilities. In another study, Kovas et al. (2007) 

found a genetic correlation of 0.67 between reading and mathematics disability, indicating that these 

conditions are likely to be influenced by the same genetic factors. Such results might explain the high 

prevalence of co-morbidities of DD with, for example, dyslexia. A genome-wide association analysis 

further identified ten genetic polymorphisms that might partially account for variation in individual 

mathematics achievement (Docherty et al., 2010). These findings suggest that genetics contributes 

substantially towards explaining differences in both learning difficulties and abilities (Plomin, Kovas and 

Haworth, 2007). 

More recently, a study by Pinel and Dehaene (2013) directly explored the localisation of the cerebral 

regions underlying this genetic contribution. By comparing the functional correlation in the brain 

activation in MZ and DZ twins during a subtraction task, they found that there is a strong genetic 

contribution to the activation of both a superior fronto-parietal set of regions and the left angular gyrus, 

supporting previous studies that have highlighted the high degree of heritability in aspects of anatomical 

structures of this area (e.g. Schmitt et al., 2008; Thompson, 2001). They also found that shared 

environment contributed to the functional lateralisation of the IPS, and that the level of deactivation of the 

left IPS is positively correlated with an individual’s calculation score; those with higher arithmetic score 

showed less deactivation of the left angular gyrus, consistent with previous findings by Grabner et al. 

(2007) and Wu et al. (2009). Future longitudinal studies (similar to Kovas et al., 2007) should explore how 

an individual’s cerebral profile might modulate the acquisition of mathematics knowledge and skills 

throughout education, ideally in children. Such findings will have important implications for the diagnosis, 

treatment and prevention of mathematical difficulties. For example, identifying genes for dyscalculia and 

other, less severe, mathematical deficits will contribute towards new diagnostic classifications that are 

founded upon aetiology rather than symptomatology (Plomin et al., 2007). 

Intra-Individual Variability 

Strategy use 

Performance does not only differ between individuals, but also within the same individual across 

different contexts. Within the context of strategy use for example, factors such as problem features (e.g. 

problem size, type of operation), and individual cognitive capacities (e.g., executive functions) have been 

shown to affect an individual’s strategy choice and, hence, performance. Campbell and Xue (2001) 

reported that retrieval strategy is mostly used in multiplication (98%), followed by addition (88%), 

subtraction (72%) and division (69%). As for the size of problems, Campbell and Xue (2001) found three 

main strategy-related resources of problem size effects in adults: (1) lower frequency of retrieval strategy 

use for large compared to small problems; (2) lower retrieval efficiency for large relative to small problems 

and (3) lower procedural efficiency for large when compared with small problems (Campbell and 

Xue, 2001).  

Lemaire and Lecacheur (2011) reported that increased efficiency in executive functions contributed 

significantly to age-related improvements in children’s skills in strategy choice. In particular, inhibition 

processes and cognitive flexibility were associated with strategy selection and age-related differences in 

strategy choice. In terms of working memory, it has been reported that individuals with higher working 

memory capacity tend to use retrieval strategies more and procedural strategies less (e.g. Barrouillet and 
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Lépine, 2005; Noël, 2004). In children with high working memory spans, memory retrieval was faster than 

their low-span counterparts.  

The examples provided above constitute only the “tip of the iceberg” when it comes to 

intra-individual differences in performance. Other factors such as an individual’s competence in various 

components of arithmetic should also be taken into account (Dowker, 2005). 

After discussing the variation in mathematical abilities between different populations and within 

populations, we will now discuss how intervention is targeted in order to improve cognitive functions, with 

focus on maths.  

