Annex A

TECHNICAL NOTES

Annex A1: Technical Background
Annex A2: Summary descriptions of the five levels of reading proficiency.

Annex A1. Construction of indices and other derived measures from the student and school context questionnaires

This section explains the indices derived from the student and school context questionnaires that are used in this report.
Several of PISA's measures reflect indices that summarise responses from students or school representatives (typically principals) to a series of related questions. The questions were selected from larger constructs on the basis of theoretical considerations and previous research. Structural equation modelling was used to confirm the theoretically expected behaviour of the indices and to validate their comparability across countries. For this purpose, a model was estimated separately for each country and collectively for all OECD countries.
For a detailed description of other PISA indices and details on the methods see the PISA 2000 Technical Report (OECD, 2002) or the PISA 2003 Technical Report (OECD 2005b).

Unless otherwise indicated, where an index involves multiple questions and student responses, the index was scaled using a weighted maximum likelihood estimate (WLE) (see Warm, 1985), using a one-parameter item response model, which in the case of items with more than two categories was the Partial Credit Model. The scaling was done in three stages:

- The item parameters were estimated from equal-sized sub-samples of students from each OECD country.
- The estimates were computed for all students and all schools by anchoring the item parameters obtained in the preceding step.
- The indices were then standardised so that the mean of the index value for the OECD student population was zero and the standard deviation was one (countries being given equal weight in the standardisation process).

To illustrate the meaning of the international scores on the index, item maps were constructed that relate the index value to typical student responses to the questions asked. These item maps can be found on the website www.pisa.oecd. org. The vertical lines on the maps indicate for each of the index scores at the top of the figure which response a student is most likely to give, with zero representing the average student response across OECD countries.
It is important to note that negative values for an index do not necessarily imply that students responded negatively to the underlying questions. A negative value merely indicates that a group of students (or all students, collectively, in a single country) or principals responded less positively than all students or principals did on average across OECD countries. Likewise, a positive value on an index indicates that a group of students or principals responded more favourably, or more positively, than students or principals did, on average, in OECD countries.
Terms enclosed in brackets $<>$ in the following descriptions were replaced in the national versions of the student and school questionnaires by the appropriate national equivalent. For example, the term <qualification at ISCED level 5A> was translated in the United States into "Bachelor's degree, post-graduate certificate program, Master's degree program or first professional degree program". Similarly the term <classes in the language of assessment> in Luxembourg was translated into "German classes" or "French classes" depending on whether students received the German or French version of the assessment instruments.
For additional information on how these indices were constructed, see the PISA 2000 Technical Report (OECD, 2002) or the PISA 2003 Technical Report (OECD, 2005b).

Student level variables

Student background

Family structure

Students were asked to report who usually lived at home with them. The response categories were then grouped into four categories: i) single-parent family (students who reported living with one of the following: mother, father, female guardian or male guardian); ii) nuclear family (students who reported living with a mother and a father); iii) mixed family (students who reported living with a mother and a guardian, a father and a guardian, or two guardians); and iv) other response combinations. Non responses are maintained as missing.

Parental occupations

Students were asked to report their mothers' and fathers' occupations, and to state whether each parent was in fulltime paid work; part-time paid work; not working but looking for a paid job; or "other". The open-ended responses for occupations were then coded in accordance with the International Standard Classification of Occupations (ISCO 1988).

The PISA international socio-economic index of occupational status (ISEI) was derived from students' responses on parental occupation. The index captured the attributes of occupations that convert parents' education into income. The index was derived by the optimal scaling of occupation groups to maximise the indirect effect of education on income through occupation and to minimise the direct effect of education on income, net of occupation (both effects being net of age). For more information on the methodology, see Ganzeboom et al. (1992). The highest international socio-economic index of occupational status (HISEI) corresponds to the highest ISEI of either the father or the mother.

Index of economic, social and cultural status

The index of economic, social and cultural status was created to capture wider aspects of a student's family and home background in addition to occupational status and is a variation of the index used in PISA 2000. It was derived from the following variables: i) the highest international socio-economic index of occupational status of the father or mother; ii) the highest level of education of the father or mother converted into years of schooling (for the conversion of levels of education into years of schooling see Table A1.1); and iii) the number of books at home as well as access to home educational and cultural resources, obtained by asking students whether they had at their home: a desk to study at, a room of their own, a quiet place to study, a computer they can use for school work, educational software, a link to the Internet, their own calculator, classic literature, books of poetry, works of art (e.g. paintings), books to help with their school work, and a dictionary. The rationale for the choice of these variables was that socio-economic status is usually seen as being determined by occupational status, education and wealth. As no direct measure on parental wealth was available from PISA, access to relevant household items was used as a proxy. The student scores on the index are factor scores derived from a Principal Component Analysis which are standardised to have an OECD mean of zero and a standard deviation of one.

The Principal Component Analysis was also performed for each participating country to determine to what extent the components of the index operate in similar ways across countries. The analysis revealed that patterns of factor loadings were very similar across countries, with all three components contributing to a similar extent to the index. For the occupational component, the average factor loading was 0.81 , ranging from 0.72 to 0.86 across countries. For the educational component, the average factor loading was 0.80 , ranging from 0.70 to 0.87 across countries. For the wealth component, the average factor loading was 0.76 , ranging from 0.65 to 0.80 across countries. The reliability of the index ranged from 0.56 to 0.77 . These results support the cross-national validity of the index of economic, social and cultural status.
The correlation between the average value on the index and the Gross Domestic Product of countries is 0.62 (increasing to 0.69 when Luxembourg is removed).
The index used in PISA 2000 (OECD, 2001b) was similar to the one used for PISA 2003. However, some adjustments were made. First of all, only 11 questions on home educational resources were common to both surveys. Second, for the question on parental levels of education no distinction had been made in PISA 2000 between university-level and non-university tertiary education. Where comparisons between 2000 and 2003 data are made, the index for PISA 2000 was recomputed on the basis of a common methodology used for both assessments. Results may therefore differ slightly
from those reported in PISA 2000. This being said, the correlation between the PISA 2000 and PISA 2003 indices is very high (R of 0.96). This shows that different methods of computation of the indices did not have a major impact on the results. For more information on this index see the PISA 2003 Technical Report (OECD, 2005b).

Table A1.1
Levels of parental education converted into years of schooling

	Did not go to school	Completed ISCED Level 1 (primary education)	Completed ISCED Level 2 (lower secondary education)	Completed ISCED Levels 3B or 3C (upper secondary education providing direct access to the labour market or to ISCED 5B programmes)	Completed ISCED Level 3A (upper secondary education providing access to ISCED 5A and 5B programmes)	Completed ISCED Level 5A (university level tertirary education)	Completed ISCED Level 5B (nonuniversity tertiary education)
Australia	0.0	6.5	10.0	11.0	12.0	15.0	14.0
Austria	0.0	4.0	8.0	9.0	13.0	17.0	15.0
Belgium	0.0	6.0	8.0	12.0	12.0	16.0	15.0
Canada	0.0	6.0	9.0	12.0	12.0	17.0	15.0
Denmark	0.0	6.0	9.0	12.0	12.0	15.0	14.0
France	0.0	5.0	9.0	11.0	12.0	14.0	14.0
Germany	0.0	4.0	10.0	11.0	12.0	17.0	15.0
Luxembourg	0.0	6.0	9.0	12.0	13.0	17.0	17.0
Netherlands	0.0	6.0	8.0	12.0	13.0	15.0	13.0
New Zealand	0.0	6.0	10.0	12.0	13.0	16.0	16.0
Norway	0.0	7.0	10.0	13.0	13.0	16.0	14.0
Sweden	0.0	6.0	9.0	12.0	12.0	15.0	13.5
Switzerland	0.0	6.0	9.0	11.0	12.0	15.0	14.0
United States	0.0	6.0	9.0	a	12.0	15.0	14.0
Hong Kong-China	0.0	6.0	9.0	11.0	13.0	17.0	16.0
Russian Federation	0.0	4.0	9.0	11.0	11.0	15.0	13.0

Educational level of parents

Parental education is a family background variable that is often used in the analysis of educational outcomes. Indices were constructed using information on the educational level of the father, the educational level of the mother, and the highest level of education between the two parents, referred to as the highest educational level of parents. Students were asked to identify the highest level of education of their mother and father on the basis of national qualifications, which were then coded in accordance with the International Standard Classification of Education (ISCED 1997, see OECD, 1999) in order to obtain internationally comparable categories of educational attainment. The resulting categories were: (0) for no education; (1) for the completion of $<$ ISCED Level $1>$ (primary education); (2) for completion of <ISCED Level 2> (lower secondary education); (3) for the completion of <ISCED Level 3B or 3C> (vocational/pre-vocational upper secondary education, aimed in most countries at providing direct entry into the labour market); (4) for completion of <ISCED Level 3A> (upper secondary education, aimed in most countries at gaining entry into tertiary-type A (university level) education) and/or <ISCED Level 4> (non-tertiary post-secondary); (5) for qualifications in <ISCED 5B> (vocational tertiary); and (6) for completion of $<$ ISCED Level 5A, 6> (tertiary-type A and advanced research programmes)

As noted above, the highest level of educational attainment of the parents was also converted into years of schooling using the conversion coefficients shown in Table A1.1.

Immigration background

The index on immigrant background was derived from students' responses to questions about whether or not their mother and their father were born in the country of assessment or in another country. The response categories were then grouped into three categories: i) "native" students (those students born in the country of assessment or who had at least one parent born in that country); ii) "second-generation" students (those born in the country of assessment but whose parents were born in another country); and iii) "first-generation" students (those born outside the country of assessment and whose parents were also born in another country). For some comparisons, first-generation and secondgeneration students were grouped together.

Language used at home

Students were asked if the language spoken at home most of the time or always was the language of assessment, another official national language, other national dialect or language, or another language. The index on language spoken at home distinguishes between students who report using the language of assessment, another official national language, a national dialect or another national language always or most of the time at home and those who report using another language always or most of the time at home.
In most countries, the languages were individually identified and were coded internationally to allow for further research and analysis in this area.

School climate (students'views)

Attitudes towards school

The PISA index of attitudes towards school was derived from students' reported agreement with the following statements: i) school has done little to prepare me for adult life when I leave school; ii) school has been a waste of time; iii) school helped give me confidence to make decisions; and iv) school has taught me things which could be useful in a job. A four-point scale with the response categories "strongly agree" (=1), "agree" (=2), "disagree" $(=3)$ and "strongly disagree" (=4) was used. As items iii) and iv) were inverted for scaling, positive values on this index indicate positive attitudes towards school. Scale construction was done using IRT scaling.

Sense of belonging at school

The PISA index of sense of belonging at school was derived from students' reported agreement that school is a place where: i) I feel like an outsider (or left out of things); ii) I make friends easily; iii) I feel like I belong; iv) I feel awkward and out of place; v) other students seem to like me; and vi) I feel lonely. A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. Items ii), iii), and v) are inverted for scaling and positive values indicate positive feelings about the students' school. This index was constructed using IRT scaling.

Self-related cognitions in mathematics

Interest in and enjoyment of mathematics

The PISA index of interest in and enjoyment of mathematics was derived from students' reported agreement with the following statements: i) I enjoy reading about mathematics; ii) I look forward to my mathematics lessons; iii) I do mathematics because I enjoy it; and iv) I am interested in the things I learn in mathematics. A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. All items were inverted for IRT scaling and positive values on this index indicate higher levels of interest in and enjoyment of mathematics. This index was constructed using IRT scaling.

Instrumental motivation in mathematics

The PISA index of instrumental motivation in mathematics was derived from students' reported agreement with the following statements: i) making an effort in mathematics is worth it because it will help me in the work that I want to do later on; ii) learning mathematics is important because it will help me with the subjects that I want to study further on in school; iii) mathematics is an important subject for me because I need it for what I want to study later on; and iv) I will learn many things in mathematics that will help me get a job. A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. All items were inverted for scaling and positive values on this index indicate higher levels of instrumental motivation to learn mathematics. This index was constructed using IRT scaling.

Self-efficacy in mathematics

The PISA index of self-efficacy in mathematics was derived from students' reported level of confidence with the following calculations: i) using a <train timetable>, how long it would take to get from Zedville to Zedtown; ii) calculating how much cheaper a TV would be after a 30 per cent discount; iii) calculating how many square metres of tiles you need to cover a floor; iv) understanding graphs presented in newspapers; solving an equation like $3 \mathrm{x}+5=17$; v) finding the actual distance between two places on a map with a $1: 10,000$ scale; vi) solving an equation like $2(x+3)=$ $(\mathrm{x}+3)(\mathrm{x}-3)$; and vii) calculating the petrol consumption rate of a car. A four-point scale with the response categories "very confident", "confident", "not very confident", "not at all confident" was used. All items were inverted for scaling and positive values on this index indicate higher levels of self-efficacy in mathematics. This index was constructed using IRT scaling.

Anxiety in mathematics

The PISA index of anxiety in mathematics was derived from students' reported agreement with the following statements: i) I often worry that it will be difficult for me in mathematics classes; ii) I get very tense when I have to do mathematics homework; iii) I get very nervous doing mathematics problems; iv) I feel helpless when doing a mathematics problem; and v) I worry that I will get poor <marks> in mathematics. A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. All items were inverted for scaling and positive values on this index indicate higher levels of mathematics anxiety. This index was constructed using IRT scaling.

Self-concept in mathematics

The PISA index of self-concept in mathematics was derived from students' level of agreement with the following statements: i) I am just not good at mathematics; ii) I get good < marks> in mathematics; iii) I learn mathematics quickly; iv) I have always believed that mathematics is one of my best subjects; and v) in my mathematics class, I understand even the most difficult work. A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. Items ii), iii), iv), and v) were inverted for scaling and positive values on this index indicate a positive self-concept in mathematics. This index was constructed using IRT scaling.

Expected educational level

In PISA 2003 students were asked about their educational aspirations. Educational levels were classified according to International Standard Classification of Education (OECD, 1999).

An index on the expected educational level was developed with the following categories: i) did not go to school; ii) completed ISCED Level 1 (primary education); iii) completed ISCED Level 2 (lower secondary education); iv) completed ISCED Levels 3B or 3C (upper secondary education providing direct access to the labour market or to ISCED 5B programmes); v) completed ISCED Level 3A (upper secondary education providing access to ISCED 5A and 5B programmes); vi) completed ISCED Level 5A (university level tertiary education); and vii) completed ISCED Level 5B (non-university level education).

Classroom climate

Teacher support

The PISA index of teacher support was derived from students' reports on the frequency with which: i) the teacher shows an interest in every student's learning; ii) the teacher gives extra help when students need it; iii) the teacher helps students with their learning; iv) the teacher continues teaching until the students understand; and v) the teacher gives students an opportunity to express opinions. A four-point scale with the response categories "every lesson", "most lessons", "some lessons' and "never or hardly ever" was used. All items were inverted for scaling and positive values on this PISA 2003 index indicate perceptions of higher levels of teacher support. This index was constructed using IRT scaling.

Disciplinary climate

The PISA index of disciplinary climate was derived from students' reports on the frequency with which, in their mathematics lessons: i) students don't listen to what the teacher says; ii) there is noise and disorder; iii) the teacher has to wait a long time for students to <quieten down>; iv) students cannot work well; and v) students don't start working for a long time after the lesson begins. A four-point scale with the response categories "every lesson", "most lessons", "some lessons", and "never or hardly ever" was used. Positive values on this PISA 2000/2003 index indicate perceptions
of a more positive disciplinary climate whereas low values indicate a more negative disciplinary climate. This index was constructed using IRT scaling.

School level variables

Indicators of school resources

Quantity of teaching staff at school

School principals reported the number of full-time and part-time teachers in total, of full-time and part-time teachers fully certified by <the appropriate authority>, of full-time and part-time teachers with an <ISCED 5A> qualification in <pedagogy>. From this an index of total student-teacher ratio is obtained by dividing the school size by the total number of teachers. The number of part-time teachers contributes 0.5 and the number of full-time teachers contributes 1.0 to the total number of teachers.

School resources

Quality of the school's physical infrastructure

The PISA index of the quality of the school's physical infrastructure was derived from three items measuring the school principals' perceptions of potential factors hindering instruction at school: i) school buildings and grounds; ii) heating/cooling and lighting systems; and iii) instructional space (e.g. classrooms). A four-point scale with the response categories "not at all", "very little", "to some extent", and "a lot" was used. All items were inverted for scaling and positive values indicate positive evaluations of this aspect. This index was constructed using IRT scaling.

Quality of the school's educational resources

The PISA index of the quality of the school's educational resources was derived from seven items measuring the school principals' perceptions of potential factors hindering instruction at school: i) instructional materials (e.g. textbooks); ii) computers for instruction; iii) computer software for instruction; iv) calculators for instruction; v) library materials; vi) audio-visual resources; and vii) science laboratory equipment and materials. A four-point scale with the response categories "not at all", "very little", "to some extent", and "a lot" was used. All items were inverted for scaling and positive values indicate positive evaluations of this aspect. This index was constructed using IRT scaling.

Teacher shortage

The PISA index on teacher shortage was derived from items measuring the school principal's perceptions of potential factors hindering instruction at school. These factors are a shortage or inadequacy of: i) qualified mathematics teachers; ii) qualified science teachers; iii) qualified <test language> teachers; iv) qualified foreign language teachers; and v) experienced teachers. For PISA 2003 these items were administered together with the items on the quality of physical environment and educational resources. A four-point scale with the response categories "not at all", "very little", "to some extent" and "a lot" is used. The items were not inverted for scaling and positive values indicate school principal's reports of teacher shortage at a school. This index was constructed using IRT scaling.

School climate (school principals'views)

School principals' perceptions of teacher morale and commitment

The PISA index of teacher morale and commitment was derived from items measuring the school principals' perceptions of teachers with the following statements: i) the morale of teachers in this school is high; ii) teachers work with enthusiasm; iii) teachers take pride in this school; and iv) teachers value academic achievement. A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. All items were inverted for scaling and the categories "disagree" and "strongly disagree" were combined into one category. Positive values indicate principals' reports of higher levels of teacher morale and commitment. This index was constructed using IRT scaling.

School principals' perceptions of teacher-related factors affecting school climate

The index of teacher-related factors affecting school climate was derived from items measuring the school principals' reports of potential factors hindering the learning of students at school with the following statements: i) teachers' low expectations of students; ii) poor student-teacher relations; iii) teachers not meeting individual students' needs; iv)
teacher absenteeism; v) staff resisting change; vi) teachers being too strict with students; and vii) students not being encouraged to achieve their full potential. A four-point scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. All items were inverted for scaling and positive values indicate positive evaluations of this aspect. This index was constructed using IRT scaling.

School principals' perceptions of student-related factors affecting school climate

The index of student-related factors affecting school climate was derived from items measuring the school principals' perceptions of potential factors hindering the learning of students at school with the following statements: i) student absenteeism; ii) disruption of classes by students; iii) students skipping classes; iv) students lacking respect for teachers; v) students' use of alcohol or illegal drugs; and vi) students intimidating or bullying other students. A fourpoint scale with the response categories "strongly agree", "agree", "disagree" and "strongly disagree" was used. All items were inverted for Iscaling and positive values indicate positive evaluations of this aspect. This index was constructed using IRT scaling.