Interventions and Cognitive Enhancement  

Interventions for Academic Improvement 

A number of mathematics intervention programmes have been designed to be used as supplementary 

mathematics learning material to children in small groups or individually. However, very few of these 

programmes have been either validated through the use of empirical, peer-reviewed research or informed 

by neuroscience research in their development. Five mathematics intervention programmes that have 

demonstrated support from empirical, peer-reviewed research according to (Kroeger, 2012) are: 

 Accelerated Math (AM): A computerised mathematical assessment and instructional tool for the 

purposes of monitoring practice and progress for students in Grade 1-2. This programme does not 

claim that it was developed based on the neuroscience literature, but it involves elements that are 

included in the triple-code model of numerical processing (see section on The Triple-Code 

Model). For instance, lessons include magnitude comparison and estimation tasks, using the 

quantity system, linking maths facts with their correct answers, which uses the verbal system, and 

practice on multi-digit computation problems, which requires the visual system. AM also targets 

changes in declarative memory and working memory. A large body of research by independent 

research bodies and internal research by the developers has reported statistically significant 

results from using this programme in a range of populations (e.g. Bolt, 2010; Burns, 2010). It was 

reported in these studies that students who have achieved significant academic improvements 

were generally those whose classroom teachers used AM consistently.  

 Corrective Mathematics (CM): A remedial programme for children from Grade 3-12 to be used 

in small- or large-group teaching. Similar to AM, it also has links to the triple-code model, e.g. 

lessons on place value (quantity system), emphasis on fact retrieval (verbal system), and teaching 

of strategies to solve multi-digit arithmetic problems (visual system). CM targets improvements 

in working memory and executive function. So far, the efficacy of this programme has been 

supported by positive results based on independent research studies using CM with a student who 

suffered from brain injury (Glang, 1992), with at-risk secondary school students (Sommers, 

1991), and as part of peer-tutoring programme with secondary school students (J. L. Parsons, 

Martella, Martella, and Waldron-Soler, 2004). In sum, these studies have explored the 

effectiveness of CM in students of different characteristics across various settings and it is 

difficult to establish a clear causal relationship between this programme and students’ 

performance.  

 Fluency and Automaticity through Systematic Teaching (FAST Math): A computerised software 

for children in 2
nd

-12
th
 grades designed to facilitate and improve children’s access to the 

mathematics curriculum via training on fact fluency. This research-based programme focuses on 

several facets of mathematical learning: automaticity, relationship between numerical symbols 
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and their associated verbal representations, which are consistent with the triple-code-model, 

representation of knowledge, and working memory. Although one independent research study 

has reported positive training effects of FAST, it lacks statistical evidence and details concerning 

the groups trained (Kroeger, 2012).  

 Number Worlds: An instructional programme for pre-kindergarten to sixth grade to acquire 

central cognitive understanding of mathematics via training on skills from number sense through 

to algebra. This interactive programme includes the use of computerised, hands-on and paper-

and-pencil activities to teach mathematical concepts. It claims to have consulted neuroscience 

literature in the development of the programme, although the specific research is not described. 

The components of this programme are also consistent with the triple-code model; they include 

understanding the meaning behind quantities (quantity system) and computation proficiency with 

emphasis on accuracy and efficiency (verbal system). The programme also supports changes in 

working memory and executive functions by teaching strategy use. Research by the developers 

showed that NW successfully increases the conceptual understanding of number in children with 

socioeconomic disadvantage (Griffin, 2007).  

 The Number Race (NR): An adaptive software for promoting number sense amongst typically 

developing kindergarteners, and for preventing and remediating dyscalculia in young children 

between 4-8 years old (A. J. Wilson et al., 2006). This programme was developed by Wilson and 

Dehaene, and incorporates elements of the triple-code model: number sense and numerical 

comparison (quantity system), counting numbers (verbal system) and reading Arabic digits 

(visual system). NR targets improvements in working memory by adapting the response window 

and the complexity of response options. The only evident improvement in pre-schoolers who 

played the NR was in number comparison (Kroeger, 2012) and research on its effectiveness has 

been conducted by the developers and their collaborators (Räsänen et al., 2009). 

Other intervention programmes that incorporate neuroscience research include:  

 Siegler and Ramani (2008) designed linear numerical board games based on the concept of the 

number line to promote the numerical development of low-income children. The game involves 

moving a token along a horizontal line, for example in the number version with Arabic digits 

between 1-10, a child will have to move the token on the squares labelled 1-10 based on the 

number indicated on the spinner. By playing this simple linear board game for four 15-minute 

sessions within 2 weeks, 4-year-old children showed significantly more linear representation of 

numbers, comparable to their peers from upper-middle-income backgrounds. The gains were 

reported to still be evident nine weeks later. 

 Rescue Calcularis: Kucian et al. (2011) developed a computer game for training the mental 

number line representation in order to facilitate formation of—and automated access to—spatial 

representation of numbers. After completing 15 minutes per day of training for 5 weeks, groups 

of children aged 8-10 years old, either with or without developmental dyscalculia, both showed 

improved spatial representation of numbers and increase in the number of correctly solved 

arithmetic problems. The authors also examined the neuroplastic effects of training, using fMRI. 

Children showed reduced recruitment of areas involved in number processing, namely, frontal 

areas, bilateral intraparietal sulci, and the left fusiform gyrus, suggesting increased automatisation 

of cognitive processes critical for mathematical reasoning (Ischebeck et al., 2007; Ischebeck 

et al., 2006; Pauli et al., 1994). This study also reported an increased activation in bilateral 

parietal regions including the IPS in a follow-up assessment five weeks later, suggesting that time 

for consolidation is required post-training to establish number representation. 
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Although quite a number of intervention programmes have been developed, more research is 

warranted to establish their efficacy, cost-benefit ratio, and how other factors such as individual differences 

in initial mathematical competence or cognitive abilities might influence the success of these interventions 

(see also R. Cohen Kadosh et al., in press). It seems that most of the existing, commercialised interventions 

are not informed by neuroscience, and the usefulness of neuroscientific knowledge in the education field 

remains to be explored. It is critical that schools, parents and teachers appreciate the challenges involved in 

translating neuroscience research to directly influence classroom learning (Goswami, 2006) and seek 

evidence before investing time, effort and money in marketed interventions. 

Rehabilitation of Arithmetic Skills in Patients  

Acquired acalculia due to brain lesion or injury compromises an individual’s autonomy. However, 

targeted programmes for rehabilitation are rare (Girelli and Seron, 2001; Lochy, Domahs and 

Delazer, 2005). The majority of studies on the rehabilitation of simple calculation skills have adopted a 

drill-based approach, i.e. repetition of problems that are followed by immediate feedback (for discussion, 

see Girelli and Seron, 2001; Lochy et al., 2005). Conceptual approaches have also been used 

(Domahs, 2003; Girelli, Bartha and Delazer, 2002). An increased activation in the right angular gyrus on 

trained compared to untrained problems was observed in a patient with left-hemispheric brain lesion after 

training on multiplication facts (Zaunmuller et al., 2009). The area of increased activation is on the right, 

which suggests increasing recruitment of the hemisphere contralateral to both the lesion and similar to 

typical activation reported for individuals for arithmetic fact retrieval after rehabilitation. However, as this 

is a single case study, this finding should be interpreted with caution as patients typically differ in their 

lesion location, aetiology, functional deficits and so forth (Zamarian et al., 2009). Moreover, there are 

considerable inter-individual differences in the arithmetic performance of healthy adults (e.g. Grabner 

et al., 2007), including factors such as general intelligence (e.g. Kelly, 2006) and level of education, on the 

effects of practice on the brain. 

Enhancement 

Cognitive Training 

Neuroimaging studies have shown that experiences can contribute towards anatomical and functional 

changes in the human brain, even during adulthood (e.g. Zatorre et al., 2012). However, the majority of 

such studies on brain plasticity are based on sensorimotor research. To our knowledge, only one study has 

shown changes in brain correlates of children with DD after training on a neuroscience-inspired computer-

based maths game (Kucian et al., 2011). They identified changes in brain activation after training that 

might indicate more automatic mathematical reasoning, and found that further consolidation of acquired 

knowledge from training takes longer to be expressed at the neural level in DD children (see section on 

Interventions for Academic Improvement). Some other training programmes that target maths and other 

cognitive functions such as working memory have also claimed to contribute towards behavioural 

improvements, but very few are supported by empirical findings (see section on Interventions for 

Academic Improvement).  