Figure A2.1■ Combined Reading Literacy Scale

Level
 Distinguishing features of tasks at each level:

Level 5 The reader must: sequence or combine several pieces of deeply embedded information, possibly drawing on information from outside the main body of the text; construe the meaning of linguistic nuances in a section of text; or make evaluative judgements or hypotheses, drawing on specialised knowledge. The reader is generally required to demonstrate a full, detailed understanding of a dense, complex or unfamiliar text, in content or form, or one that involves concepts that are contrary to expectations. The reader will often have to make inferences to determine which information in the text is relevant, and to deal with prominent or extensive competing information.
Level 4 The reader must: locate, sequence or combine several pieces of embedded information; infer the meaning of a section of text by considering the text as a whole; understand and apply categories in an unfamiliar context; or hypothesise about or critically evaluate a text, using formal or public knowledge. The reader must draw on an accurate understanding of long or complex texts in which competing information may take the form of ideas that are ambiguous, contrary to expectation, or negatively worded.
Level 3 The reader must: recognise the links between pieces of information that have to meet multiple criteria; integrate several parts of a text to identify a main idea, understand a relationship or construe the meaning of a word or phrase; make connections and comparisons; or explain or evaluate a textual feature. The reader must take into account many features when comparing, contrasting or categorising. Often the required information is not prominent but implicit in the text or obscured by similar information.
Level 2 The reader must: locate one or more pieces of information that may be needed to meet multiple criteria; identify the main idea, understand relationships or construe meaning within a limited part of the text by making low-level inferences; form or apply simple categories to explain something in a text by drawing on personal experience and attitudes; or make connections or comparisons between the text and everyday outside knowledge. The reader must often deal with competing information.
Level 1 The reader must: locate one or more independent pieces of explicitly stated information according to a single criterion; identify the main theme or author's purpose in a text about a familiar topic; or make a simple connection between information in the text and common, everyday knowledge. Typically, the requisite information is prominent and there is little, if any, competing information. The reader is explicitly directed to consider relevant factors in the task and in the text.
Below There is insufficient information to describe features of tasks at this level. Level 1

Annex \mathbf{B}

DATA TABLES FOR CHAPTERS 1,2,3 AND 4

Table 1.1 populations

	Percentage of total population that:	
	Is foreign-born	Has foreign nationality
Australia	23.0	7.4
Austria	12.5	8.8
Belgium	10.7	8.2
Canada	19.3	5.3
Denmark	6.8	5.0
France	10.0	5.6
Germany	12.5	8.9
Luxembourg	32.6	36.9
Netherlands	10.1	4.2
New Zealand	19.5	m
Norway	7.3	4.3
Sweden	12.0	5.3
Switzerland	22.4	20.5
United States	12.3	6.6

Source: Census data except for foreign nationality data for Germany (register of foreigners, 2002) and the United Kingdom (Labour force survey).

Table 1.2
Distribution of permanent or long-term immigration flows into selected OECD countries in 2002, by main immigration categories ${ }^{1}$

	Percentage of permanent or long-term immigration flows in immigration category:		
	Workers	Family reunification	Refugees
Australia 2	54.5	35.3	10.2
Canada	25.8	63.1	11.1
Denmark	23.0	57.5	19.4
France 3	16.2	75.1	8.7
Norway 4	8.2	68.4	23.3
Sweden 5	1.3	57.7	41.0
Switzerland $^{\text {United States }}{ }^{6}$	45.4	52.4	2.2

1. For Australia, Canada, Norway, Sweden and the United States, data concern acceptances for settlement. For Denmark, France and Switzerland, entries correspond to residence permits usually delivered for longer than one year. For Australia, category "Workers" includes accompanying dependents who are included in the category "Family reunification" for all other countries.
2. Data refer to fiscal year (July 2001 to June 2002). Category "Workers" includes accompanying dependents. Citizens from New Zealand do not need a visa to enter the country. They are therefore excluded.
3. Entries of EU family members are estimated. Visitors are excluded. Among those who benefited from the regularisation programme, only those who received a permit under the family reunification procedure are counted. The "Family" category also includes spouses of French citizens and scientists, parents of French children and those with family relationships who received the permit "vie privée et familiale". 4. Category "Workers" includes specialists and other permits that constitute grounds for permanent residence in Norway. Nonrenewable permits are not included. Category "Refugees" includes refugees and individuals granted residence permits on humanitarian grounds on a permanent basis.
4. Excluding Nordic and EEA citizens.
5. Data refer to fiscal year (October 2001 to September 2002).

Immigrants who obtained a permanent residence permit following the 1986 Immigration Reform and Control Act (IRCA) are excluded.
Sources: National Statistical Offices, OECD calculations.

Table 1.3
Distribution of native- and foreign-born populations (aged 15 years and older) by level of education in selected OECD countries (circa 2000)

	Below upper secondary education (ISCED 0/1/2)		Upper secondary and post-secondary non-tertiary education (ISCED 3/4)		Tertiary education (ISCED 5A/5B/6)	
	Native-born population	Foreign-born population	Native-born population	Foreign-born population	Native-born population	Foreign-born population
Australia	45,8	38,3	15,7	18,8	38,6	42,9
Austria	33,4	49,4	55,7	39,3	10,9	11,3
Belgium	46,8	54,2	30,3	24,2	22,9	21,6
Canada	31,6	30,1	36,9	31,9	31,5	38,0
Denmark	41,0	48,6	40,2	31,9	18,8	19,5
France	45,8	54,8	37,4	27,2	16,9	18,1
Germany	23,6	43,4	57,0	41,0	19,4	15,7
Luxembourg	28,7	36,7	58,6	41,6	12,8	21,7
Netherlands	40,7	53,0	39,8	29,4	19,5	17,6
New Zealand	30,1	18,7	42,7	50,4	27,2	31,0
Norway	21,2	18,3	55,6	50,6	23,2	31,1
Sweden	25,0	29,6	52,2	46,2	22,8	24,2
Switzerland	25,6	41,6	56,3	34,7	18,1	23,7
United States	21,9	39,8	51,2	34,3	26,9	25,9

Note: Data are from the 2000 round of censuses.
Source: OECD (2005), Trends in International Migration (SOPEMI 2004), OECD, Paris.

Table 1.4
Unemployment rates among national and foreign-nationality or native-born and foreign-born individuals in selected OECD countries ${ }^{1}$

	Unemployment rate (\%) by immigrant background															
	National				Foreign-nationality				Native-born				Foreign-born			
	1993	1995	2000	2003	1993	1995	2000	2003	1993	1995	2000	2003	1993	1995	2000	2003
Australia	a	a	a	a	a	a	a	a	10.4	8.1	6.2	6.0	12.9	10.2	6.7	6.5
Austria	m	4.1	4.3	4.4	m	6.8	8.8	8.3	m	4.1	4.3	4.2	m	6.9	8.0	8.3
Belgium	7.1	8.2	5.8	6.9	19.4	23.5	15.6	18.2	7.3	8.4	5.6	6.4	16.0	19.5	15.8	17.8
Canada	a	a	a	a	a	a	a	a	9.2	8.4	5.6	6.0	8.9	10.6	6.8	8.0
Denmark	10.9	7.5	4.0	4.1	30.9	24.2	10.6	9.2	m	7.3	3.9	4.0	m	20.6	9.5	8.7
France	10.8	11.3	9.6	8.5	20.7	21.7	20.9	18.8	10.8	11.2	9.4	8.2	16.4	17.6	16.7	15.8
Germany	7.2	7.5	7.5	9.2	12.5	15.1	12.9	16.7	m	m	7.4	9.1	m	m	12.6	15.7
Luxembourg	2.0	2.5	1.6	2.4	2.9	3.6	3.4	5.2	2.0	2.6	2.0	2.9	2.9	3.4	2.9	4.8
Netherlands	5.8	6.5	2.6	3.4	19.7	23.6	7.2	9.5	5.5	6.0	2.3	2.9	16.2	19.6	6.3	8.9
Norway	m	m	3.4	4.1	m	m	m	10.1	m	m	3.3	3.9	m	m	6.1	9.0
Sweden	m	7.7	5.1	5.3	m	19.7	14.6	13.2	m	7.3	4.7	4.8	m	21.7	11.6	11.1
Switzerland	m	m	1.9	2.9	m	m	5.6	8.8	m	m	m	2.9	m	m	m	8.0
United States	a	a	a	a	a	a	a	a	m	5.8	4.4	6.4	m	8.0	4.9	7.5

1.The categories national and foreign-nationality are defined on the basis of nationality; the categories native-born and foreign-born are defined on the basis of country of birth.
Source: OECD (2005), Trends in International Migration (SOPEMI 2004), OECD, Paris.

Table 1.5
Number and weighted percentage of participating students in PISA 2003, by immigrant status

	Native students		Second-generation students		First-generation students		Students with missing values on immigrant status variable	
	Number of participating students	```Percentage of all participating students```	Number of participating students	```Percentage of all participating students```	Number of participating students		Number of participating students	Percentage of all participating students
Australia	9682	75.5	1342	11.5	1258	10.8	269	2.2
Austria	3966	85.7	174	4.1	403	9.1	54	1.2
Belgium	7584	85.8	486	6.2	497	5.3	229	2.7
Canada	23481	70.8	1365	8.2	1411	9.6	1696	11.4
Denmark	3891	92.0	137	3.4	126	3.0	64	1.6
France	3639	84.0	442	10.6	133	3.4	86	2.1
Germany	3685	77.3	281	6.3	349	7.8	345	8.7
Luxembourg	2554	64.9	600	15.4	658	16.9	111	2.8
Netherlands	3434	85.0	265	6.8	147	3.7	146	4.6
New Zealand	3534	78.5	284	6.4	602	13.0	91	2.1
Norway	3773	92.9	95	2.2	133	3.3	63	1.6
Sweden	4048	87.2	241	5.6	271	5.8	64	1.5
Switzerland	6477	78.9	787	8.8	1034	10.9	122	1.4
United States	4523	82.9	442	8.1	319	5.9	172	3.2
Hong Kong-China	2507	55.6	1038	22.5	848	20.0	85	2.0
Macao-China	300	23.5	700	57.1	231	17.9	19	1.5
Russian Federation	5093	85.2	367	6.3	417	6.9	97	1.5
Belgium (Flemish Community)	4572	90.4	185	3.7	141	2.8	161	3.0
Belgium (French Community)	2377	79.8	282	9.5	239	8.4	60	2.3

Source: OECD PISA 2003 database.

Table 1.6
Average age of first-generation students in PISA 2003 at the time of immigration

[^0]Table 1.7
Comparison of percentage of immigrant students in PISA 2003 with data on total immigrant populations

1. Source: OECD (2005), Trends in International Migration (SOPEMI 2004), OECD, Paris.
2. Data for Germany from 2002 .

Table 1.8

Comparison of the three most frequent countries of origin for immigrant students

 in PISA 2003 and for total immigrant populations| | Three most frequent countries of origin (mother's country of birth) for immigrant students in PISA 2003 | Three most frequent countries of origin for total foreign-born population (SOPEMI) | Immigrant students in PISA 2003 | | Stock of foreign-born population by country of birth in SOPEMI 2004 (reference year: 2002) ${ }^{1}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Number of immigrant students | Percentage of immigrant students | Number of immigrants (thousands) | Percentage of total immigrant population ${ }^{2}$ |
| Australia | 1. England and Scotland ${ }^{2}$
 2. New Zealand
 3. China | 1. United Kingdom
 2. New Zealand
 3. Italy | $\begin{array}{r} 419 \\ 189 \\ 130 \\ 68 \end{array}$ | $\begin{array}{r} 13.9 \\ 7.0 \\ 5.0 \\ 2.8 \end{array}$ | $\begin{array}{r} 1123.9 \\ 413.7 \\ 164.9 \end{array}$ | $\begin{array}{r} 24.6 \\ 9.1 \\ 3.6 \\ 5.2 \end{array}$ |
| Austria | 1. Former Yugoslavia ${ }^{2,3}$
 2. Turkey
 3. Romania | 1. Former Yugoslavia ${ }^{2,4}$
 2. Turkey
 3. Germany | $\begin{array}{r} 276 \\ 141 \\ 19 \\ \mathrm{~m} \end{array}$ | $\begin{array}{r} 47.2 \\ 25.9 \\ 3.6 \\ m \end{array}$ | $\begin{array}{r} 330.4 \\ 127.3 \\ 39.9 \\ 120.9 \end{array}$ | $\begin{array}{r} 35.7 \\ 13.7 \\ 4.3 \\ 13.1 \end{array}$ |
| Belgium | 1. France
 2. Turkey
 3. Netherlands | 2. France
 3. Netherlands
 1. Italy | $\begin{array}{r} 184 \\ 140 \\ 54 \\ \mathrm{~m} \end{array}$ | $\begin{array}{r} 16.3 \\ 14.8 \\ 5.8 \\ \mathrm{~m} \end{array}$ | $\begin{array}{r} 113.0 \\ 42.6 \\ 9.6 \\ 187.0 \end{array}$ | $\begin{array}{r} 13.3 \\ 5.0 \\ 11.4 \\ 22.0 \end{array}$ |
| Canada | m | 1. United Kingdom
 2. China
 3. Italy | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 606.0 \\ & 332.8 \\ & 315.5 \end{aligned}$ | $\begin{array}{r} 11.1 \\ 6.1 \\ 5.8 \end{array}$ |
| Denmark | 1. Turkey
 2. Pakistan
 3. Former Yugoslavia | 1.Turkey
 2. Former Yugoslavia ${ }^{2,5}$
 3. Germany | $\begin{aligned} & 53 \\ & 31 \\ & 23 \\ & \mathrm{~m} \end{aligned}$ | $\begin{array}{r} 32.1 \\ 11.6 \\ 9.4 \\ \mathrm{~m} \end{array}$ | $\begin{aligned} & 30.9 \\ & 10.7 \\ & 30.5 \\ & 22.5 \end{aligned}$ | $\begin{aligned} & 9.1 \\ & 3.2 \\ & 9.0 \\ & 6.7 \end{aligned}$ |
| France | m | 1. Portugal
 2. Morocco
 3. Algeria | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 553.7 \\ & 504.1 \\ & 477.5 \end{aligned}$ | $\begin{aligned} & 17.0 \\ & 15.4 \\ & 14.6 \end{aligned}$ |
| Germany | 1. Turkey
 2. Former Soviet
 Republic
 3. Poland
 Former Yugoslavia ${ }^{2,6}$ | 1.Turkey
 2. Former Yugoslavia ${ }^{2,7}$
 3. Italy | $\begin{array}{r} 197 \\ 180 \\ 100 \\ 45 \\ 27 \\ \hline \end{array}$ | $\begin{array}{r} 32.1 \\ 28.3 \\ 16.1 \\ 7.0 \\ 4.1 \\ \hline \end{array}$ | $\begin{array}{r} 1912.2 \\ \mathrm{~m} \\ 317.6 \\ 986.3 \\ 609.8 \end{array}$ | $\begin{array}{r} 26.1 \\ \mathrm{~m} \\ 4.3 \\ 13.4 \\ 8.3 \end{array}$ |
| Luxembourg | 1. Portugal
 2. Italy
 3. Former Yugoslavia | 1. Portugal
 3. Italy
 2. France | $\begin{array}{r} 595 \\ 99 \\ 92 \\ \mathrm{~m} \end{array}$ | $\begin{array}{r} 47.3 \\ 7.9 \\ 7.3 \\ \mathrm{~m} \end{array}$ | $\begin{array}{r} 41.7 \\ 12.3 \\ \mathrm{~m} \\ 18.8 \end{array}$ | $\begin{array}{r} 28.8 \\ 8.5 \\ \mathrm{~m} \\ 13.0 \end{array}$ |
| Netherlands | m | 1. Turkey
 2. Suriname
 3. Morocco | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 190.5 \\ & 189.0 \\ & 163.4 \end{aligned}$ | $\begin{array}{r} 11.1 \\ 11.0 \\ 9.5 \end{array}$ |
| New Zealand | 1. Samoa
 2. United Kingdom
 3. China | 2. Samoa
 1. United Kingdom
 3. Australia | $\begin{array}{r} 124 \\ 103 \\ 76 \\ 18 \end{array}$ | $\begin{array}{r} 14.6 \\ 11.2 \\ 8.4 \\ 2.1 \end{array}$ | $\begin{array}{r} 47.1 \\ 218.4 \\ 38.9 \\ 56.3 \end{array}$ | $\begin{array}{r} 6.7 \\ 31.3 \\ 5.6 \\ 8.1 \end{array}$ |
| Norway | m | 1. Sweden
 2. Denmark
 3. Pakistan | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & 33.0 \\ & 22.3 \\ & 14.6 \end{aligned}$ | $\begin{aligned} & 9.9 \\ & 6.7 \\ & 4.4 \end{aligned}$ |
| Sweden | m | 1. Finland
 2. Former Yugoslavia ${ }^{2,8}$
 3. Iraq | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{array}{r} 189.3 \\ 139.0 \\ 67.6 \end{array}$ | $\begin{array}{r} 17.6 \\ 12.9 \\ 6.3 \end{array}$ |
| Switzerland | 1. Former Yugoslavia
 2. Albania/Kosovo
 3. Italy | 1. Former Yugoslavia ${ }^{2,9}$
 2. Italy
 3. Portugal | $\begin{aligned} & 408 \\ & 257 \\ & 245 \\ & 200 \end{aligned}$ | $\begin{array}{r} 23.0 \\ 16.2 \\ 11.7 \\ 8.1 \end{array}$ | $\begin{array}{r} 347.3 \\ \mathrm{~m} \\ 308.3 \\ 141.1 \end{array}$ | $\begin{array}{r} 24.0 \\ m \\ 21.3 \\ 9.7 \end{array}$ |
| United States | m | 1. Mexico
 2. Philippines
 3. India | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{array}{r} 10237.2 \\ 1457.5 \\ 1183.6 \end{array}$ | $\begin{array}{r} 29.6 \\ 4.2 \\ 3.4 \end{array}$ |
| Hong Kong-China | m | m | m | m | m | m |
| Macao-China | m | m | m | m | m | m |
| Russian Federation | m | m | m | m | m | m |
| Belgium (Flemish Community) | 1.Turkey
 2. Netherlands | | $\begin{aligned} & 87 \\ & 54 \end{aligned}$ | $\begin{aligned} & 27.6 \\ & 18.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ |
| Belgium (French Community) | 1. France
 2. Turkey | | $\begin{array}{r} 113 \\ 49 \end{array}$ | $\begin{array}{r} 23.6 \\ 8.7 \end{array}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$ |

[^1]Table 1.9
Number and weighted percentage of students participating in PISA 2003 who speak a different language at home from the language of instruction

	Students who speak a different language at home from the language of instruction		Students with missing values on the "language spoken at home" variable	
	Number of students	Percentage of students	Number of students	Percentage of students
Australia	968	8.7	299	2.3
Austria	376	8.7	156	3.3
Belgium	399	4.2	1009	11.5
Canada	1688	10.0	1693	11.2
Denmark	156	3.8	138	3.4
France	228	5.9	160	3.9
Germany	296	6.7	544	13.0
Luxembourg	920	23.7	212	5.4
Netherlands	166	4.2	275	7.7
New Zealand	405	8.9	54	1.2
Norway	178	4.4	134	3.4
Sweden	288	6.5	285	6.0
Switzerland	873	8.8	607	7.6
United States	480	8.6	207	4.1
Hong Kong-China	183	4.3	150	3.5
Macao-China	54	4.5	35	2.2
Russian Federation	289	5.4	77	1.2
Belgium (Flemish Community)	159	3.1	558	11.0
Belgium (French Community)	168	5.6	337	12.0

Source: OECD PISA 2003 database.