As mentioned earlier, academic mathematicians who have undergone extensive and persistent training 

in mathematical thinking for years were found to have significant differences in their brain anatomical 

structures (Aydin et al., 2007). It has been shown that they possess higher grey matter densities than non-

mathematicians in areas supporting numerical processing, calculation and visuospatial processing. As the 

period of time spent as a mathematician was significantly correlated with the relative grey matter density 

increase, this might suggest that long-term, intense practice could result in anatomical changes. However, 

as mathematicians and non-mathematicians were not compared in other cognitive abilities such as IQ and 

working memory, this result should be interpreted with caution. 
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Transcranial Electrical Stimulation  

Transcranial electrical stimulation (tES) is a painless, relatively cheap, and increasingly promising 

tool to be used in combination with cognitive training or learning regimes in healthy populations, 

especially when the use of other interventions have not been successful (Krause and R. Cohen Kadosh, in 

press). tES methods involve the application of a weak electrical current on the scalp above the brain region 

of interest, and are thought to work by modulating the endogenous electrical activity of neuronal 

assemblies in the targeted area (Nitsche and Paulus, 2000). 

It has been shown that one type of tES, transcranial direct current stimulation (tDCS), could 

selectively improve brain functions, including numerical processing (R. Cohen Kadosh et al., 2010; 

Iuculano and R. Cohen Kadosh, 2013; Snowball et al., 2013). Depending on the type of stimulation, i.e., 

anodal or cathodal stimulation, tDCS could enhance or inhibit neuronal functions respectively. Using this 

method, it has been shown that six days of training on artificial numerical symbols while receiving anodal 

tDCS to the right parietal lobe and cathodal tDCS to the left parietal lobe resulted in enhanced performance 

in automatic number  processing and number mapping onto space; meanwhile, the reverse polarity resulted 

in underperformance in both tasks. The enhancement effects remained after six months (R. Cohen Kadosh 

et al., 2010b). However, this proof-of-concept study was carried out on a relatively low number of subjects 

(five in each group), and only the group that showed enhancement was examined after 6 months. Another 

study has shown that simultaneous stimulation of bilateral parietal cortex resulted in improved ability to 

compare numerosities quickly, while stimulation of the left and inhibition of the right parietal cortex 

improved performance on subtraction problems within a single session (T. U. Hauser et al., 2013). 

Together with R. Cohen Kadosh et al. (2010b), the current results support the view that different 

mathematical abilities are subserved by a non-unitary mechanism. 

With respect to arithmetic learning, Snowball et al. (2013) showed that an innovative non-invasive 

brain stimulation technique, transcranial random noise stimulation (tRNS), applied to bilateral DLPFC 

during arithmetic training resulted in short- and long- term improvements, at 6 months, in trained and 

untrained calculation material. Hemodynamic responses measured online by near-infrared spectroscopy 

(NIRS), an optical brain imaging technique, suggested increased neurovascular coupling efficiency within 

the left DLPFC, supporting the observed enhanced behavioural performance.  

Based on the current findings, tES offers a potential intervention tool that can be modulated to 

produce specific and long-lasting effects. However, a recent study revealed that stimulation of the parietal 

cortex while individuals receive training on artificial numerical symbols resulted in faster acquisition of 

these numerical symbols but impaired automaticity of the associations that have already been acquired. In 

contrast, stimulation of the DLPFC resulted in impaired learning of new associations, but increased 

automaticity in the use of acquired associations (Iuculano and R. Cohen Kadosh, 2013). This double 

dissociation indicates that cognitive enhancement might be associated with mental costs, and calls for 

greater attention to monitor psychological side effects as well as further initiatives to optimise stimulation 

and training parameters to avoid such a cost (Logan, 1988). 

Synergy for a Future of Better Learning: Cognitive Neuroscience and Mathematics Learning 

This section is aimed at summarising the current review and highlighting the most relevant and 

promising outcomes from the synergy between cognitive neuroscience research and mathematics learning 

in the classroom. It is important to note that the potential outcomes highlighted below are illustrative, and 

not exhaustive or prescriptive. 
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Research in Practice  

The rapidly growing literature on mathematical learning from the cognitive neuroscience perspective 

is at a stage where it could benefit significantly from collaborations between neuroscientists, experimental 

psychologists, and educators. The collaboration between schools, teachers and neuroscientists would 

enable an inter-disciplinary approach to view and understand how issues in education and learning can be 

evaluated and addressed at multiple levels, such as behavioural, cognitive, and physiological. The 

understanding of how behaviour is an outcome of multiple factors, for example individual differences in 

cognition and interaction with different environments, can raise the awareness amongst parents and 

teachers as well as learners that there is no single factor that “causes” a condition, but instead a variety of 

aspects contribute to a certain outcome (Brown, 1998). 

By sharing expertise and skills from different disciplines, it would be possible to assess more 

rigorously the effectiveness of current practice, identify limitations and opportunities to maximise the 

practical applications in the classroom, advance research ideas, and bridge the relevant fields for closer 

collaboration towards improving not only mathematics learning, but human learning as a whole. 

Teaching and Assessment 

Through further research, additional layers of insight from cognitive neuroscience could potentially 

contribute towards identifying and designing developmentally appropriate content and assessments within 

mathematics curriculum. It addition, further understanding of individual differences in the various aspects 

of mathematics learning could eventually guide the design of mathematics assessments that takes 

individual differences into account. Accurate and detailed assessments are not only vital for monitoring 

self-progress and targeting outcomes, but could also be used to identify flexible individual learning tactics. 

For instance, high performance in certain cognitive domains, for example working memory, might be 

helpful to improve performance in others, such as arithmetic. It is likely that mathematics learning will be 

more effective if teaching is informed by individual differences (Dowker, 2005). Developments in learning 

mediums such as educational games could be an economical and fun way to achieve individualised 

learning (Howard-Jones et al., 2011). 

With further research and collaboration between schools and researchers, future findings might 

contribute towards classroom planning and identification of teaching and learning methods that might be 

more effective depending on students’ learning profiles and the content to be learned. As reflected in this 

brief section, although research within the area of cognitive neuroscience seems to promise exciting 

contributions to mathematics education, there are currently very few implications for mathematics teaching 

at this stage of research. 

Diagnosis and Intervention 

Research into the componential skills of mathematics, and how these skills predict children’s global 

learning and performance in mathematics might be useful for (i) predicting outcomes and (ii) the early 

detection of special needs/attention for intervention. However, there are not many research-based 

interventions in the field of maths (see section on Interventions for Academic Improvement). As a 

consequence, little is known about how parameters such as individual differences and age may interact 

with different training regimes, and how the type of material focused on in the intervention modulates the 

outcome of training. Different individuals might benefit from bottom-up (e.g. focusing on componential 

improvements to improve global performance in mathematics) or top-bottom approach (e.g. improving on 

complex mathematics task while indirectly sharpening basic skills).  
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The research for reliable biomarkers, e.g. neurochemical concentrations, neural connections, 

morphology, as well as the design of reliable, sensitive and cost-effective biofeedback technology could be 

useful in future for diagnosis, and for monitoring response to intervention (e.g. Dahlin et al., 2008). Such 

research would in turn contribute molecular insights into treatment mechanisms. For example, in the study 

of McNab et al. (2009), it was found that cognitive training in healthy participants was linked to changes in 

the density of cortical dopamine D1 receptors using PET scan, and such findings could shed light on the 

mechanisms accompanying the results of cognitive training of children with ADHD (Klingberg, 2005). 

Enhancement 

The potential of incorporating adaptive cognitive training software including fun mathematics games 

into classroom and after school learning for children might help to increase motivation and inject a sense of 

fun into the process and experience of learning mathematics. This might be particularly useful to those 

with mathematics anxiety, or mathematics learning difficulties as performance in games might help them 

to feel that they can perform and improve, to see that the subject that they fear can be fun and relevant in 

other contexts, and that their performance is within their control.  

The use of non-pharmacological form of cognitive enhancement via non-invasive brain stimulation 

might provide an adjuvant or alternative form of intervention for those with mathematics learning 

difficulties. In respect to tES, more research is warranted in the future to establish the optimal parameters 

to achieve desired learning outcomes including stimulation sites, frequency and intensity of stimulation, 

the type of training material, and how age and individual differences might affect the efficacy of tES. 