Table 1.10
Number and weighted percentage of students who speak a different language at home from the language of instruction in PISA 2003, by immigrant status

[^2]Table 1.11
Number and weighted percentage of most common languages spoken at home, as reported by immigrant students in PISA 2003

	Australia	Test language or other national language			Languages other than the language of instruction								
					First most common language			Second most common language			Third most common language		
		Language ${ }^{1}$		Percentage of students	Language ${ }^{1}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Number } \\ \text { of } \\ \text { students } \end{array} \\ \hline 87 \\ \hline \end{array}$	Percentage of students	Language ${ }^{1}$		Percentage of students	Language ${ }^{1}$	$\begin{array}{c}\text { Number } \\ \text { of } \\ \text { students }\end{array}$	Percentage of students
		English Indigenous Australian language	$\begin{array}{r} 11258 \\ 26 \end{array}$	$\begin{array}{r} 89.0 \\ 0.1 \end{array}$			0.8	Arabic		0.8	Vietnamese	71	0.7
	Austria	German	4065	88.0	Serbo- Croat	166	3.7	Turkish	104	2.5	Albanian	20	0.4
	Belgium	Dutch French German Flemish dialect	$\begin{array}{r} 3468 \\ 2625 \\ 482 \\ 813 \end{array}$	$\begin{array}{r} 40.0 \\ 35.9 \\ 0.6 \\ 8.7 \end{array}$	Turkish	98	1.2	Wallon	76	0.3	Arabic	58	0.7
	Canada	English French	$\begin{array}{r} 20951 \\ 3621 \end{array}$	$\begin{aligned} & 60.0 \\ & 18.9 \end{aligned}$	Other languages	1688	10.0						
	Denmark	Danish	3924	92.8	Arabic	26	0.6	Turkish	19	0.5	SerboCroatian	12	0.3
	France	French Other national dialects or languages	$\begin{array}{r} 3886 \\ 26 \end{array}$	$\begin{aligned} & 89.7 \\ & 0.6 \end{aligned}$	Other languages	228	5.9						
	Germany	German	3820	80.3	Russian	81	1.8	Turkish	71	1.7	Polish	26	0.6
	Luxembourg	Luxembourgian French German	$\begin{array}{r} 2460 \\ 260 \\ 71 \end{array}$	$\begin{array}{r} 62.4 \\ 6.7 \\ 1.8 \end{array}$	Portuguese	518	13.3	Italian	89	2.3	Yugoslavian and others	71	2.0
	Netherlands	Dutch Dutch regional languages or dialects	$\begin{array}{r} 3173 \\ 378 \end{array}$	78.9 9.2	Foreign languages	166	4.2						
	New Zealand	English Te Reo Maori	$\begin{array}{r} 4043 \\ 9 \end{array}$	$\begin{array}{r} 89.6 \\ 0.2 \end{array}$	Samoan	58	1.4	Cantonese	58	1.2	Mandarin	42	0.8
	Norway	Norwegian Sami	$\begin{array}{r} 3726 \\ 26 \end{array}$	$\begin{array}{r} 91.7 \\ 0.6 \end{array}$	Other languages	162	4	Swedish	10	0.3	Danish	6	0.1
	Sweden	Swedish Finnish,Yiddish, Romanian and others	$\begin{array}{r} 4022 \\ 29 \end{array}$	$\begin{array}{r} 86.9 \\ 0.7 \end{array}$	Foreign languages	288	6.8						
	Switzerland	Swiss German French Italian Swiss Italian German Romance	$\begin{array}{r} 3995 \\ 2014 \\ 672 \\ 170 \\ 72 \\ 17 \end{array}$	$\begin{array}{r} 60.3 \\ 17.9 \\ 3.5 \\ 0.6 \\ 0.9 \\ 0.3 \end{array}$	Albanian	237	2.4	Portuguese	125	1.1	Turkish	66	0.8
	United States	English	4769	87.3	Spanish	327	5.9						
	Hong Kong-China	Cantonese English Oth. nat. dial. or lang.	$\begin{array}{r} 3961 \\ 25 \\ 159 \end{array}$	$\begin{array}{r} 87.9 \\ 0.5 \\ 3.8 \end{array}$	Other languages	183	3.8						
	Macao-China	Cantonese Portuguese Other national dialects	$\begin{array}{r} 1090 \\ 1 \\ 68 \end{array}$	$\begin{array}{r} 87.4 \\ 0.0 \\ 5.8 \end{array}$	Other languages	53	4.5						
$\underset{\sim}{\underset{\sim}{\tau}}$	Russian Federation	Russian	5608	93.5	Other languages	289	5.3						
	Belgium (Flemish Community)	Dutch French German Flemish dialect	$\begin{array}{r} 3431 \\ 95 \\ 3 \\ 813 \end{array}$	$\begin{array}{r} 38.8 \\ 1.0 \\ 0.0 \\ 8.7 \end{array}$	Turkish	70	0.8	Arabic	22	0.2	English	13	0.1
	Belgium (French Community)	French Dutch German	$\begin{array}{r} 2506 \\ 30 \\ 15 \\ \hline \end{array}$	$\begin{array}{r} 34.9 \\ 0.2 \\ 0.2 \end{array}$	Arabic	35	0.5	Turkish	28	0.4	Wallon	25	0.3

1. Language categories in questionnaire were chosen by participating countries.

Source: OECD PISA 2003 database.

Table 2.1a
Differences in mathematics performance by immigrant status

		Performance on the mathematics scale						Difference in the mathematics score					
		Native students		Second-generation students		First-generation students		Second-generation students minus native students		First-generation students minus native students		First-generation students minus second-generation students	
		Mean score	S.E.	Mean score	S.E.	$\begin{aligned} & \hline \text { Mean } \\ & \text { score } \end{aligned}$	S.E.	Difference	S.E.	Difference	S.E.	Difference	S.E.
\#	Australia	527	(2.1)	522	(4.7)	525	(4.9)	-5	(4.7)	-2	(4.9)	3	(4.8)
	Austria	515	(3.3)	459	(8.8)	452	(6.0)	-56	(9.3)	-63	(6.0)	-7	(9.5)
\bigcirc	Belgium	546	(2.5)	454	(7.5)	437	(10.8)	-92	(7.6)	-109	(10.9)	-17	(12.4)
\bigcirc	Canada	537	(1.6)	543	(4.3)	530	(4.7)	6	(4.4)	-7	(4.8)	-13	(5.1)
\bigcirc	Denmark	520	(2.5)	449	(11.2)	455	(10.1)	-70	(11.1)	-65	(9.8)	5	(13.5)
	France	520	(2.4)	472	(6.1)	448	(15.0)	-48	(6.6)	-72	(15.0)	-25	(15.5)
	Germany	525	(3.5)	432	(9.1)	454	(7.5)	-93	(9.6)	-71	(7.9)	22	(11.2)
	Luxembourg	507	(1.3)	476	(3.3)	462	(3.7)	-31	(3.7)	-45	(4.1)	-14	(5.6)
	Netherlands	551	(3.0)	492	(10.3)	472	(8.4)	-59	(11.1)	-79	(8.8)	-19	(10.8)
	New Zealand	528	(2.6)	496	(8.4)	523	(4.9)	-32	(9.1)	-5	(5.6)	27	(8.0)
	Norway	499	(2.3)	460	(11.7)	438	(9.3)	-39	(11.3)	-61	(9.4)	-22	(13.8)
	Sweden	517	(2.2)	483	(9.8)	425	(9.6)	-34	(9.1)	-92	(9.7)	-58	(10.9)
	Switzerland	543	(3.3)	484	(5.0)	453	(6.1)	-59	(4.9)	-89	(6.0)	-31	(6.4)
,	United States	490	(2.8)	468	(7.6)	453	(7.5)	-22	(7.2)	-36	(7.5)	-14	(7.4)
	OECD average	523	(0.7)	483	(2.1)	475	(1.9)	-40	(2.0)	-48	(2.1)	-8	(2.4)
0	Hong Kong-China	557	(4.5)	570	(4.6)	516	(5.3)	13	(4.3)	-41	(4.5)	-54	(5.2)
E	Macao-China	528	(5.9)	532	(4.1)	517	(9.2)	4	(7.9)	-11	(10.4)	-15	(10.4)
-	Russian Federation	472	(4.4)	457	(7.2)	452	(5.9)	-14	(7.2)	-20	(5.4)	-6	(8.3)
	Belgium (Flemish Community)	567	(2.9)	445	(10.7)	472	(10.0)	-122	(11.3)	-95	(9.9)	27	(13.5)
	Belgium (French Community)	514	(4.3)	458	(9.6)	419	(14.4)	-56	(9.3)	-94	(14.4)	-39	(15.2)

Table 2.1b
Differences in reading performance by immigrant status

[^3]Table 2．1c
Differences in science performance by immigrant status

Note：Differences that are statistically significant are indicated in bold．

Table 2．1d
Differences in problem－solving performance by immigrant status

		Performance on the problem－solving scale						Difference in the problem－solving score					
		Native students		Second－ generation students		First－ generation students		Second－generation students minus native students		First－generation students minus native students		First－generation students minus second－generation students	
		Mean score	S．E．	Mean score	S．E．	Mean score	S．E．	Difference	S．E．	Difference	S．E．	Difference	S．E．
ข	Australia	534	（2．1）	521	（4．0）	523	（4．8）	－14	（4．3）	－12	（4．7）	2	（5．1）
㙃	Austria	515	（3．2）	465	（9．9）	453	（5．9）	－50	（10．2）	－62	（5．8）	－12	（9．7）
\bigcirc	Belgium	540	（2．5）	445	（7．5）	447	（8．5）	－95	（7．5）	－93	（8．8）	2	（10．1）
\bigcirc	Canada	535	（1．6）	532	（4．0）	533	（4．7）	－3	（4．2）	－2	（4．7）	1	（4．9）
$\stackrel{\text { U }}{ }$	Denmark	522	（2．4）	443	（10．5）	464	（8．8）	－79	（10．5）	－58	（8．7）	21	（13．0）
	France	529	（2．5）	482	（6．2）	445	（14．8）	－47	（6．5）	－84	（14．9）	－37	（14．3）
	Germany	534	（3．4）	443	（9．3）	461	（7．4）	－90	（9．6）	－73	（7．8）	18	（11．6）
	Luxembourg	507	（1．8）	475	（3．7）	463	（3．9）	－33	（4．2）	－44	（4．4）	－11	（5．6）
	Netherlands	532	（3．1）	463	（9．7）	462	（8．8）	－69	（10．4）	－70	（9．5）	－1	（10．5）
	New Zealand	537	（2．5）	500	（7．5）	534	（4．6）	－38	（8．1）	－3	（5．3）	35	（7．7）
	Norway	494	（2．6）	452	（11．7）	417	（10．3）	－43	（11．5）	－78	（10．7）	－35	（14．9）
	Sweden	516	（2．2）	483	（8．9）	434	（10．1）	－33	（8．3）	－82	（10．4）	－49	（11．5）
	Switzerland	538	（3．0）	480	（4．8）	447	（5．8）	－58	（4．7）	－91	（5．9）	－33	（6．2）
\％	United States	483	（2．9）	464	（8．5）	446	（8．3）	－19	（8．1）	－37	（8．1）	－18	（8．4）
	OECD average	522	（0．8）	480	（2．0）	476	（1．9）	－42	（2．0）	－46	（2．1）	－4	（2．3）
8	Hong Kong－China	556	（4．1）	572	（4．0）	505	（5．0）	17	（3．8）	－51	（4．4）	－68	（5．0）
亦	Macao－China	536	（5．1）	533	（3．3）	531	（8．9）	－4	（6．5）	－6	（10．0）	－2	（9．6）
市	Russian Federation	482	（4．7）	473	（6．7）	451	（7．4）	－9	（6．9）	－31	（6．2）	－22	（9．4）
	Belgium（Flemish Community）	559	（2．8）	436	（10．8）	475	（10．4）	－123	（11．4）	－84	（10．5）	39	（14．4）
	Belgium（French Community）	512	（4．1）	449	（9．7）	433	（11．3）	－63	（9．3）	－79	（11．5）	－16	（12．4）

Note：Differences that are statistically significant are indicated in bold．

Correlations between mathematics, reading, science and problem-solving performance, by immigrant status
Native students
Correlation between the performance in:

Second-generation students

First-generation students
Correlation between the performance in:

Germany
Luxembourg
Netherlands
New Zealand
\% Sweden
Sweden
United States
Hong Kong-China
Macao-China
$\stackrel{\rightharpoonup}{\varnothing}$ Russian Federation
Belgium (Flemish community)
Belgium (French community)

First-generation students											
Correlation between the performance in:											
Mathematics and reading		Mathematics and science		Mathematics and problem-solving		Reading and science		Reading and problem-solving		Science and problem-solving	
Coef.	S.E.										
0.81	(0.02)	0.86	(0.02)	0.91	(0.01)	0.87	(0.01)	0.84	(0.02)	0.85	(0.02)
0.79	(0.02)	0.86	(0.01)	0.88	(0.01)	0.83	(0.02)	0.80	(0.02)	0.82	(0.02)
0.84	(0.03)	0.88	(0.02)	0.89	(0.01)	0.88	(0.02)	0.85	(0.02)	0.84	(0.02)
0.79	(0.02)	0.83	(0.02)	0.89	(0.01)	0.87	(0.01)	0.85	(0.02)	0.83	(0.02)
0.74	(0.05)	0.80	(0.05)	0.89	(0.03)	0.80	(0.04)	0.79	(0.04)	0.76	(0.06)
0.81	(0.04)	0.83	(0.03)	0.89	(0.02)	0.86	(0.03)	0.86	(0.03)	0.80	(0.03)
0.81	(0.02)	0.88	(0.01)	0.92	(0.01)	0.86	(0.02)	0.86	(0.02)	0.86	(0.02)
0.82	(0.02)	0.87	(0.01)	0.91	(0.01)	0.88	(0.01)	0.86	(0.01)	0.86	(0.01)
0.82	(0.04)	0.85	(0.03)	0.93	(0.01)	0.88	(0.02)	0.83	(0.04)	0.84	(0.04)
0.80	(0.02)	0.87	(0.01)	0.91	(0.01)	0.87	(0.01)	0.85	(0.02)	0.84	(0.02)
0.77	(0.04)	0.82	(0.05)	0.86	(0.03)	0.80	(0.03)	0.82	(0.04)	0.74	(0.06)
0.78	(0.04)	0.79	(0.03)	0.85	(0.03)	0.88	(0.02)	0.81	(0.03)	0.76	(0.04)
0.81	(0.03)	0.85	(0.02)	0.90	(0.01)	0.83	(0.02)	0.83	(0.02)	0.83	(0.02)
0.85	(0.02)	0.87	(0.02)	0.93	(0.01)	0.88	(0.02)	0.86	(0.02)	0.86	(0.02)
0.82	(0.01)	0.87	(0.00)	0.91	(0.00)	0.87	(0.00)	0.85	(0.00)	0.85	(0.01)
0.80	(0.02)	0.85	(0.02)	0.90	(0.01)	0.82	(0.02)	0.84	(0.02)	0.83	(0.02)
0.63	(0.06)	0.70	(0.05)	0.82	(0.03)	0.75	(0.03)	0.72	(0.05)	0.69	(0.05)
0.60	(0.04)	0.68	(0.04)	0.81	(0.03)	0.75	(0.03)	0.75	(0.04)	0.62	(0.04)
0.79	(0.04)	0.89	(0.04)	0.97	(0.06)	0.95	(0.06)	1.00	(0.06)	0.92	(0.07)
0.72	(0.05)	0.79	(0.06)	0.87	(0.04)	0.89	(0.06)	0.92	(0.07)	0.87	(0.09)

Table2.3a
Distribution of student performance on the mathematics scale by immigrant status

First-generation students

Mean score		Percentiles of the mathematics performance distribution							
		$5^{\text {th }}$		$25^{\text {th }}$		$75^{\text {th }}$		$95^{\text {th }}$	
Mean	S.E.	Score	S.E.	Score	S.E.	Score	S.E.	Score	S.E.
525	(4.9)	357	(9.3)	455	(6.8)	596	(5.8)	687	(10.1)
452	(6.0)	321	(7.7)	391	(7.2)	506	(8.8)	608	(13.4)
437	(10.8)	245	(19.9)	357	(19.7)	513	(8.7)	625	(10.4)
530	(4.7)	377	(7.8)	468	(6.2)	596	(6.1)	674	(7.5)
455	(10.1)	296	(33.6)	396	(12.9)	516	(12.6)	c	C
448	(15.0)	283	(21.6)	367	(16.7)	526	(23.6)	621	(18.1)
454	(7.5)	297	(9.8)	379	(8.5)	528	(9.1)	609	(9.5)
462	(3.7)	302	(6.3)	391	(5.0)	532	(5.6)	632	(8.0)
472	(8.4)	344	(16.6)	415	(9.1)	526	(11.6)	611	(24.4)
523	(4.9)	351	(11.5)	455	(7.4)	595	(5.5)	677	(6.9)
438	(9.3)	292	(25.2)	370	(9.2)	499	(10.2)	599	(19.7)
425	(9.6)	253	(19.6)	361	(12.6)	492	(9.5)	587	(15.5)
453	(6.1)	297	(8.7)	380	(6.9)	514	(6.4)	634	(13.5)
453	(7.5)	287	(12.4)	374	(11.5)	527	(7.8)	619	(9.9)
475	(1.9)	306	(3.4)	401	(2.5)	547	(2.6)	647	(2.8)
516	(5.3)	355	(10.9)	457	(6.1)	583	(4.9)	662	(7.1)
517	(9.2)	367	(13.5)	452	(11.1)	575	(12.6)	672	(14.5)
452	(5.9)	302	(11.2)	394	(7.1)	507	(7.8)	606	(12.0)
472	(10.0)	c	c	406	(16.8)	537	(9.4)	630	(20.7)
419	(14.4)	233	(20.5)	332	(25.0)	496	(11.6)	622	(12.6)

Table2．3b
Distribution of student performance on the reading scale by immigrant status

Second－generation students

						nd－gen	tion stu				
						ntiles	he read	rform	distrib		
		Me	score								
		Mean	S．E．	Score	S．E．	Score	S．E．	Score	S．E．	Score	S．E．
\％	Australia	525	（4．6）	351	（10．1）	462	（5．9）	596	（5．2）	673	（7．5）
京	Austria	428	（13．5）	c	c	355	（16．1）	512	（12．6）	591	（14．1）
$\stackrel{5}{5}$	Belgium	439	（7．5）	253	（14．1）	365	（12．4）	519	（7．3）	606	（10．1）
O	Canada	543	（4．2）	403	（8．0）	488	（5．0）	600	（4．3）	679	（7．8）
\bigcirc	Denmark	440	（13．8）	c	c	383	（20．8）	506	（15．5）	589	（21．2）
U	France	458	（6．9）	287	（15．6）	400	（9．5）	523	（7．2）	599	（8．7）
\bigcirc	Germany	420	（9．9）	254	（20．8）	349	（16．2）	486	（12．2）	596	（12．3）
	Luxembourg	454	（4．0）	281	（8．1）	388	（6．0）	524	（4．9）	607	（6．1）
	Netherlands	475	（8．2）	353	（9．9）	418	（11．5）	527	（8．4）	598	（15．9）
	New Zealand	506	（8．3）	326	（14．9）	430	（11．0）	580	（9．8）	687	（13．6）
	Norway	446	（11．1）	260	（26．3）	375	（15．3）	517	（12．8）	c	${ }^{\text {c }}$
	Sweden	502	（8．7）	333	（19．4）	439	（10．8）	566	（11．0）	649	（13．2）
롳	Switzerland	462	（5．2）	303	（11．6）	398	（6．5）	529	（5．7）	617	（7．1）
¢	United States	481	（8．7）	308	（14．7）	410	（10．6）	550	（9．5）	641	（11．7）
\bigcirc	OECD average	475	（2．1）	295	（4．3）	407	（2．6）	546	（2．4）	637	（2．6）
亠	Hong Kong－China	522	（3．8）	364	（10．7）	479	（5．1）	577	（3．2）	632	（4．7）
\pm	Macao－China	497	（2．9）	380	（5．7）	455	（4．4）	543	（4．2）	599	（4．2）
市	Russian Federation	426	（6．9）	265	（15．6）	368	（8．7）	491	（8．2）	569	（7．3）
	Belgium（Flemish Community）	440	（10．2）	268	（17．3）	363	（11．8）	513	（13．1）	608	（19．0）
	Belgium（French Community）	439	（10．4）	246	（22．6）	365	（18．9）	521	（9．2）	604	（12．4）

First－generation students

		First－generation student											
		Mean score		Percentiles of the reading performance distribution									
		$5^{\text {th }}$	$25^{\text {th }}$		$75^{\text {th }}$		$95^{\text {th }}$						
		Mean	S．E．	Score	S．E．	Score	S．E．	Score	S．E．	Score	S．E．		
\％	Australia			517	（5．0）	331	（11．2）	452	（7．7）	590	（5．9）	675	（7．2）
妾	Austria	425	（8．0）	254	（15．9）	354	（9．8）	497	（8．0）	597	（12．7）		
$\stackrel{3}{0}$	Belgium	407	（11．9）	193	（24．0）	321	（21．2）	492	（10．1）	610	（13．9）		
O	Canada	515	（4．7）	353	（8．3）	457	（6．1）	579	（4．1）	654	（6．3）		
U	Denmark	454	（9．5）	291	（25．0）	389	（13．1）	526	（11．1）	c	c		
－	France	426	（15．3）	223	（18．5）	339	（25．5）	508	（14．4）	593	（18．1）		
	Germany	431	（8．9）	248	（14．7）	351	（10．5）	514	（9．1）	599	（12．3）		
	Luxembourg	431	（4．4）	253	（9．0）	355	（5．6）	511	（6．0）	600	（7．2）		
	Netherlands	463	（8．1）	349	（16．6）	409	（8．2）	514	（11．0）	602	（17．5）		
	New Zealand	503	（5．3）	310	（10．2）	430	（7．4）	580	（5．6）	675	（6．4）		
	Norway	436	（11．5）	250	（31．3）	363	（15．0）	512	（12．8）	609	（21．2）		
．	Sweden	433	（11．3）	232	（29．3）	362	（17．1）	516	（10．6）	602	（11．9）		
＋	Switzerland	422	（6．3）	255	（8．5）	349	（9．0）	492	（7．6）	594	（14．6）		
\％	United States	453	（8．3）	267	（11．5）	369	（12．1）	538	（9．4）	629	（10．6）		
	OECD average	456	（2．1）	265	（4．0）	379	（2．9）	538	（2．1）	634	（2．5）		
F	Hong Kong－China	494	（4．8）	349	（11．8）	442	（5．5）	550	（3．9）	611	（5．2）		
$\frac{t}{\text { co }}$	Macao－China	499	（7．1）	382	（18．7）	451	（6．5）	548	（7．3）	609	（10．1）		
－	Russian Federation	413	（7．5）	251	（13．7）	346	（9．3）	479	（6．3）	561	（9．9）		
	Belgium（Flemish Community）	450	（10．6）	253	（25．3）	379	（16．3）	527	（13．8）	633	（19．8）		
	Belgium（French Community）	385	（15．8）	180	（19．8）	291	（28．7）	472	（12．0）	586	（20．8）		

Table 2.4a
Percentage of native students at each level of proficiency on the mathematics scale
Native students - Proficiency levels

Below Level 1 (below 358 score points)		Level 1 (from 358 to 420 score points)		$\begin{gathered} \text { Level } 2 \\ \text { (from } 421 \text { to } 482 \\ \text { score points) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Level 3 } \\ \text { (from } 483 \text { to } 544 \\ \text { score points) } \end{gathered}$		Level 4 (from 545 to 606 score points)		Levels 5 and 6 (above 606 score points)	
\%	S.E.										
3.7	(0.4)	9.5	(0.5)	18.5	(0.7)	24.4	(0.7)	23.9	(0.6)	20.0	(0.7)
4.0	(0.7)	11.6	(0.9)	20.6	(1.0)	25.9	(1.3)	21.9	(0.9)	16.0	(1.1)
4.0	(0.4)	7.4	(0.5)	15.2	(0.7)	20.8	(0.8)	22.9	(0.7)	29.7	(1.0)
2.1	(0.3)	7.1	(0.4)	17.3	(0.6)	26.0	(0.8)	25.8	(0.6)	21.7	(0.7)
3.8	(0.5)	9.8	(0.7)	20.0	(0.9)	26.6	(0.9)	22.8	(0.9)	17.0	(1.0)
3.8	(0.6)	9.7	(0.9)	19.5	(1.0)	26.5	(1.1)	23.7	(1.2)	16.8	(1.0)
3.6	(0.6)	9.4	(0.8)	18.9	(1.3)	24.8	(1.0)	23.9	(1.1)	19.4	(1.1)
4.5	(0.5)	11.8	(1.0)	21.6	(1.4)	28.2	(1.0)	21.7	(1.1)	12.2	(0.8)
0.9	(0.3)	6.0	(0.7)	16.3	(1.2)	23.4	(1.2)	24.3	(1.4)	29.0	(1.5)
4.0	(0.5)	9.4	(0.7)	19.0	(0.7)	23.4	(0.9)	22.7	(0.9)	21.5	(0.9)
6.1	(0.5)	13.2	(0.8)	23.5	(1.1)	25.7	(1.1)	19.6	(1.1)	11.8	(0.7)
3.8	(0.4)	10.5	(0.6)	21.2	(0.9)	26.2	(0.9)	21.1	(0.9)	17.2	(0.8)
2.6	(0.4)	6.7	(0.6)	15.8	(0.8)	25.3	(1.1)	25.3	(0.8)	24.2	(1.6)
8.4	(0.7)	14.5	(0.9)	24.0	(0.8)	24.8	(0.9)	17.5	(0.8)	10.9	(0.8)
3.5	(0.8)	5.8	(0.8)	12.8	(1.0)	19.6	(1.4)	25.0	(1.4)	33.2	(1.8)
1.5	(0.9)	7.8	(3.2)	21.1	(4.1)	27.3	(3.6)	23.8	(3.6)	18.5	(2.6)
10.9	(1.1)	18.2	(1.2)	25.9	(1.1)	23.6	(1.0)	13.9	(1.0)	7.5	(0.8)
2.1	(0.4)	5.2	(0.5)	12.3	(0.6)	19.1	(0.7)	24.1	(0.7)	37.3	(1.1)
6.9	(0.9)	10.6	(0.9)	19.4	(1.0)	23.3	(1.1)	21.2	(1.1)	18.6	(1.4)

Table 2.4b
Percentage of second-generation students at each level of proficiency on the mathematics scale

		Second-generation students - Proficiency levels											
		Below Level 1 (below 358 score points)		Level 1(from 358 to 420score points)		$\begin{gathered} \text { Level } 2 \\ \text { (from } 421 \text { to } 482 \\ \text { score points) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Level 3 } \\ \text { (from } 483 \text { to } 544 \\ \text { score points) } \\ \hline \end{gathered}$		$\begin{gathered} \text { Level } 4 \\ \text { (from } 545 \text { to } 606 \\ \text { score points) } \end{gathered}$		Levels 5 and 6 (above 606 score points)	
		\%	S.E.										
U	Australia	4.7	(1.0)	10.4	(1.0)	19.7	(1.6)	23.1	(2.0)	22.4	(2.3)	19.7	(2.0)
ᄃ	Austria	13.2	(3.4)	20.6	(3.6)	27.0	(3.9)	20.6	(3.5)	15.7	(3.6)	2.9	(1.5)
-	Belgium	17.4	(2.5)	20.7	(2.0)	23.1	(2.4)	19.0	(3.1)	11.9	(2.4)	7.8	(2.0)
u	Canada	1.4	(0.6)	5.9	(1.0)	16.3	(1.7)	28.0	(2.3)	25.5	(2.3)	22.9	(9.0)
	Denmark	15.7	(3.9)	20.4	(4.6)	28.0	(6.9)	23.5	(6.7)	8.2	(3.6)	4.2	(2.6)
	France	10.9	(2.3)	17.1	(2.3)	24.8	(3.5)	26.7	(2.8)	14.5	(2.6)	5.9	(2.3)
	Germany	23.5	(4.2)	23.3	(3.3)	23.8	(3.4)	16.3	(2.7)	8.4	(2.3)	4.8	(1.4)
	Luxembourg	9.3	(1.3)	17.4	(2.1)	27.3	(2.3)	24.5	(2.0)	13.1	(1.7)	8.5	(1.1)
	Netherlands	4.2	(1.5)	16.4	(4.2)	27.9	(4.3)	23.9	(4.2)	18.6	(3.2)	9.0	(2.6)
	New Zealand	8.7	(3.3)	15.6	(3.1)	21.8	(3.4)	22.2	(3.1)	17.4	(2.7)	14.4	(2.7)
	Norway	15.2	(4.9)	19.5	(4.8)	25.0	(7.9)	17.7	(5.8)	13.6	(4.2)	9.0	(3.6)
	Sweden	9.6	(2.4)	14.8	(3.4)	26.5	(3.2)	23.5	(4.9)	14.4	(3.7)	11.2	(3.3)
ひ	Switzerland	8.8	(1.6)	17.6	(2.3)	25.6	(2.7)	21.3	(2.4)	15.3	(1.7)	11.4	(2.3)
5	United States	12.5	(2.5)	21.0	(3.0)	23.3	(2.3)	21.0	(2.4)	14.2	(2.2)	8.0	(2.0)
\bigcirc	Hong Kong-China	2.9	(0.8)	4.9	(0.9)	10.2	(1.4)	16.3	(1.5)	27.8	(1.9)	37.9	(2.2)
$\stackrel{\rightharpoonup}{ \pm}$	Macao-China	2.4	(0.7)	7.9	(1.2)	18.2	(1.8)	26.9	(2.4)	24.6	(2.2)	20.0	(2.1)
-	Russian Federation	10.0	(2.4)	21.9	(3.1)	31.0	(4.1)	22.8	(3.7)	10.3	(2.5)	4.0	(2.0)
	Belgium (Flemish Community)	21.3	(3.4)	21.0	(3.1)	25.0	(2.9)	15.6	(2.9)	9.1	(2.3)	8.1	(2.3)
	Belgium (French Community)	15.4	(2.9)	20.6	(2.4)	22.1	(2.5)	20.8	(2.7)	13.4	(2.5)	7.6	(1.7)

Table 2．4c
Percentage of first－generation students at each level of proficiency on the mathematics scale

Table 2．4d
Percentage of native students at each level of proficiency on the reading scale

そ0000000		Native students－Proficiency levels											
		Below Level 1 （below 335 score points）		Level 1 （from 335 to 407 score points）		$\begin{gathered} \text { Level 2 } \\ \text { (from } 408 \text { to } 480 \\ \text { score points) } \end{gathered}$		Level 3 （from 481 to 552 score points）		$\begin{gathered} \text { Level 4 } \\ \text { (from } 553 \text { to } 626 \\ \text { score points) } \\ \hline \end{gathered}$		Level 5 （above 626 score points）	
		\％	S．E．										
	Australia	3.1	（0．4）	7.7	（0．5）	17.9	（0．7）	28.6	（0．8）	27.8	（0．8）	14.9	（0．7）
	Austria	5.4	（0．8）	11.7	（1．0）	22.1	（1．0）	28.6	（1．2）	22.9	（1．1）	9.3	（0．9）
	Belgium	4.5	（0．6）	8.2	（0．6）	17.6	（0．7）	27.3	（0．8）	28.2	（0．9）	14.1	（0．6）
	Canada	1.8	（0．2）	6.6	（0．4）	17.1	（0．6）	30.7	（0．8）	29.9	（0．6）	13.9	（0．6）
	Denmark	3.9	（0．6）	11.2	（0．7）	24.4	（1．2）	34.3	（1．2）	20.8	（1．0）	5.5	（0．5）
	France	4.6	（0．7）	10.1	（0．6）	22.0	（0．9）	30.4	（1．0）	24.6	（0．9）	8.3	（0．7）
	Germany	3.3	（0．5）	10.3	（1．0）	19.5	（1．1）	29.3	（0．9）	25.9	（1．2）	11.6	（0．8）
	Luxembourg	4.5	（0．4）	10.4	（0．7）	23.8	（0．9）	31.9	（1．3）	22.9	（1．4）	6.6	（0．5）
	Netherlands	1.0	（0．3）	6.9	（0．8）	21.8	（1．2）	31.7	（1．4）	28.7	（1．3）	10.0	（0．8）
	New Zealand	3.9	（0．5）	8.6	（0．7）	18.1	（1．0）	26.7	（1．1）	25.2	（1．1）	17.5	（0．8）
	Norway	5.5	（0．5）	11.0	（0．8）	21.1	（1．3）	29.5	（1．1）	22.4	（0．9）	10.4	（0．8）
	Sweden	2.6	（0．4）	8.3	（0．7）	20.2	（1．0）	30.5	（1．6）	26.1	（1．3）	12.3	（0．7）
ひ	Switzerland	2.5	（0．3）	8.5	（0．8）	21.5	（1．1）	33.4	（1．5）	25.1	（1．1）	9.1	（0．9）
\bigcirc	United States	4.8	（0．6）	11.8	（0．9）	22.7	（1．1）	28.6	（1．1）	22.2	（0．9）	9.9	（0．7）
\bigcirc	Hong Kong－China	3.1	（0．7）	8.2	（1．0）	20.1	（1．6）	34.5	（1．6）	27.7	（1．5）	6.5	（0．7）
衰	Macao－China	0.8	（0．9）	9.5	（2．9）	25.9	（4．1）	43.6	（3．8）	18.3	（2．7）	2.0	（0．9）
С๐	Russian Federation	11.7	（1．0）	20.7	（1．0）	30.5	（1．0）	25.4	（1．1）	9.8	（0．9）	2.0	（0．3）
	Belgium（Flemish Community）	2.1	（0．5）	6.2	（0．5）	15.3	（0．7）	26.7	（0．8）	31.8	（0．9）	17.9	（0．7）
	Belgium（French Community）	8.2	（1．1）	11.2	（1．0）	21.1	（1．0）	28.2	（1．2）	23.0	（1．1）	8.4	（0．9）

Table 2.4e
Percentage of second-generation students at each level of proficiency on the reading scale

		\%	S.E.										
	Australia	3.7	(0.9)	8.7	(1.1)	17.7	(1.4)	28.9	(1.8)	26.0	(1.9)	15.0	(1.9)
	Austria	18.7	(4.5)	20.6	(3.6)	25.0	(5.0)	23.7	(3.9)	10.3	(2.8)	1.7	(1.1)
	Belgium	18.6	(2.5)	17.9	(2.2)	24.5	(3.0)	24.3	(2.6)	11.4	(2.1)	3.2	(1.2)
	Canada	1.0	(0.3)	4.5	(0.9)	16.5	(1.7)	31.6	(2.2)	31.1	(2.2)	15.4	(2.1)
	Denmark	15.3	(4.9)	17.2	(4.1)	34.1	(6.4)	22.3	(5.4)	9.4	(4.1)	1.7	(1.7)
	France	10.6	(2.2)	16.8	(2.4)	29.6	(3.2)	27.6	(4.6)	12.8	(2.3)	2.6	(0.9)
	Germany	21.6	(4.4)	22.5	(3.8)	28.9	(4.0)	15.9	(2.7)	8.7	(2.1)	2.5	(1.2)
	Luxembourg	12.8	(1.4)	18.5	(1.9)	27.1	(2.2)	25.5	(1.9)	12.9	(1.7)	3.1	(0.7)
	Netherlands	3.0	(1.4)	17.4	(4.0)	31.1	(3.8)	33.3	(4.2)	12.2	(2.6)	3.0	(1.3)
	New Zealand	5.7	(1.7)	13.0	(3.0)	21.0	(3.2)	25.2	(3.2)	22.6	(4.5)	12.5	(2.6)
	Norway	14.3	(4.8)	20.7	(5.5)	26.4	(6.2)	23.4	(5.6)	10.7	(3.4)	4.5	(2.4)
	Sweden	4.9	(1.8)	10.6	(3.0)	22.7	(3.7)	31.7	(4.0)	20.7	(3.9)	9.4	(2.8)
	Switzerland	9.6	(2.0)	19.5	(2.6)	28.6	(2.7)	24.7	(3.4)	13.6	(1.7)	4.0	(1.4)
	United States	8.0	(2.1)	16.3	(2.6)	24.6	(3.3)	26.4	(2.8)	16.6	(3.0)	8.0	(2.1)
	Hong Kong-China	3.0	(0.8)	6.0	(1.1)	16.3	(1.5)	35.7	(1.9)	32.6	(2.0)	6.4	(0.9)
	Macao-China	1.1	(0.5)	8.8	(1.3)	27.0	(2.4)	42.0	(2.3)	19.6	(2.3)	1.4	(0.6)
	Russian Federation	15.4	(2.7)	25.1	(3.3)	30.5	(4.1)	20.5	(3.2)	8.1	(2.1)	0.4	c
	Belgium (Flemish Community)	16.4	(3.2)	22.2	(3.2)	25.3	(3.1)	22.1	(3.4)	10.3	(2.3)	3.7	(1.5)
	Belgium (French Community)	19.7	(3.4)	15.7	(2.6)	24.1	(3.2)	25.4	(3.0)	12.0	(2.2)	3.0	(1.2)