Methods of enhancements, such as tES, that could reduce the cognitive disparity due to gaps in biological 

(e.g. reduced grey matter) or environmental (e.g. socio-economic) backgrounds would allow more equal 

opportunities for effective learning.  

Challenges and Future Directions 

Cognitive neuroscience research on mathematics learning is continually growing and expanding our 

understanding of mathematics learning. However, consistent with the current state of the emerging field of 

neuroscience and education, there have been very few applications in the classroom (Bruer, 1997; 

Howard-Jones, 2013; The Royal Society, 2011; The Wellcome Trust, 2014; Varma, McCandliss and 

Schwartz, 2008), although some potential contributions to education in general, have been proposed.  

Why is this the case? First of all, despite the exciting prospects of applying cognitive neuroscience 

findings to mathematics learning, or learning in general, few studies have shown ecological validity and 

direct relevance to the mathematics curriculum. Secondly, there is a lack of collaboration between 

mathematics educators and cognitive neuroscientists, which also applies to the general field of 

neuroscience and education, possibly due to a lack of understanding of the goals and roles of each field in 

such efforts (Hook and Farah, 2013; Willingham, 2009). This can negatively affect participant recruitment, 

compromising research sample size, and arguably, the generalisability of findings. The first and second 

points could be a vicious loop, as schools are less likely to collaborate when there is a lack of evidence 

(The Wellcome Trust, 2014) and in turn, there will be a lack of research if there is little collaboration. 

Thirdly, the process of translating and integrating cognitive neuroscience and mathematics education share 

similar challenges of the umbrella field of “neuroscience and education”, including disciplinary differences 

in goals, practices, analyses and expectations of the two fields (see Willingham, 2009).  

So, what would need to happen for this to change? We have a few suggestions. Firstly, there need to 

be more cognitive neuroscience studies with clear, practical implications for the mathematics curriculum 

without sacrificing basic research at the same time. Funding bodies and governments should encourage and 

support more integrated research efforts between cognitive neuroscientists and mathematics educators. In 
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the UK, this step has been recently achieved by the joint effort of the Wellcome Trust and Education 

Endowment Foundation. Such efforts could begin by encouraging policy makers, representatives of 

researchers, teachers, and parents to discuss this research in workshops, and gather information via reports 

and surveys to assess the appetite, areas, and challenges for integrating knowledge and practice of 

cognitive neuroscience and mathematics education. Greater understanding of the goals and roles of 

professionals in these fields might foster future collaborations that benefit both fields. Finally, with further 

collaborations and research, such research developments could be integrated into teacher training. This 

could be useful as one current survey suggests that more than 90% of teachers think that their 

understanding of neuroscience influences their practice, teachers tend to learn about interventions from 

schools and other teachers instead of scientific and academic sources, and that 77% of teachers would like 

neuroscience to be integrated into their training (The Wellcome Trust, 2014). Similarly, researchers in the 

field of cognitive neuroscience should also gain some practical experience of how mathematics learning 

occurs in the classroom to refine the targets of their research ideas for more direct classroom implications. 

Both cognitive neuroscientists and mathematics teachers should have open conversations through joint 

workshops and training to foster a more integrative view of mathematics learning and research.  

Every burgeoning field has its own strengths and challenges. Constructive collaborations between 

professionals from different fields are crucial to ensure that the potential of cognitive neuroscience to 

improve mathematics education can be realised and that the challenges can provide impetus for further 

improvements in mathematics research and education. 