Table 2.4f
Percentage of first-generation students at each level of proficiency on the reading scale

		First-generation students - Proficiency levels											
		Below Level 1(below 335 scorepoints)		Level 1(from 335 to 407score points)		Level 2(from 408 to 480score points)		Level 3(from 481 to 552score points)		Level 4 (from 553 to 626 score points)		Level 5(above 626 scorepoints)	
		\%	S.E.										
\%	Australia	5.3	(0.9)	9.5	(1.1)	19.3	(1.6)	26.8	(2.5)	24.5	(2.2)	14.7	(1.8)
$\stackrel{\text { c }}{ }$	Austria	18.9	(3.2)	24.7	(3.2)	25.9	(2.6)	19.6	(2.3)	8.6	(1.5)	2.3	(1.0)
\bigcirc	Belgium	27.5	(4.6)	21.3	(2.5)	22.9	(3.6)	16.9	(2.2)	7.7	(1.8)	3.8	(1.1)
u	Canada	3.4	(0.8)	9.3	(1.7)	20.3	(2.0)	31.1	(2.3)	25.5	(2.1)	10.5	(1.4)
	Denmark	11.5	(3.0)	19.9	(4.9)	27.5	(5.6)	24.9	(5.6)	13.8	(5.1)	2.5	(1.6)
	France	23.3	(6.0)	17.8	(5.2)	22.9	(4.5)	23.3	(4.9)	10.0	(2.9)	2.7	(1.8)
	Germany	20.1	(3.6)	21.8	(4.2)	21.4	(3.6)	22.8	(2.6)	11.4	(2.6)	2.5	(1.3)
	Luxembourg	18.7	(1.6)	22.9	(1.8)	23.8	(2.3)	20.3	(2.2)	11.8	(1.7)	2.5	(0.7)
	Netherlands	2.8	(2.0)	21.5	(4.5)	36.8	(5.5)	26.4	(5.3)	9.7	(3.0)	2.8	(1.6)
	New Zealand	7.4	(1.4)	12.2	(1.5)	19.8	(2.3)	25.6	(2.0)	21.7	(2.5)	13.2	(1.9)
	Norway	17.7	(4.4)	21.8	(4.5)	25.3	(4.2)	20.7	(4.4)	10.9	(3.9)	3.6	(2.2)
	Sweden	19.6	(4.4)	19.1	(2.9)	24.6	(4.2)	21.3	(3.2)	12.9	(3.2)	2.5	(1.4)
๕	Switzerland	21.7	(3.0)	22.8	(2.4)	26.2	(3.1)	18.7	(3.0)	7.7	(1.9)	2.8	(1.0)
5	United States	16.5	(3.0)	18.8	(2.7)	20.1	(2.7)	24.5	(3.1)	14.5	(2.7)	5.5	(1.5)
\bigcirc	Hong Kong-China	3.5	(1.1)	11.7	(1.5)	24.1	(2.2)	37.1	(2.2)	20.5	(1.9)	3.2	(0.7)
¢	Macao-China	1.0	(1.2)	7.7	(2.4)	32.1	(5.9)	36.1	(6.5)	20.8	(5.5)	2.2	(1.7)
市	Russian Federation	21.2	(3.6)	24.0	(2.4)	30.2	(3.0)	18.6	(2.2)	5.4	(1.2)	0.6	(0.5)
	Belgium (Flemish Community)	14.7	(3.4)	19.4	(3.2)	26.4	(4.9)	22.9	(3.0)	10.2	(2.7)	6.4	(2.0)
	Belgium (French Community)	33.7	(6.2)	22.3	(3.1)	21.3	(3.1)	13.8	(2.4)	6.3	(1.7)	2.5	(1.0)

Table 2.5a
Performance on the mathematics scale by immigrant status and language spoken at home

		Performance on the mathematics scale									
		Language spoken at home most of the time IS THE SAME as the language of assessment, other official languages or another national dialects						Language spoken at home most of the time IS DIFFERENT from the language of assessment, from other official languages or from other national dialects			
		Native students		Second-generation students		First-generation students		Second-generation students		First-generation students	
		Mean score	S.E.								
	Australia	528	(2.1)	528	(4.5)	527	(5.4)	514	(7.5)	523	(7.5)
	Austria	515	(3.3)	471	(13.9)	468	(9.8)	460	(11.2)	453	(7.8)
	Belgium	551	(2.4)	473	(11.4)	443	(16.4)	454	(11.7)	425	(11.4)
	Canada	538	(1.6)	551	(5.0)	530	(6.0)	531	(6.2)	533	(5.4)
	Denmark	520	(2.6)	455	(15.3)	446	(15.5)	438	(17.4)	458	(14.3)
	France	521	(2.4)	488	(5.9)	461	(19.6)	455	(9.8)	441	(21.6)
	Germany	528	(3.5)	458	(9.8)	480	(10.5)	427	(15.5)	435	(9.0)
	Luxembourg	509	(1.5)	482	(6.6)	513	(11.1)	480	(5.2)	455	(3.8)
	Netherlands	553	(3.1)	508	(11.4)	486	(14.1)	470	(13.1)	462	(10.4)
	New Zealand	528	(2.6)	502	(9.4)	528	(6.2)	478	(13.4)	523	(6.8)
	Norway	501	(2.3)	445	(19.8)	418	(24.3)	483	(15.2)	442	(10.8)
	Sweden	519	(2.2)	499	(9.4)	445	(19.3)	484	(16.2)	427	(10.1)
	Switzerland	545	(3.5)	495	(7.3)	480	(10.2)	487	(8.6)	447	(7.8)
	United States	492	(2.8)	493	(8.4)	481	(11.3)	447	(9.7)	449	(8.0)
	OECD average	525	(0.7)	500	(2.4)	495	(3.4)	474	(3.2)	470	(2.5)
	Hong Kong-China	561	(4.4)	573	(4.7)	521	(5.3)	508	(23.3)	442	(14.5)
	Macao-China	531	(6.1)	534	(4.2)	522	(9.6)	491	(21.8)	468	(20.2)
	Russian Federation	474	(4.2)	460	(7.4)	460	(5.5)	419	(21.1)	400	(15.9)
	Belgium (Flemish Community)	571	(2.8)	501	(18.1)	499	(9.6)	431	(15.0)	441	(18.4)
	Belgium (French Community)	519	(4.1)	466	(13.2)	422	(20.0)	475	(14.4)	410	(15.5)

Difference in the mathematics score

		Difference in the mathematics score							
		Second-generation minus native students				First-generation minus native students			
		Both sub-groups speak language of assessment at home		Second-generation students speak a different language at home		Both sub-groups speak language of assessment at home		First-generation students speak a different language at home	
		Difference.	S.E.	Difference.	S.E.	Difference.	S.E.	Difference.	S.E.
\%	Australia	-1	(4.6)	-14	(7.4)	-1	(5.1)	-6	(7.6)
$\stackrel{+}{\square}$	Austria	-44	(14.3)	-55	(11.5)	-48	(9.1)	-62	(7.9)
\bigcirc	Belgium	-77	(11.7)	-96	(11.4)	-107	(16.5)	-126	(11.3)
U	Canada	13	(5.0)	-8	(6.6)	-8	(6.2)	-5	(5.5)
\bigcirc	Denmark	-65	(15.1)	-81	(17.7)	-74	(15.3)	-61	(14.3)
	France	-33	(6.3)	-66	(10.1)	-60	(19.4)	-80	(21.9)
	Germany	-71	(10.2)	-102	(15.7)	-48	(11.0)	-93	(8.9)
	Luxembourg	-27	(7.0)	-30	(5.4)	4	(11.2)	-54	(4.3)
	Netherlands	-45	(12.2)	-83	(13.8)	-67	(14.5)	-92	(10.8)
	New Zealand	-27	(9.9)	-50	(13.8)	-1	(6.4)	-5	(7.4)
	Norway	-55	(19.7)	-17	(14.9)	-83	(24.2)	-58	(10.9)
	Sweden	-20	(9.4)	-36	(15.7)	-75	(18.9)	-92	(10.5)
	Switzerland	-50	(6.9)	-58	(8.6)	-65	(9.3)	-98	(7.6)
포	United States	2	(8.1)	-45	(9.8)	-11	(10.9)	-43	(8.4)
\bigcirc	OECD average	-25	(2.3)	-51	(3.2)	-29	(3.4)	-54	(2.7)
\pm	Hong Kong-China	12	(4.5)	-53	(22.9)	-39	(4.5)	-119	(13.8)
\pm	Macao-China	3	(7.9)	-40	(22.8)	-9	(11.1)	-63	(21.4)
-	Russian Federation	-14	(7.4)	-55	(21.5)	-14	(5.4)	-74	(15.2)
	Belgium (Flemish Community)	-70	(18.4)	-140	(15.7)	-72	(9.5)	-130	(18.2)
	Belgium (French Community)	-53	(13.3)	-44	(13.1)	-98	(20.2)	-110	(15.4)

[^4]Table 2．5b
Performance on the reading scale by immigrant status and language spoken at home
Results based on students＇self－reports

		Performance on the reading scale									
		Language spoken at home most of the time IS THE SAME as the language of assessment，other official languages or another national dialects						Language spoken at home most of the time IS DIFFERENT from the language of assessment，from other official languages or from other national dialects			
		Native students		Second－generation students		First－generation students		Second－generation students		First－generation students	
		Mean score	S．E．								
๗	Australia	530	（2．2）	531	（5．1）	524	（5．6）	516	（7．0）	508	（7．5）
俈	Austria	502	（3．9）	461	（16．5）	460	（12．7）	413	（21．5）	421	（9．4）
\bigcirc	Belgium	529	（2．6）	462	（12．0）	412	（18．6）	436	（12．8）	403	（15．1）
\bigcirc	Canada	535	（1．6）	553	（4．3）	527	（6．1）	527	（7．0）	512	（5．7）
$\stackrel{\text { U }}{ }$	Denmark	497	（2．8）	443	（18．5）	452	（14．6）	443	（22．8）	458	（13．8）
	France	507	（2．7）	477	（6．3）	450	（21．8）	435	（12．0）	412	（19．4）
	Germany	520	（3．5）	457	（9．5）	463	（11．4）	404	（17．0）	404	（11．8）
	Luxembourg	503	（1．8）	466	（6．9）	487	（10．7）	452	（5．8）	422	（4．7）
	Netherlands	527	（3．0）	489	（9．1）	477	（13．4）	458	（11．7）	459	（10．0）
	New Zealand	529	（2．9）	522	（10．0）	535	（6．9）	465	（12．8）	481	（6．8）
	Norway	506	（2．6）	440	（22．0）	429	（27．3）	457	（17．1）	435	（12．6）
	Sweden	524	（2．1）	512	（9．9）	466	（21．5）	507	（16．3）	431	（12．4）
	Switzerland	517	（3．3）	473	（7．9）	455	（10．6）	464	（8．1）	412	（8．3）
$\stackrel{\sim}{ \pm}$	United States	505	（3．0）	507	（8．6）	494	（11．7）	462	（11．8）	443	（8．8）
ᄃ	OECD average	516	（0．8）	496	（2．4）	488	（3．7）	460	（3．4）	446	（2．6）
－	Hong Kong－China	516	（3．4）	525	（3．9）	498	（4．9）	460	（21．5）	436	（13．2）
F	Macao－China	502	（5．3）	498	（3．0）	502	（7．7）	470	（13．5）	470	（20．9）
ロナ	Russian Federation	449	（3．6）	430	（7．1）	420	（7．6）	377	（24．5）	367	（13．8）
	Belgium（Flemish Community）	547	（2．9）	493	（17．5）	479	（15．5）	423	（14．7）	427	（22．2）
	Belgium（French Community）	501	（4．5）	454	（14．8）	387	（22．6）	447	（19．1）	382	（20．9）

Difference in the reading score

Second－generation minus native students				First－generation minus native students			
Both sub－groups speak language of assessment at home		Second－generation students speak a different language at home		Both sub－groups speak language of assessment at home		First－generation students speak a different language at home	
Difference	S．E．	Difference	S．E．	Difference	S．E．	Difference	S．E．
1	（5．2）	－14	（7．2）	－6	（5．4）	－22	（7．6）
－41	（17．0）	－90	（21．4）	－42	（12．5）	－81	（10．0）
－67	（11．9）	－93	（12．3）	－117	（18．6）	－125	（15．1）
18	（4．2）	－8	（7．2）	－8	（6．3）	－23	（5．7）
－54	（18．4）	－53	（23．2）	－45	（14．8）	－39	（14．1）
－31	（7．0）	－72	（12．1）	－57	（21．8）	－95	（19．6）
－63	（9．9）	－115	（17．3）	－57	（11．9）	－116	（11．5）
－36	（7．2）	－51	（6．1）	－16	（11．1）	－81	（5．0）
－38	（9．6）	－69	（12．1）	－49	（13．8）	－68	（10．5）
－7	（10．7）	－64	（12．9）	6	（7．3）	－48	（7．5）
－67	（22．0）	－49	（17．0）	－78	（26．9）	－71	（12．4）
－11	（9．8）	－17	（16．1）	－58	（21．3）	－93	（12．8）
－45	（7．2）	－53	（8．1）	－63	（9．3）	－105	（8．0）
2	（8．3）	－43	（11．8）	－12	（11．7）	－62	（9．1）
－20	（2．4）	－56	（3．4）	－28	（3．7）	－70	（2．8）
8	（3．6）	－57	（21．2）	－18	（4．2）	－80	（13．4）
－4	（5．6）	－33	（14．9）	0	（10．1）	－32	（20．7）
－20	（6．8）	－72	（24．5）	－29	（7．0）	－82	（13．2）
－54	（18．0）	－124	（15．5）	－69	（15．7）	－120	（22．3）
－47	（14．4）	－53	（17．6）	－114	（22．5）	－119	（20．6）

[^5]Table 2.6a
Comparison of differences in mathematics scores between immigrant and native students accounting for language differences

	Difference in the mathematics score							
	WITHOUT accounting for language differences				WITH accounting for language differences			
	Second-generation students minus native students		First-generation students minus native students		Second-generation students minus native students		First-generation students minus native students	
	Difference	S.E.	Difference	S.E.	Difference	S.E.	Difference	S.E.
Australia	-5	(4.4)	0	(5.0)	-3	(4.2)	4	(4.5)
Austria	-43	(10.1)	-56	(6.9)	-33	(11.1)	-44	(8.5)
Belgium	-76	(8.4)	-104	(11.0)	-62	(9.1)	-90	(12.5)
Canada	7	(4.5)	-1	(4.6)	13	(4.5)	11	(5.5)
Denmark	-70	(13.2)	-61	(10.9)	-71	(13.0)	-63	(11.6)
France	-42	(5.9)	-64	(17.6)	-34	(6.6)	-50	(18.1)
Germany	-86	(11.4)	-58	(8.9)	-68	(10.8)	-40	(9.3)
Luxembourg	-28	(4.2)	-44	(4.0)	-13	(6.3)	-25	(7.5)
Netherlands	-56	(11.7)	-77	(10.5)	-45	(11.4)	-57	(12.5)
New Zealand	-36	(10.4)	-7	(6.4)	-30	(10.6)	4	(7.7)
Norway	-32	(13.2)	-54	(10.6)	-33	(16.5)	-55	(18.2)
Sweden	-25	(9.6)	-79	(9.2)	-18	(8.0)	-67	(11.8)
Switzerland	-50	(5.9)	-80	(6.0)	-42	(6.3)	-65	(7.8)
United States	-16	(7.4)	-32	(7.6)	2	(7.5)	-4	(8.0)
OECD average	-33	(2.2)	-42	(2.1)	-22	(2.2)	-25	(2.4)
Hong Kong-China	14	(4.6)	-40	(4.7)	13	(4.6)	-39	(4.5)
Macao-China	5	(8.0)	-9	(10.8)	4	(8.0)	-10	(10.7)
Russian Federation	-14	(7.2)	-20	(5.6)	-14	(7.2)	-17	(5.4)
Belgium (Flemish Community)	-98	(14.8)	-90	(11.3)	-70	(16.1)	-66	(12.9)
Belgium (French Community)	-45	(9.5)	-93	(14.8)	-36	(9.7)	-84	(15.6)

Note: Differences that are statistically significant are indicated in bold.

Table 2.6b
Comparison of differences in reading scores between immigrant and native students accounting for language differences

Note: Differences that are statistically significant are indicated in bold.

Table 2.7
Mean score and gender differences in student performance on the mathematics and reading scales，by immigrant status

			orman	on the	mathe	atics s			rform	nce on	e rea	ng sca	
				Native	dents					Native	dents		
						Differen	（F－M）					Differe	（F－M）
		Mean score	S．E．	Mean score	S．E．	Score dif．	S．E．	Mean score	S．E．	Mean score	S．E．	Score dif．	S．E．
๕	Australia	529	（2．9）	525	（2．5）	4	（3．3）	509	（2．8）	550	（2．2）	－41	（3．2）
产	Austria	520	（4．2）	510	（4．0）	10	（4．8）	479	（4．8）	523	（4．3）	－44	（5．9）
$\stackrel{\square}{0}$	Belgium	550	（3．8）	540	（2．8）	10	（4．6）	507	（4．0）	541	（2．9）	－34	（4．7）
－	Canada	543	（2．0）	531	（1．9）	12	（2．3）	518	（2．1）	549	（1．9）	－31	（2．3）
岕	Denmark	528	（3．2）	512	（2．8）	17	（3．2）	484	（3．2）	509	（3．0）	－25	（3．1）
$\stackrel{\square}{\circ}$	France	525	（3．5）	515	（2．8）	10	（4．2）	486	（3．6）	524	（3．0）	－38	（4．2）
	Germany	532	（4．1）	520	（4．0）	12	（4．0）	497	（4．3）	537	（3．8）	－39	（4．2）
	Luxembourg	518	（2．4）	497	（2．0）	22	（3．7）	486	（2．9）	514	（2．3）	－28	（3．8）
	Netherlands	553	（4．0）	549	（3．4）	4	（4．2）	513	（3．8）	536	（3．1）	－22	（3．9）
	New Zealand	536	（3．2）	521	（3．4）	15	（4．0）	514	（3．8）	543	（3．5）	－29	（4．6）
	Norway	503	（2．8）	495	（2．8）	7	（3．1）	480	（3．2）	529	（3．2）	－50	（3．4）
®	Sweden	520	（2．8）	515	（2．9）	5	（3．4）	503	（2．6）	541	（2．7）	－39	（3．3）
产	Switzerland	552	（4．7）	533	（3．8）	18	（5．2）	498	（4．5）	533	（3．0）	－34	（5．0）
\bigcirc	United States	494	（3．2）	486	（3．2）	8	（3．0）	488	（3．6）	518	（3．5）	－30	（3．5）
\bigcirc	OECD average	529	（1．0）	517	（0．8）	11	（1．0）	497	（1．0）	531	（0．8）	－34	（1．0）
＝	Hong Kong－China	558	（6．5）	556	（4．9）	2	（7．0）	496	（5．3）	529	（3．7）	－33	（5．8）
者	Macao－China	548	（8．1）	512	（7．6）	37	（10．9）	493	（6．9）	503	（6．5）	－10	（8．8）
－	Russian Federation	478	（5．5）	465	（4．4）	13	（4．4）	433	（4．7）	459	（4．0）	－27	（4．1）
	Belgium（Flemish Community）	574	（4．6）	559	（3．2）	－15	（5．4）	529	（4．5）	557	（3．3）	28	（5．4）
	Belgium（French Community）	516	（6．6）	512	（4．7）	－4	（7．8）	475	（7．0）	515	（5．3）	40	（8．8）

		Second－generation students						Second－generation students					
		Males		Females		Difference（F－M）		Males		Females		Difference（F－M）	
		Mean score	S．E．	Mean score	S．E．	Score dif．	S．E．	Mean score	S．E．	Mean score	S．E．	Score dif．	S．E．
๕	Australia	526	（7．3）	518	（6．3）	8	（9．9）	505	（7．3）	544	（6．4）	－38	（9．9）
＋	Austria	470	（10．9）	444	（13．2）	26	（16．5）	410	（11．7）	452	（22．6）	－42	（22．1）
$\stackrel{5}{0}$	Belgium	458	（9．5）	450	（8．4）	8	（10．1）	419	（10．0）	460	（9．4）	－41	（12．2）
－	Canada	553	（5．9）	534	（4．7）	19	（6．2）	532	（5．4）	554	（4．7）	－22	（5．7）
¢	Denmark	470	（16．3）	432	（12．5）	38	（17．8）	425	（17．6）	452	（15．6）	－28	（18．7）
$\stackrel{\text { O }}{ }$	France	470	（10．0）	474	（7．1）	－5	（11．8）	433	（10．2）	476	（7．4）	－43	（12．4）
	Germany	441	（11．2）	429	（10．4）	12	（11．9）	396	（11．9）	446	（10．2）	－50	（12．3）
	Luxembourg	481	（5．2）	472	（4．2）	10	（6．7）	433	（5．9）	474	（4．9）	－41	（7．3）
	Netherlands	510	（12．7）	476	（10．8）	34	（12．5）	478	（11．4）	472	（8．8）	5	（12．0）
	New Zealand	490	（10．7）	502	（10．3）	－12	（12．6）	481	（11．0）	532	（10．3）	－51	（14．7）
	Norway	476	（15．3）	443	（17．6）	33	（23．6）	446	（15．8）	446	（17．5）	1	（24．6）
－	Sweden	495	（12．1）	472	（11．8）	23	（14．4）	491	（11．9）	511	（10．0）	－20	（13．0）
호	Switzerland	491	（7．1）	475	（6．8）	16	（9．5）	447	（7．2）	479	（6．8）	－32	（9．8）
$\stackrel{\rightharpoonup}{ }$	United States	474	（9．7）	461	（8．8）	13	（10．7）	471	（9．8）	493	（10．9）	－22	（11．6）
8	OECD average	489	（2．6）	477	（2．5）	12	（2．8）	458	（2．8）	491	（2．6）	－33	（3．2）
む	Hong Kong－China	572	（7．1）	568	（5．6）		（9．0）	507	（6．0）	538	（4．7）	－31	（7．7）
$\stackrel{\square}{7}$	Macao－China	540	（6．3）	524	（5．0）	16	（7．9）	491	（4．6）	503	（3．9）	－12	（6．2）
－	Russian Federation	455	（8．3）	461	（9．9）	－5	（11．1）	414	（8．7）	445	（7．1）	－31	（10．0）
	Belgium（Flemish Community）	455	（15．9）	436	（11．2）	－18	（17．7）	423	（16．9）	454	（11．8）	31	（19．5）
	Belgium（French Community）	459	（11．5）	458	（12．0）	－2	（13．4）	417	（12．6）	463	（13．7）	47	（16．5）

		First－generation students						First－generation students					
		Males		Females		Difference（F－M）		Males		Females		Difference（F－M）	
		Mean score	S．E．	Mean score	S．E．	Score dif．	S．E．	Mean score	S．E．	Mean score	S．E．	Score dif．	S．E．
๕	Australia	531	（7．6）	519	（8．1）	12	（12．3）	504	（7．9）	531	（7．5）	－27	（11．5）
き	Austria	451	（8．6）	452	（7．1）	－1	（10．6）	400	（10．0）	455	（9．5）	－55	（12．6）
$\stackrel{5}{0}$	Belgium	437	（14．0）	436	（12．6）	0	（16．5）	387	（14．7）	437	（14．2）	－50	（17．0）
\bigcirc	Canada	533	（6．5）	528	（5．3）	5	（7．2）	498	（6．5）	532	（6．0）	－34	（8．5）
¢	Denmark	450	（12．5）	459	（13．5）	－9	（16．6）	437	（13．7）	472	（12．9）	－35	（19．1）
\bigcirc	France	449	（16．8）	446	（18．3）	3	（18．4）	403	（18．0）	449	（19．3）	－46	（20．9）
	Germany	466	（9．3）	446	（9．0）	21	（10．5）	420	（11．3）	443	（10．6）	－23	（12．9）
	Luxembourg	472	（5．7）	451	（4．8）	22	（7．6）	418	（6．7）	446	（5．4）	－27	（8．6）
	Netherlands	482	（10．9）	463	（11．4）	19	（14．7）	458	（10．8）	469	（10．1）	－11	（13．2）
	New Zealand	537	（5．9）	510	（7．3）	26	（9．2）	498	（7．6）	508	（7．9）	－10	（11．3）
	Norway	431	（12．5）	446	（12．3）	－15	（16．5）	406	（14．6）	468	（14．1）	－62	（17．9）
๕	Sweden	427	（14．0）	424	（9．4）	3	（14．1）	416	（15．4）	449	（10．9）	－33	（14．0）
혿	Switzerland	459	（8．1）	447	（7．3）	12	（9．6）	405	（7．9）	441	（7．9）	－37	（9．9）
$\stackrel{5}{\square}$	United States	460	（8．6）	445	（10．8）	15	（12．2）	440	（9．3）	469	（12．7）	－29	（14．6）
\bigcirc	OECD average	479	（2．8）	470	（2．3）	10	（3．4）	440	（3．0）	474	（2．8）	－34	（4．0）
ジ	Hong Kong－China	520	（9．4）	512	（4．9）	8	（10．2）	480	（8．2）	507	（4．3）	－27	（9．0）
此	Macao－China	523	（14．5）	510	（8．2）	13	（15．1）	487	（11．5）	512	（7．3）	－26	（13．1）
－	Russian Federation	454	（8．2）	449	（8．3）	6	（11．5）	401	（9．6）	429	（9．6）	－28	（12．4）
	Belgium（Flemish Community）	483	（11．4）	459	（14．6）	－25	（18．0）	437	（13．2）	464	（15．3）	27	（18．7）
	Belgium（French Community）	418	（17．2）	421	（17．5）		（20．2）	368	（18．1）	418	（20．5）	50	（21．6）

[^6]Table 2.8
Three most common countries of origin for immigrant students in each case country

Note: Differences that are statistically significant are indicated in bold.

1. These categories are chosen by countries.
2. Authors' calculations.

Table 2.9
Comparison of performance levels for immigrant students whose families came from Turkey and the former Yugoslavia

				migran	stud								Differ	in
		Tur				Former Y	goslavia				Differen	e in	mathem	atics
		icipating udents	Perform the mat			icipating udents	Perform the mat		Native	udents	perform between student Turkish im stude	ance native and aigrant ts	between student immigrant from the Yugos	native and tudents ormer via
	N	$\begin{gathered} \text { Weighted } \\ \% \end{gathered}$	Mean score	S.E.	N	$\begin{gathered} \text { Weighted } \\ \% \end{gathered}$	Mean score	S.E.	Mean score	S.E.	Difference	S.E.	Difference	S.E.
Austria	141	25.9	423	(8.9)	276	47.2	456	(6.7)	515	(3.3)	-92	(9.1)	-59	(7.6)
Belgium	140	14.8	421	(13.1)	c	c	c	c	546	(2.5)	-125	(12.8)	c	c
Denmark	53	32.1	424	(12.4)	c	c	c	c	520	(2.5)	-95	(12.3)	c	c
Germany	197	32.1	405	(10.8)	45	7.0	448	(17.0)	525	(3.5)	-120	(11.6)	-78	(17.0)
Luxembourg	c	c	c	c	92	7.3	421	(10.2)	507	(1.3)	c	c	-86	(10.2)
Switzerland	142	8.5	436	(10.4)	408	23.0	460	(7.3)	543	(3.3)	-106	(10.3)	-82	(8.0)

[^7]Table 3.1
Highest level of parental education (in years of schooling) by immigrant status

	Highest level of parental education in years of schooling ${ }^{1}$					
	Native students		Second-generation students		First-generation students	
	Mean	S.E.	Mean	S.E.	Mean	S.E.
\% Australia	13.1	(0.04)	12.6	(0.13)	13.5	(0.15)
$\stackrel{\text { F }}{\text { ¢ }}$ Austria	13.2	(0.06)	11.1	(0.31)	12.3	(0.24)
O Belgium	13.8	(0.05)	10.7	(0.33)	12.1	(0.30)
岂 Canada	14.5	(0.04)	14.4	(0.13)	15.2	(0.14)
Denmark	14.6	(0.07)	11.8	(0.64)	13.3	(0.50)
France	12.4	(0.05)	9.3	(0.29)	9.7	(0.54)
Germany	13.9	(0.06)	9.0	(0.47)	8.7	(0.43)
Luxembourg	14.5	(0.06)	11.4	(0.26)	11.2	(0.25)
Netherlands	13.1	(0.06)	10.0	(0.39)	11.6	(0.46)
New Zealand	13.5	(0.07)	12.1	(0.33)	13.8	(0.18)
Norway	14.6	(0.04)	13.7	(0.43)	13.7	(0.39)
Sweden	13.6	(0.05)	12.2	(0.37)	12.3	(0.36)
Switzerland	12.6	(0.06)	10.7	(0.17)	10.9	(0.19)
\because United States	13.8	(0.05)	11.9	(0.32)	12.1	(0.27)
OECD average	13.7	(0.02)	11.4	(0.09)	12.3	(0.08)
¢ Hong Kong-China	10.3	(0.12)	9.2	(0.11)	8.7	(0.12)
义 Macao-China	10.0	(0.31)	9.3	(0.16)	9.3	(0.31)
гণ Russian Federation	13.3	(0.04)	13.2	(0.10)	13.3	(0.09)
Belgium (Flemish Community)	13.7	(0.06)	10.2	(0.41)	12.0	(0.58)
Belgium (French Community)	14.0	(0.08)	11.0	(0.48)	12.2	(0.37)

Note: Statistically significant differences from native students' scores are indicated in bold.

1. Table A1.1 in Annex A1 shows conversions used for years of schooling.

Table 3.2
Distribution of the index of economic, social and cultural status (ESCS) by immigrant status (scores standardised within each country sample)

[^8]Table 3.3
Differences between native and immigrant students in mathematics performance and
highest level of parental education (in years of schooling)

Note: Statistically significant differences are indicated in bold.

1. Table A1.1 in Annex A1 shows conversions used for years of schooling.

Table 3.4
Differences between native and immigrant students in mathematics performance and parents' economic, social and cultural status (ESCS)

		Difference in mathematics score				Difference in the index of economic, social and cultural status (ESCS)			
		Second-generation students minus native students		First-generation students minus native students		Second-generation students minus native students		First-generation students minus native students	
		Difference	S.E.	Difference	S.E.	Difference	S.E.	Difference	S.E.
\#	Australia	-5	(4.7)	-2	(4.9)	-0.20	(0.04)	0.00	(0.05)
衰	Austria	-56	(9.3)	-63	(6.0)	-0.64	(0.09)	-0.59	(0.05)
\bigcirc	Belgium	-92	(7.6)	-109	(10.9)	-0.85	(0.07)	-0.65	(0.07)
	Canada	6	(4.4)	-7	(4.8)	-0.06	(0.04)	0.13	(0.04)
\bigcirc	Denmark	-70	(11.1)	-65	(9.8)	-0.75	(0.12)	-0.55	(0.10)
	France	-48	(6.6)	-72	(15.0)	-0.83	(0.07)	-0.74	(0.13)
	Germany	-93	(9.6)	-71	(7.9)	-1.08	(0.09)	-1.07	(0.08)
	Luxembourg	-31	(3.7)	-45	(4.1)	-0.64	(0.06)	-0.84	(0.05)
	Netherlands	-59	(11.1)	-79	(8.8)	-0.78	(0.10)	-0.58	(0.11)
	New Zealand	-32	(9.1)	-5	(5.6)	-0.37	(0.08)	0.08	(0.05)
	Norway	-39	(11.3)	-61	(9.4)	-0.33	(0.12)	-0.47	(0.10)
	Sweden	-34	(9.1)	-92	(9.7)	-0.50	(0.07)	-0.61	(0.08)
	Switzerland	-59	(4.9)	-89	(6.0)	-0.57	(0.05)	-0.70	(0.05)
,	United States	-22	(7.2)	-36	(7.5)	-0.52	(0.10)	-0.59	(0.08)
	OECD average	-40	(2.0)	-48	(2.1)	-0.58	(0.02)	-0.47	(0.02)
-	Hong Kong-China	13	(4.3)	-41	(4.5)	-0.31	(0.03)	-0.55	(0.04)
\#	Macao-China	4	(7.9)	-11	(10.4)	-0.28	(0.07)	-0.37	(0.09)
\bigcirc	Russian Federation	-14	(7.2)	-20	(5.4)	-0.03	(0.05)	-0.03	(0.05)
	Belgium (Flemish Community)	-122	(11.3)	-95	(9.9)	-0.99	(0.09)	-0.55	(0.13)
	Belgium (French Community)	-56	(9.3)	-94	(14.4)	-0.77	(0.10)	-0.70	(0.08)

[^9]Table 3.5
Regression estimates of mathematics performance on immigrant status, parental education (in years of schooling), parents' occupational status (HISEI), language spoken at home and age at immigration

थ Australia 产 0 0 0 0 0		Regression										$\left.\begin{array}{\|c\|} \hline \text { Explained } \\ \text { variance } \\ \text { (unique) } \end{array} \right\rvert\,$	Missing (un- weighted) Percentage
		Model 1		Model 2		Model 3		Model 4		Model 5			
		B	S.E.										
	Second-generation	-5.2	(4.43)	-1.9	(4.12)	1.8	(4.01)	1.9	(3.80)	1.6	(3.73)	0.0	
	First-generation	0.1	(5.01)	-5.4	(4.86)	-4.7	(4.84)	-4.4	(4.43)	2.6	(6.42)	0.0	
	Parental education in years of schooling			8.5	(0.62)	4.1	(0.57)	4.1	(0.57)	4.1	(0.58)	0.8	
	Parents' occupational status					1.6	(0.07)	1.6	(0.07)	1.6	(0.07)	6.1	
	Foreign language spoken at home							-0.6	(5.05)	0.8	(5.18)	0.0	
	Age at immigration									-1.5	(0.63)	0.1	
	R-squared		0.00		0.04		0.10		0.10		0.11		9.8
Austria	Second-generation	-42.6	(10.11)	-27.6	(9.80)	-25.3	(10.00)	-23.5	(10.74)	-23.9	(10.74)	0.2	
	First-generation	-55.6	(6.90)	-48.1	(6.82)	-38.4	(6.83)	-36.3	(7.72)	-29.2	(9.99)	0.2	
	Parental education in years of schooling			7.1	(0.85)	3.3	(0.80)	3.3	(0.80)	3.4	(0.80)	0.8	
	Parents' occupational status					1.4	(0.13)	1.4	(0.13)	1.4	(0.13)	5.2	
	Foreign language spoken at home							-2.9	(7.97)	-2.3	(8.01)	0.0	
	Age at immigration									-1.3	(1.56)	0.2	
	R-squared		0.03		0.07		0.12		0.12		0.13		8.5
Belgium	Second-generation	-75.8	(8.41)	-55.0	(7.95)	-50.6	(7.51)	-40.9	(7.92)	-40.7	(8.05)	0.6	
	First-generation	-103.6	(10.99)	-89.0	(10.38)	-83.0	(9.54)	-73.7	(10.55)	-25.4	(9.98)	0.1	
	Parental education in years of schooling			7.9	(0.51)	3.0	(0.49)	2.9	(0.49)	2.9	(0.48)	0.6	
	Parents' occupational status					1.8	(0.11)	1.8	(0.11)	1.8	(0.11)	7.2	
	Foreign language spoken at home							-30.6	(9.07)	-32.1	(9.14)	0.3	
	Age at immigration									-5.2	(1.05)	0.8	
	R -squared		0.06		0.11		0.18		0.19		0.19		19.1
Canada	Second-generation	7.4	(4.47)	8.0	(4.27)	10.6	(4.09)	14.1	(4.23)	13.9	(4.25)	0.2	
	First-generation	-1.1	(4.65)	-6.4	(4.68)	-6.0	(4.53)	1.9	(5.43)	7.0	(7.38)	0.0	
	Parental education in years of schooling			6.8	(0.45)	3.3	(0.43)	3.3	(0.43)	3.3	(0.43)	0.7	
	Parents' occupational status					1.2	(0.07)	1.2	(0.08)	1.2	(0.08)	4.1	
	Foreign language spoken at home							-11.9	(5.18)	-11.4	(5.18)	0.1	
	Age at immigration									-0.7	(0.77)	0.1	
	R-squared		0.00		0.04		0.08		0.08		0.08		10.8
Denmark	Second-generation	-69.6	(13.24)	-49.4	(13.98)	-45.3	(13.13)	-47.4	(12.89)	-48.2	(12.77)	0.7	
	First-generation	-60.9	(10.89)	-55.3	(12.21)	-52.5	(12.04)	-55.3	(12.77)	-18.0	(13.53)	0.0	
	Parental education in years of schooling			8.2	(0.74)	5.1	(0.70)	5.1	(0.70)	5.2	(0.69)	1.9	
	Parents' occupational status					1.3	(0.11)	1.3	(0.11)	1.3	(0.11)	4.5	
	Foreign language spoken at home							5.6	(10.06)	7.2	(9.72)	0.0	
	Age at immigration									-6.5	(1.53)	0.5	
	R-squared		0.03		0.08		0.13		0.13		0.13		9.0
France	Second-generation	-42.3	(5.94)	-20.8	(6.10)	-18.4	(5.90)	-15.6	(6.31)	-15.9	(6.33)	0.2	
	First-generation	-64.4	(17.56)	-45.9	(14.61)	-47.4	(14.35)	-42.5	(15.21)	-13.7	(14.65)	0.1	
	Parental education in years of schooling			7.6	(0.68)	3.2	(0.67)	3.1	(0.69)	3.1	(0.69)	0.7	
	Parents' occupational status					1.5	(0.13)	1.5	(0.13)	1.5	(0.13)	6.2	
	Foreign language spoken at home							-9.6	(9.52)	-8.8	(9.22)	0.1	
	Age at immigration									-4.3	(1.81)	0.3	
	R -squared		0.03		0.08		0.14		0.14		0.15		12.0
Germany	Second-generation	-86.0	(11.37)	-57.2	(10.31)	-51.3	(9.26)	-35.9	(9.89)	-40.5	(9.20)	0.7	
	First-generation	-58.0	(8.88)	-24.9	(9.36)	-24.5	(8.98)	-9.1	(9.05)	13.6	(11.51)	0.1	
	Parental education in years of schooling			6.6	(0.63)	3.3	(0.61)	3.2	(0.59)	3.2	(0.60)	1.1	
	Parents' occupational status					1.8	(0.11)	1.8	(0.11)	1.8	(0.11)	7.7	
	Foreign language spoken at home							-35.6	(9.20)	-25.3	(9.80)	0.2	
	Age at immigration									-5.7	(1.85)	0.4	
	R -squared		0.07		0.12		0.19		0.20		0.20		20.8
Luxembourg	Second-generation	-28.3	(4.23)	-13.2	(4.43)	-10.1	(4.36)	-9.9	(5.95)	-10.3	(6.05)	0.1	
	First-generation	-44.3	(4.03)	-28.4	(4.21)	-20.9	(4.19)	-20.7	(7.28)	-11.9	(8.30)	0.1	
	Parental education in years of schooling			4.7	(0.32)	1.8	(0.38)	1.8	(0.39)	1.8	(0.39)	0.6	
	Parents' occupational status					1.7	(0.13)	1.7	(0.13)	1.7	(0.13)	6.5	
	Foreign language spoken at home							-0.3	(7.42)	0.1	(7.58)	0.0	
	Age at immigration									-1.9	(1.08)	0.1	
	R-squared		0.04		0.09		0.16		0.16		0.16		21.1

Note: Statistically significant coefficients are indicated in bold. For the variable Age at immigration the number of missing values is particularly high, therefore mean substitution is used and a dummy variable indicating whether or not the age at immigration is missing was included in the regression model. Table A1.1 in Annex A1 shows the conversions used for the variable Parental education in years of schooling.