Conclusions 

Research in cognitive neuroscience has allowed the possibility of exploring the neural basis of 

complex and sophisticated cognitive processes such as numerical cognition. Using an expanding range of 

tools from single-cell recording to brain stimulation, progress is being made in not only localising brain 

regions involved in specific functions, but also mapping the complexity of networks engaged in 

mathematical learning. Overall, advances in cognitive neuroscience research is beginning to shed light on 

the ontogeny of mathematical cognition, how cognition and behavioural performance can be modulated 

based on the knowledge on neuroplasticity, and how such findings can be used as a model to understand 

the workings of the brain as a whole. Collaborations between scientists and educators and professionals 

relevant to the field of mathematics learning promises further advances in the understanding of not only 

mathematical cognition, but also learning in general, with long-term implications to enrich the mental 

wealth of mankind.  
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APPENDEX A: INTRODUCTION TO BASIC BRAIN ANATOMY AND REGIONS INVOLVED 

IN NUMERICAL COGNITION 

Brain Structures 

Term Description 

Gyrus (plural, Gyri) A ridge on the cerebral cortex 

Sulcus (plural, Sulci) A “furrow”, depression or fissure in the cortex 

 
 

Anatomical Directional Terminology of the Brain 

 

Term Description 

Rostral/ Anterior Head/ Front end 

Caudal/ Posterior Tail/ Hind end 

Dorsal/ Superior Back/ Top side 

Ventral/Inferior Belly/ Bottom side 

Lateral Away from the midline 

Medial Toward the midline 

Proximal Closer 

Distal Farther away 

Contralateral The opposite hemisphere 

Bilateral Both hemispheres 

 

 

Figure A.1. Anatomical directional terms of the brain 
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Figure A.2. Brain regions involved in numerical cognition 
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APPENDIX B: BASIC TECHNIQUES AND PARADIGMS OF NEUROSCIENCE AND 

PSYCHOLOGY 

Important insights into brain function, cognition and behaviour have been derived from the fields of 

neuroscience and psychology: notably, the traditional case studies of patients with brain lesions (see 

section on Acalculia). Advances in the field of neuroimaging, in particular, have allowed researchers to 

study the living brain using non-invasive tools.   

We would first like to introduce the different neuroscientific methods that have been used to examine 

brain response to mathematical processing and learning, and the typical behavioural paradigms that are 

used in this field of research. The different techniques and behavioural paradigms are presented in Table 1 

and Table 2 (respectively), together with a short description. 

Table A.1. Neuroscientific Techniques 

Technique Description 

Single-cell/unit recording An invasive method to measure the response of a single neuron using a 
microelectrode. A microelectrode is placed within or closely to the cell to 
record the rate of change in voltage (following the current generated by a 
firing neuron) over time within or outside the cell). This method is used in 
animals. 

Positron Emission Tomography 
(PET) 

An imaging technique that relies on radiation (nuclear magnetic imaging) 
to generate 3-dimensional coloured images of functional processes within 
the human body. It can capture chemical and physiological changes 
related to metabolism instead of just anatomy and structure. It functions 
by detecting signals emitted indirectly by a radioactive tracer injected into 
the body.   

Magnetic Resonance Spectroscopy 
(MRS) 

This method is used to study changes in energy usage in the brain. It 
uses signals from protons to determine the relative concentrations of 
substances that are produced during chemical processes in the brain. 

Electroencephalography (EEG) This is used to record the brain’s electrical activity using electrodes on the 
scalp. One of the derivatives of this technique is a method called event-
related potentials (ERPs), the averaged EEG responses that are time-
locked to the presentation of a stimulus. 

Functional Magnetic Resonance 
Imaging (fMRI) 

A non-invasive procedure that measures brain activity. As brain activity 
requires oxygen, it is based on the change between oxygen-rich and 
oxygen-poor blood, and blood flow, which is termed the blood-oxygen-
level-dependent (BOLD) contrast.  

Diffusion Tensor Imaging (DTI) A technique used to reveal microscopic details of tissue architecture 
through mapping the diffusion process of molecules, mainly water in 
biological tissues.  

Near-Infrared Spectroscopy (NIRS) An optical brain imaging technique used to assess brain activation by 
transmitting near-infrared light through the scalp and measuring how it 
passes through the cortex. It registers online changes in biological 
processes (e.g. blood flow and blood oxygenation) triggered by neural 
activity.  