Table 3.5 (continued)
Regression estimates of mathematics performance on immigrant status, parental education (in years of schooling), parents' occupational status (HISEI), language spoken at home and age at immigration

		Regression										$\begin{array}{\|c\|} \hline \text { Explained } \\ \text { variance } \\ \text { (unique) } \end{array}$	$\left.\begin{array}{\|c\|c}\text { Missing } \\ \text { (un- } \\ \text { weighted) }\end{array}\right)$
		Model 1		Model 2		Model 3		Model 4		Model 5			
		B	S.E.										
Netherlands	Second-generation	-55.6	(11.69)	-40.3	(10.96)	-38.1	(9.85)	-32.1	(9.84)	-33.0	(9.88)	0.7	
	First-generation	-77.3	(10.48)	-69.7	(10.47)	-66.3	(9.95)	-54.6	(11.83)	-36.4	(13.99)	0.2	
	Parental education in years of schooling			7.1	(0.71)	2.5	(0.77)	2.4	(0.77)	2.4	(0.76)	0.4	
	Parents' occupational status					1.6	(0.13)	1.6	(0.13)	1.6	(0.13)	6.6	
	Foreign language spoken at home							-21.4	(10.92)	-19.0	(11.03)	0.1	
	Age at immigration									-3.2	(1.60)	0.2	
	R-squared		0.04		0.08		0.15		0.15		0.15		15.0
New Zealand	Second-generation	-35.9	(10.39)	-25.8	(10.47)	-22.8	(9.44)	-20.0	(9.51)	-20.4	(9.46)	0.3	
	First-generation	-7.5	(6.43)	-9.5	(6.22)	-14.9	(6.13)	-8.9	(7.07)	2.4	(10.66)	0.0	
	Parental education in years of schooling			6.8	(0.58)	4.4	(0.58)	4.3	(0.59)	4.4	(0.59)	2.0	
	Parents' occupational status					1.5	(0.11)	1.5	(0.11)	1.5	(0.11)	5.7	
	Foreign language spoken at home							-12.0	(8.63)	-10.7	(8.72)	0.1	
	Age at immigration									-1.3	(0.91)	0.1	
	R-squared		0.01		0.06		0.12		0.12		0.12		26.3
Norway	Second-generation	-32.1	(13.23)	-22.5	(11.88)	-25.6	(11.17)	-28.2	(15.07)	-29.7	(15.16)	0.1	
	First-generation	-53.9	(10.61)	-47.1	(10.27)	-40.3	(9.97)	-44.5	(16.61)	-30.2	(17.04)	0.1	
	Parental education in years of schooling			8.2	(0.74)	3.2	(0.77)	3.2	(0.77)	3.3	(0.77)	0.4	
	Parents' occupational status					1.5	(0.11)	1.5	(0.11)	1.5	(0.11)	5.4	
	Foreign language spoken at home							4.9	(15.75)	7.6	(15.99)	0.0	
	Age at immigration									-2.6	(1.45)	0.1	
	R-squared		0.01		0.04		0.10		0.10		0.10		8.6
Sweden	Second-generation	-25.2	(9.59)	-20.1	(9.27)	-12.5	(9.70)	-4.8	(8.36)	-5.3	(8.63)	0.0	
	First-generation	-78.8	(9.15)	-74.7	(9.06)	-69.3	(8.37)	-56.2	(11.54)	-48.8	(11.74)	0.5	
	Parental education in years of schooling			5.3	(0.61)	2.2	(0.58)	2.2	(0.59)	2.2	(0.60)	0.4	
	Parents' occupational status					1.5	(0.12)	1.5	(0.12)	1.5	(0.12)	5.9	
	Foreign language spoken at home							-17.7	(10.36)	-16.1	(10.59)	0.1	
	Age at immigration									-1.6	(1.75)	0.2	
	R-squared		0.04		0.06		0.12		0.12		0.12		12.4
Switzerland	Second-generation	-49.9	(5.92)	-35.9	(6.00)	-31.0	(5.84)	-28.7	(6.06)	-29.7	(6.04)	0.6	
	First-generation	-79.9	(6.00)	-65.3	(5.58)	-56.7	(5.50)	-52.2	(6.67)	-34.9	(10.64)	0.4	
	Parental education in years of schooling			8.9	(0.77)	6.3	(0.71)	6.3	(0.71)	6.4	(0.71)	2.6	
	Parents' occupational status					1.1	(0.10)	1.1	(0.10)	1.1	(0.10)	2.7	
	Foreign language spoken at home							-7.3	(7.48)	-4.5	(7.48)	0.0	
	Age at immigration									-3.7	(1.21)	0.4	
	R-squared		0.07		0.13		0.16		0.16		0.16		12.3
United States	Second-generation	-16.1	(7.43)	-3.0	(6.61)	-0.4	(6.06)	8.8	(6.21)	8.3	(6.17)	0.0	
	First-generation	-32.1	(7.58)	-19.8	(7.36)	-14.7	(6.58)	0.1	(7.32)	13.5	(10.16)	0.0	
	Parental education in years of schooling			8.2	(0.60)	4.4	(0.59)	4.2	(0.58)	4.3	(0.59)	1.1	
	Parents' occupational status					1.5	(0.10)	1.5	(0.10)	1.5	(0.10)	5.9	
	Foreign language spoken at home							-22.2	(7.13)	-21.0	(7.27)	0.2	
	Age at immigration									-2.2	(1.38)	0.1	
	R-squared		0.01		0.06		0.12		0.12		0.12		11.2
OECD average	Second-generation	-32.9	(2.16)	-20.4	(2.19)	-17.3	(2.11)	-11.5	(2.10)	-11.8	(2.09)	0.1	
	First-generation	-42.1	(2.08)	-34.0	(2.10)	-30.4	(1.94)	-21.1	(2.13)	-14.1	(2.83)	0.1	
	Parental education in years of schooling			6.3	(0.14)	2.9	(0.15)	2.8	(0.15)	2.9	(0.15)	0.7	
	Parents' occupational status					1.5	(0.03)	1.5	(0.03)	1.5	(0.03)	5.6	
	Foreign language spoken at home							-15.3	(2.01)	-14.5	(2.02)	0.1	
	Age at immigration									-1.3	(0.36)	0.1	
	R-squared		0.02		0.06		0.12		0.12		0.12		14.1

Note: Statistically significant coefficients are indicated in bold. For the variable Age at immigration the number of missing values is particularly high, therefore mean substitution is used and a dummy variable indicating whether or not the age at immigration is missing was included in the regression model. Table A1.1 in Annex A1 shows the conversions used for the variable Parental education in years of schooling.

Table 3.5 (continued)
Regression estimates of mathematics performance on immigrant status, parental education (in years of schooling), parents' occupational status (HISEI), language spoken at home and age at immigration

Note: Statistically significant coefficients are indicated in bold. For the variable Age at immigration the number of missing values is particularly high, therefore mean substitution is used and a dummy variable indicating whether or not the age at immigration is missing was included in the regression model. Table A1.1 in Annex A1 shows the conversions used for the variable Parental education in years of schooling.

Table 3.6
Between- and within-school variance in student performance in mathematics

Note: The variance components were estimated for all students with data on immigrant status.

1. Accounting for immigrant student status slightly increases the school-level variance in Canada, thus resulting in a negative estimate for explained between-school variance.

Table 3.7a
Percentage of second-generation students attending schools with different sized immigrant student populations (first- and second-generation students combined)

		Proportion of immigrant students within the school																
		$\begin{aligned} & 0 \% \text { to } \\ & <10 \% \end{aligned}$	S.E.	$\begin{array}{\|c\|} \hline 10 \% \\ \text { to } \\ <20 \% \end{array}$	S.E.	$\begin{array}{\|c\|} \hline 20 \% \\ \text { to } \\ <30 \% \end{array}$	S.E.	$\begin{array}{\|c\|} \hline 30 \% \\ \text { to } \\ <40 \% \\ \hline \end{array}$	S.E.	$\begin{gathered} 40 \% \\ \text { to } \\ <50 \% \end{gathered}$	S.E.	$\begin{gathered} 50 \% \\ \text { to } \\ <60 \% \end{gathered}$	S.E.	$\begin{array}{\|c\|} \hline 60 \% \\ \text { to } \\ <70 \% \end{array}$	S.E.	$\begin{gathered} 70 \% \\ \text { or } \\ \text { higher } \end{gathered}$	S.E.	Total
	Australia	7.6	(1.07)	14.0	(2.23)	17.3	(3.04)	15.1	(3.06)	10.2	(3.49)	9.4	(3.06)	6.5	(2.84)	19.8	(5.01)	100.0
+	Austria	12.6	(3.11)	14.3	(3.96)	16.9	(6.08)	11.6	(5.17)	3.6	(3.50)	15.9	(6.13)	9.8	(6.96)	15.3	(5.56)	100.0
\bigcirc	Belgium	17.6	(2.76)	21.3	(3.91)	19.9	(4.81)	10.7	(3.18)	5.5	(3.43)	7.1	(4.38)	2.1	(1.30)	15.8	(7.24)	100.0
Uي山	Canada	9.5	(1.20)	8.9	(1.47)	13.2	(2.05)	12.1	(3.02)	9.6	(2.25)	14.9	(3.52)	6.9	(2.72)	24.9	(4.38)	100.0
	Denmark	25.1	(5.35)	25.7	(6.81)	7.6	(4.48)	7.2	(4.11)	5.3	(3.60)	3.7	(3.67)	4.9	(4.87)	20.6	(11.64)	100.0
	France	10.4	(2.22)	21.9	(4.52)	13.6	(3.56)	14.8	(3.87)	20.9	(5.93)	4.5	(3.13)	6.5	(4.43)	7.5	(4.22)	100.0
	Germany	7.9	(1.85)	11.1	(3.06)	18.3	(4.31)	12.9	(3.77)	13.4	(4.97)	13.3	(5.46)	10.5	(5.22)	12.7	(6.96)	100.0
	Luxembourg	0.6	(0.32)	15.1	(1.29)	23.2	(1.39)	9.7	(1.02)	26.1	(1.72)	6.5	(0.89)	6.1	(0.82)	12.7	(1.05)	100.0
	Netherlands	15.6	(3.68)	25.9	(6.07)	11.8	(4.76)	0.0	c	3.9	(3.92)	16.4	(7.83)	5.0	(4.91)	21.3	(8.90)	100.0
	New Zealand	9.3	(2.11)	12.7	(2.50)	8.4	(2.50)	17.5	(4.87)	14.4	(4.13)	9.9	(2.95)	2.7	(2.64)	25.3	(7.98)	100.0
	Norwa	26.3	(6.63)	23.9	(7.42)	12.4	(6.80)	6.4	(4.48)	24.4	(12.0	6.7	(6.39)	0.0	c	0.0	C	100.0
	Sweden	14.4	(2.58)	22.4	(4.76)	23.4	(5.88)	12.1	(5.31)	11.3	(5.2	0.6	(0.58)	9.2	(5.80)	6.6	(2.38)	100.0
	Switzerland	5.0	(1.14)	25.3	(3.59)	25.0	(3.67)	10.7	(2.80)	6.1	(1.5)	17.0	(3.73)	4.4	(1.40)	6.5	(2.87)	100.0
๕	United States	7.6	(1.62)	12.1	(2.55)	11.5	(3.38)	13.5	(3.48)	19.5	(4.64)	6.7	(2.84)	9.6	(4.22)	19.5	(6.39)	100.0
	OECD average	9.6	(0.48)	17.5	(0.99)	16.5	(1.13)	12.1	(0.94)	14.1	(1.2	8.7	(0.97)	6.2	(1.03)	15.	(1.54)	100.0
	Hong Kong-China	0.0	c	2.5	(0.93)	7.4		23.7	(3.65)	29.4	(4.12)	20.6	(3.7	11.2	(3.24)	5.1	(2.33)	100.0
$\underset{ \pm}{E}$	Macao-China	0.0		0.0		0.6	(0.17)	0.0		2.0	(0.48)	9.6	(0.90)	17.8	(0.95)	70.1	(1.11)	100.0
-	Russian Federation	20.1	(3.43)	33.5	(4.97)	32.1	(5.47)	10.6	(4.31)	0.0	C	3.6	(2.73)	0.0	c	0.0	c	100.0
	Belgium (Flemish	30.7	(5.64)	14.9	(4.25)	21.2	(5.64)	17.1	(6.42)	7.2	(6.88)	2.6	(2.35)	0.5	(0.54)	5.6	(5.41)	100.0
	Community) Belgium (French Community)	10.9	(2.64)	24.7	(5.63)	19.0	(6.62)	7.3	(3.52)	4.6	(3.89)	9.4	(6.48)	2.9	(1.98)	21.1	(10.30)	100.0

Table 3.7b
Percentage of first-generation students attending schools with different sized immigrant student populations (first- and second-generation students combined)

		Proportion of immigrant students within the school																
		$\begin{aligned} & 0 \% \text { to } \\ & <10 \% \end{aligned}$	S.E.	$\begin{array}{\|c\|} \hline 10 \% \\ \text { to } \\ <20 \% \end{array}$	S.E.	$\begin{gathered} 20 \% \\ \text { to } \\ <30 \% \end{gathered}$	S.E.	$\begin{array}{\|c\|} \hline 30 \% \\ \text { to } \\ <40 \% \end{array}$	S.E.	$\begin{array}{\|c\|} \hline 40 \% \\ \text { to } \\ <50 \% \end{array}$	S.E.	$\begin{gathered} 50 \% \\ \text { to } \\ <60 \% \end{gathered}$	S.E.	$\begin{gathered} 60 \% \\ \text { to } \\ <70 \% \end{gathered}$	S.E.	$\begin{gathered} 70 \% \\ \text { or } \\ \text { higher } \end{gathered}$	S.E.	Total
¢	Australia	5.4	(0.86)	14.2	(2.14)	19.3	(3.06)	15.6	(3.24)	9.4	(3.70)	11.0	(2.84)	5.0	(2.19)	20.1	(4.20)	100.0
寺	Austria	19.2	(2.77)	26.5	(4.49)	15.0	(4.34)	10.6	(3.76)	2.2	(2.11)	10.3	(4.35)	4.6	(3.24)	11.7	(3.53)	100.0
\bigcirc	Belgium	15.4	(2.57)	15.5	(2.84)	20.8	(4.72)	9.9	(3.04)	4.3	(3.43)	3.6	(2.31)	18.8	(7.11)	11.6	(5.16)	100.0
U	Canada	6.6	(1.02)	7.0	(1.26)	10.3	(2.03)	7.7	(1.94)	8.5	(2.25)	15.8	(3.46)	9.4	(3.25)	34.7	(5.35)	100.0
\bigcirc	Denmark	38.1	(5.76)	29.5	(7.61)	6.4	(3.86)	7.5	(4.41)	6.8	(6.42)	0.8	(0.83)	2.9	(2.94)	8.1	(5.11)	100.0
	France	11.6	(3.17)	17.8	(5.24)	14.9	(4.52)	17.2	(4.93)	17.3	(6.56)	0.0	c	3.5	(2.46)	17.7	(9.92)	100.0
	Germany	16.3	(2.95)	13.2	(3.13)	20.0	(3.90)	17.8	(4.64)	6.8	(3.05)	10.2	(6.78)	6.1	(3.35)	9.5	(3.89)	100.0
	Luxembourg	0.0	c	11.0	(1.02)	19.5	(1.31)	10.2	(0.99)	25.7	(1.62)	6.6	(0.87)	13.1	(0.88)	13.9	(1.02)	100.0
	Netherlands	31.1	(6.25)	25.9	(5.81)	11.6	(4.81)	0.0	c	0.6	(0.64)	12.2	(6.01)	1.7	(1.67)	17.0	(7.41)	100.0
	New Zealand	10.3	(1.55)	13.2	(2.20)	12.1	(2.43)	21.2	(3.20)	19.5	(2.84)	12.5	(2.29)	0.7	(0.66)	10.7	(2.91)	100.0
	Norway	41.0	(6.52)	31.7	(7.13)	3.4	(2.17)	11.6	(4.98)	6.5	(3.76)	5.8	(5.55)	0.0	c	0.0	c	100.0
	Sweden	13.7	(2.73)	23.1	(4.00)	13.3	(4.32)	15.6	(6.16)	3.1	(2.19)	1.1	(0.78)	6.1	(3.58)	24.0	(7.96)	100.0
	Switzerland	6.9	(1.70)	21.4	(3.64)	28.1	(4.20)	11.1	(2.01)	5.2	(1.14)	14.8	(3.64)	4.6	(1.44)	7.9	(2.94)	100.0
	United States	8.2	(1.93)	21.1	(3.13)	10.4	(3.05)	19.6	(5.14)	13.8	(3.59)	9.2	(4.11)	7.2	(3.61)	10.5	(3.63)	100.0
$\frac{\text { N }}{\underline{I}}$	OECD average	11.5	(0.64)	17.1	(0.99)	16.1	(0.99)	13.4	(0.86)	11.8	(0.93)	9.0	(0.87)	6.4	(0.79)	14.8	(1.25)	100.0
	Hong Kong-China	0.0	C	1.0	(0.55)	7.1	(2	15.	(2.89)	29.1	(05)	24.1	(31)	13.9	(5.02)	9.2	(4.21)	100.0
$\stackrel{\stackrel{\rightharpoonup}{\#}}{\stackrel{~}{ \pm}}$	Macao-China	0.0	c	0.0	c	0.5	(0.33)	0.0	c	0.9	(0.64)	6.9	(1.67)	10.0	(2.12)	81.8	(2.58)	100.0
ᄃ	Russian Federation	15.7	(2.88)	41.2	(4.96)	26.9	(4.16)	11.0	(3.95)	0.0	c	5.3	(3.91)	0.0	c	0.0	c	100.0
	Belgium (Flemish	32.7	(7.19)	17.6	(5.04)	19.7	(4.69)	12.7	(4.88)	0.0	c	1.5	(1.39)	13.6	(12.02)	2.2	(2.21)	100.0
	Community) Belgium (French Community)	8.0	(2.49)	14.1	(3.53)	20.6	(6.67)	8.3	(3.82)	6.4	(5.01)	4.7	(3.35)	21.8	(9.06)	16.2	(7.54)	100.0