1. Non-invasive brain 
stimulation (NIBS) 

2. Transcranial Magnetic 
Stimulation (TMS) 

3. Transcranial Direct 
Current Stimulation (tDCS) 

4. Transcranial Random 
Noise Stimulation (tRNS) 

1. This method uses an alternating current to create 
magnetic field pulses, which transiently induce or suppress 
activity in particular brain regions with relatively minimal 
discomfort in order to study brain functions. 

2. A form of brain stimulation that involves the delivery of 
constant, low electric current (e.g., 1-2mA) to the scalp 
over the brain region of interest via small electrodes (e.g., 
25 cm

2
) to alter spontaneous cortical activity during 

behavioural tasks. It can enhance (anodal tDCS) or reduce 
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5. Transcranial Alternating 
Current Stimulation (tACS) 

(cathodal tDCS) the ease of neuronal firing, in some cases 
with long-lasting effects.  

3. This is a relatively new technique similar to tDCS, but 
using a random electrical oscillation spectrum rather than 
a constant current. In contrast to tDCS, this type of 
stimulation is mainly used to enhance brain activity. 

4. This type of stimulation involves the application of 
alternating electric currents at specific frequencies on the 
scalp to modulate on-going rhythmic brain activity. 

Table A.2. Behavioural Paradigms and Tasks Used to Examine Mathematical Cognition and their Description 

Paradigm/Task Description 

Violation of expectation  This is the main method for studying infants’ knowledge of their physical 
world. This paradigm is based on the assumption that infants will show 
increased attention toward events that violate their physical 
understanding of the world. This increased attention is measured by the 
extent of their “eye gaze”; infants tend to look at a particular object for 
longer if it violates their expectation (e.g. if a ball seems to defy gravity). 

Habituation  This is one of the methods typically used in infant studies to study 
perception or cognitive abilities. Habituation occurs when a stimulus (e.g., 
image, sound or smell) is repeatedly presented until the infant “gets used 
to it” and stops responding to the stimulus (e.g., reduced looking 
behaviour) as a result of familiarisation. When changes are made to the 
accustomed stimulus, the infant resumes normal looking behaviour (this 
is called “dishabituation”.) 

Verification This task typically requires a subject to verify, i.e., answer “Yes” or “No” to 
a statement or a sum. The response can be made verbally or manually 
(usually by button pressing on a keyboard, e.g. “Z” button for “Yes”, and 
“/” button for “No”) and is measured in terms of accuracy and time taken 
to respond (“reaction time”).  

Number line estimation/bisection This task is used to investigate an individual’s representation of 
magnitude. Usually, a horizontal line is presented with fixed anchors on 
either ends such as 0 and 10 or 0 and 100, and subjects are asked to 
map a specific number, e.g., 39 on this line. The accuracy of response 
(i.e., deviation from the correct position) is usually measured and the 
responses can be plotted to determine the subject’s internal 
representation of numbers and magnitude.  

Number judgments  Depending on the task instructions, this could involve judging 1) whether 
one number in a pair is larger or smaller in magnitude than the other, 2) 
whether a given number is larger or smaller in magnitude than a 
remembered reference number (e.g., 5), or 3) whether a given number is 
odd or even. Answers are typically given by button-press (e.g., using 
designated keys on a keyboard), and reaction times and accuracy are 
measured. These tasks are usually used to investigate an internal 
numerical representation.  

Number Stroop task/Size congruity Stroop tasks are used to investigate how one aspect of a stimulus (e.g. its 
size) can interfere with other aspects (e.g. its meaning). A participant will 
see various stimuli for which those 2 aspects are either congruent (e.g. 
physically larger numeral is also larger magnitude), incongruent, or 
neutral. For example in a number Stroop task, when asked to judge which 
number is bigger in magnitude, the response to 8 vs. 5 is usually slower 
than 8 vs. 5 because the physical size of the numbers interferes with the 
processing of their numerical size.  

Priming This task is based on the finding that priming, i.e. seeing or hearing a 
particular stimulus (the “cue”), will make future responses to that stimulus 
easier and faster. Conversely, responses to stimuli that are incongruent, 
or very different to the cue (e.g. small versus large numbers), will become 
slower and more difficult.  
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