Table 3.7c
Percentage of native students attending schools with different sized immigrant student populations
(first- and second-generation students combined)

		Proportion of immigrant students within the school																
		$\begin{aligned} & 0 \% \text { to } \\ & <10 \% \end{aligned}$	S.E.	$\begin{gathered} 10 \% \\ \text { to } \\ <20 \% \end{gathered}$	S.E.	$\begin{gathered} 20 \% \\ \text { to } \\ <30 \% \end{gathered}$	S.E.	$\begin{array}{\|c\|} \hline 30 \% \\ \text { to } \\ <40 \% \end{array}$	S.E.	$\begin{array}{\|c\|} \hline 40 \% \\ \text { to } \\ <50 \% \end{array}$	S.E.	$\begin{array}{\|c\|} \hline 50 \% \\ \text { to } \\ <60 \% \end{array}$	S.E.	$\begin{array}{\|c\|} \hline 60 \% \\ \text { to } \\ <70 \% \\ \hline \end{array}$	S.E.	$\begin{gathered} 70 \% \\ \text { or } \\ \text { higher } \end{gathered}$	S.E.	Total
U	Australia	42.8	(2.49)	24.0	(2.86)	16.1	(2.28)	8.5	(1.53)	3.6	(1.32)	2.6	(0.68)	1.0	(0.44)	1.3	(0.37)	100.0
-	Austria	66.3	(3.57)	20.1	(3.30)	7.5	(1.92)	3.4	(1.20)	0.5	(0.48)	1.4	(0.60)	0.4	(0.31)	0.5	(0.21)	100.0
\bigcirc	Belgium	70.7	(2.77)	15.5	(2.12)	8.5	(1.67)	2.8	(0.83)	0.9	(0.49)	0.6	(0.38)	0.7	(0.30)	0.3	(0.15)	100.0
u	Canada	65.5	(1.99)	12.5	(1.59)	9.2	(1.30)	4.5	(1.01)	2.8	(0.60)	3.5	(0.75)	1.1	(0.31)	1.1	(0.25)	100.0
	Denmark	84.9	(2.47)	11.3	(2.35)	1.7	(0.90)	1.1	(0.59)	0.5	(0.37)	0.1	(0.14)	0.2	(0.16)	0.1	(0.14)	100.0
	France	61.0	(3.79)	21.2	(3.56)	7.1	(1.81)	5.0	(1.25)	4.3	(1.37)	0.5	(0.38)	0.5	(0.34)	0.5	(0.29)	100.0
	Germany	63.5	(3.31)	14.1	(2.70)	11.5	(2.04)	5.4	(1.39)	2.3	(0.84)	2.0	(1.10)	0.8	(0.44)	0.5	(0.30)	100.0
	Luxembourg	1.7	(0.11)	35.0	(0.38)	32.5	(0.47)	8.5	(0.30)	16.6	(0.50)	2.3	(0.26)	2.4	(0.21)	0.9	(0.18)	100.0
	Netherlands	74.0	(3.94)	19.0	(3.52)	4.3	(1.66)	0.0	c	0.4	(0.40)	1.7	(0.90)	0.3	(0.29)	0.4	(0.19)	100.0
	New Zealand	54.8	(3.	18.9	(2.	7.6	(1.69)	9.5	(1.50)	5.8	(1.05)	2.3	(0.58)	0.2	(0.16)	1.0	(0.35)	100.0
	Norway	85.8	(2.	10.4	(2.	1.4	(0.82)	1.1	(0.58)	1.0	(0.59)	0.3	(0.30)	0.0	c	0.0	c	100.0
	Sweden	68.0	(3.12)	19.0	(2.89)	7.2	(1.78)	3.5	(1.44)	1.4	(0.66)	0.1	(0.08)	0.6	(0.35)	0.2	(0.13)	100.0
	Switzerland	34.7	(4.03)	33.1	(4.08)	20.7	(2.82)	5.3	(1.03)	1.8	(0.40)	3.4	(0.82)	0.6	(0.22)	0.5	(0.20)	100.0
	United States	67.2	(2.35)	15.2	(2.18)	6.2	(1.55)	5.1	(1.25)	3.8	(0.91)	1.1	(0.45)	0.9	(0.41)	0.6	(0.21)	100.0
	OECD average	61.7	(0.87)	18.9	(0.83)	9.4	(0.50)	4.5	(0.29)	3.0	(0.23)	1.4	(0.14)	0.6	(0.09)	0.5	(0.07)	
$\stackrel{\rightharpoonup}{0}$	Hong Kong-China	0.0	c	6.5	(2.39)	17.5	(3.65)	27.7	(3.85)	26.9	(3.93)	14.3	(2.54)	5.3	(1.78)	1.7	(0.84)	100.0
$\frac{\stackrel{\rightharpoonup}{\stackrel{~}{y}}}{\stackrel{1}{y}}$	Macao-China	0.0	c	0.0		4.5	(0.48)	0.0	c	6.1	(1.12)	23.9	(2.23)	26.6	(2.41)	38.9	(3.14)	100.0
®	Russian Federation	46.6	(4.37)	34.9	(3.96)	14.8	(2.57)	3.1	(1.14)	0.0	c	0.6	(0.43)	0.0	c	0.0	c	100.0
	Belgium (Flemish Community)	84.9	(2.38)	7.6	(1.77)	4.5	(0.98)	2.1	(0.83)	0.3	(0.33)	0.2	(0.14)	0.3	(0.30)	0.1	(0.09)	100.0
	Community) Belgium (French Community)	50.4	(5.87)	26.9	(4.61)	14.1	(3.92)	3.7	(1.70)	1.8	(1.14)	1.3	(0.93)	1.3	(0.61)	0.6	(0.36)	100.0

Table 3.8
Differences between native and immigrant students in mathematics performance and percentage of immigrant students within countries

[^10]Table 3.9 (scores standardised within each country sample)

Characteristics of schools attended by native students and immigrant students

Characteristics of schools attended by native students and immigrant students

Note: Statistically significant differences from native students' scores are indicated in bold.

Table 4.1
Index of interest in and enjoyment of mathematics and student performance on the mathematics scale
Results based on students＇self－reports

	Index of interest in and enjoyment of mathematics					
	Native students		Second－generation students		First－generation students	
	Mean index	S．E．	Mean index	S．E．	Mean index	S．E．
๕ Australia	－0．06	（0．02）	0.22	（0．04）	0.30	（0．04）
ㄹ．Austria	－0．32	（0．02）	－0．15	（0．08）	－0．09	（0．06）
¢ Belgium	－0．20	（0．02）	－0．01	（0．05）	0.16	（0．07）
\bigcirc Canada	－0．09	（0．01）	0.13	（0．04）	0.49	（0．05）
\bigcirc Denmark	0.40	（0．02）	0.58	（0．09）	0.66	（0．10）
\bigcirc France	0.04	（0．02）	0.07	（0．05）	0.32	（0．10）
Germany	0.00	（0．02）	0.24	（0．07）	0.27	（0．07）
Luxembourg	－0．34	（0．02）	－0．21	（0．04）	0.04	（0．04）
Netherlands	－0．25	（0．02）	0.19	（0．06）	0.23	（0．11）
New Zealand	0.03	（0．02）	0.35	（0．07）	0.54	（0．04）
Norway	－0．19	（0．02）	0.17	（0．11）	0.14	（0．08）
थ Sweden	0.05	（0．02）	0.20	（0．08）	0.45	（0．06）
产 Switzerland	0.08	（0．02）	0.16	（0．05）	0.38	（0．04）
\bigcirc United States	0.00	（0．02）	0.23	（0．06）	0.40	（0．07）
\bigcirc OECD average	－0．05	（0．01）	0.12	（0．02）	0.29	（0．02）
む Hong Kong－China	0.19	（0．03）	0.27	（0．03）	0.26	（0．02）
\＃Macao－China	0.05	（0．05）	0.11	（0．05）	0.27	（0．06）
® Russian Federation	0.25	（0．02）	0.21	（0．05）	0.23	（0．06）
Belgium（Flemish Community）	－0．24	（0．02）	－0．04	（0．07）	0.04	（0．11）
Belgium（French Community）	－0．12	（0．03）	0.00	（0．07）	0.24	（0．08）

Regression estimates of the index of interest in and enjoyment of mathematics

		Regression estimates Accounting for ESCS				，	men	hematic					
		Accounting for mathematics performance											
		Second－generation students	First－generation students		Second－generation students		First－generation students						
		Coef．	S．E．	Coef．	S．E．	Coef．	S．E．	Coef．	S．E．				
ひ 言 0 0 0 0	Australia					0.29	（0．04）	0.36	（0．04）	0.29	（0．04）	0.36	（0．04）
	Austria	0.17	（0．08）	0.21	（0．07）	0.26	（0．08）	0.32	（0．07）				
	Belgium	0.26	（0．06）	0.39	（0．07）	0.35	（0．06）	0.52	（0．08）				
	Canada	0.23	（0．04）	0.57	（0．05）	0.20	（0．04）	0.60	（0．05）				
	Denmark	0.30	（0．09）	0.33	（0．10）	0.43	（0．10）	0.49	（0．10）				
	France	0.09	（0．06）	0.34	（0．11）	0.15	（0．06）	0.46	（0．10）				
	Germany	0.27	（0．08）	0.32	（0．08）	0.45	（0．08）	0.41	（0．09）				
	Luxembourg	0.16	（0．05）	0.40	（0．05）	0.19	（0．05）	0.45	（0．05）				
	Netherlands	0.47	（0．06）	0.52	（0．12）	0.55	（0．06）	0.65	（0．11）				
	New Zealand	0.33	（0．07）	0.51	（0．05）	0.37	（0．07）	0.52	（0．05）				
	Norway	0.46	（0．11）	0.46	（0．08）	0.55	（0．12）	0.63	（0．09）				
	Sweden	0.22	（0．09）	0.50	（0．07）	0.27	（0．08）	0.72	（0．07）				
	Switzerland	0.09	（0．06）	0.31	（0．06）	0.20	（0．06）	0.47	（0．06）				
	United States	0.24	（0．07）	0.41	（0．08）	0.26	（0．06）	0.44	（0．08）				
	OECD average	0.21	（0．02）	0.37	（0．02）	0.27	（0．02）	0.45	（0．02）				
	Hong Kong－China	0.10	（0．03）	0.10	（0．04）	0.03	（0．03）	0.19	（0．04）				
	Macao－China	0.07	（0．08）	0.23	（0．07）	0.06	（0．07）	0.24	（0．07）				
	Russian Federation	－0．04	（0．05）	－0．02	（0．06）	－0．03	（0．05）	0.01	（0．06）				
	Belgium（Flemish Community）	0.35	（0．08）	0.36	（0．11）	0.55	（0．08）	0.55	（0．12）				
	Belgium（French Community）	0.14	（0．08）	0.34	（0．09）	0.18	（0．09）	0.42	（0．09）				

[^11]Table 4.2 Index of instrumental motivation in mathematics and student performance on the mathematics scale

Results based on students' self-reports

Regression estimate of the index of instrumental motivation in mathematics Accounting for ESCS Accounting for mathematics performance

Accounting for ESCS				Accounting for mathematics performance			
Second-generation students		First-generation students		Second-generation students		First-generation students	
Coef.	S.E.	Coef.	S.E.	Coef.	S.E.	Coef.	S.E.
0.18	(0.04)	0.19	(0.03)	0.17	(0.04)	0.19	(0.03)
0.14	(0.10)	0.16	(0.07)	0.20	(0.10)	0.22	(0.08)
0.24	(0.07)	0.43	(0.07)	0.29	(0.08)	0.51	(0.07)
0.19	(0.05)	0.33	(0.04)	0.17	(0.05)	0.36	(0.04)
0.12	(0.09)	0.06	(0.10)	0.18	(0.10)	0.14	(0.10)
0.19	(0.06)	0.48	(0.11)	0.23	(0.06)	0.55	(0.12)
0.16	(0.06)	0.24	(0.07)	0.22	(0.07)	0.29	(0.07)
0.21	(0.06)	0.48	(0.06)	0.24	(0.05)	0.51	(0.05)
0.42	(0.07)	0.30	(0.09)	0.44	(0.07)	0.36	(0.09)
0.24	(0.07)	0.20	(0.04)	0.25	(0.07)	0.22	(0.04)
0.27	(0.12)	0.25	(0.07)	0.32	(0.11)	0.32	(0.08)
0.30	(0.08)	0.39	(0.05)	0.31	(0.07)	0.53	(0.05)
0.10	(0.05)	0.25	(0.05)	0.15	(0.05)	0.31	(0.05)
0.14	(0.05)	0.21	(0.06)	0.14	(0.05)	0.23	(0.06)
0.29	(0.02)	0.28	(0.04)	0.20	(0.02)	0.31	(0.02)
0.07	(0.03)	0.22	(0.03)	0.00	(0.03)	0.26	(0.03)
0.09	(0.07)	0.10	(0.08)	0.09	(0.06)	0.13	(0.08)
-0.01	(0.06)	0.02	(0.06)	0.01	(0.06)	0.05	(0.06)
0.26	(0.09)	0.30	(0.08)	0.42	(0.09)	0.44	(0.08)
0.11	(0.10)	0.38	(0.08)	0.14	(0.10)	0.47	(0.09)

[^12]Table 4.3a
Performance in mathematics and reading by students' expected level of education
Results based on students' self-reports

Table 4.3a (continued)
Performance in mathematics and reading by students' expected level of education
Results based on students' self-reports

	Australia		Students expecting to complete a non-university tertiary-level programme (ISCED Level 5B)						Students expecting to complete a university-level programme (ISCED Levels 5A and 6)					
				S.E.	Performance on the mathematics scale		Performance on the reading scale		$\begin{aligned} & \text { " } \\ & \text { 品 } \\ & \text { تn } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	S.E.	Performance on the mathematics scale		Performance on the reading scale	
					Mean score	S.E.	Mean score	S.E.			Mean score	S.E.	$\begin{aligned} & \text { Mean } \\ & \text { score } \end{aligned}$	S.E.
		Native	8.5	(0.3)	504	(4.1)	508	(4.7)	58.9	(0.8)	559	(2.1)	565	(2.1)
		Second-generation	7.2	(0.8)	483	(11.8)	481	(13.7)	74.5	(1.6)	541	(4.9)	547	(4.5)
		First-generation	5.2	(0.6)	489	(12.8)	489	(15.9)	77.4	(1.5)	543	(5.4)	535	(5.2)
	Austria	Native	17.7	(0.9)	487	(4.7)	460	(5.3)	24.7	(1.4)	583	(3.8)	572	(3.7)
		Second-generation	5.2	(1.5)	450	(26.3)	426	(35.0)	25.4	(3.4)	536	(12.1)	516	(14.9)
		First-generation	10.4	(1.5)	442	(13.5)	406	(17.7)	18.7	(2.4)	520	(12.0)	507	(11.6)
	Belgium	Native	23.2	(0.7)	562	(2.7)	545	(2.5)	36.4	(1.0)	609	(2.4)	582	(2.2)
		Second-generation	19.4	(2.4)	486	(12.6)	481	(12.4)	25.5	(2.5)	522	(11.9)	508	(12.8)
		First-generation	14.3	(1.8)	487	(14.9)	460	(16.3)	28.7	(2.7)	505	(13.1)	487	(13.7)
	Canada	Native	24.8	(0.6)	514	(2.1)	517	(2.3)	58.3	(0.8)	562	(1.8)	559	(1.6)
		Second-generation	15.6	(1.3)	496	(6.6)	502	(7.5)	76.2	(1.8)	561	(4.5)	560	(4.2)
		First-generation	13.1	(1.3)	474	(10.3)	472	(10.4)	81.9	(1.5)	544	(5.0)	527	(4.6)
	Denmark	Native	18.3	(0.7)	538	(3.6)	518	(3.7)	24.5	(0.9)	574	(3.2)	547	(3.3)
		Second-generation	9.1	(2.8)	472	(27.9)	467	(20.4)	36.4	(5.4)	474	(16.7)	473	(18.8)
		First-generation	12.2	(3.2)	462	(24.4)	468	(26.7)	41.9	(5.0)	473	(13.8)	482	(12.9)
	France	Native	16.7	(0.8)	517	(3.5)	501	(3.6)	34.3	(1.0)	575	(3.0)	562	(2.8)
		Second-generation	19.4	(2.0)	463	(10.3)	444	(8.0)	38.1	(3.0)	520	(6.4)	506	(7.5)
		First-generation	15.1	(3.6)	447	(22.3)	419	(25.2)	30.9	(4.6)	536	(15.7)	515	(17.1)
	Germany	Native	2.1	(0.2)	547	(12.1)	537	(10.5)	19.8	(1.0)	598	(3.1)	588	(3.0)
		Second-generation	1.0	(0.7)	537	(27.8)	519	(43.7)	12.4	(2.2)	518	(22.8)	500	(23.7)
		First-generation	0.7	(0.4)	523	(18.8)	555	(31.1)	14.8	(2.1)	533	(14.6)	517	(14.2)
	Luxembourg	Native	15.2	(0.7)	517	(4.4)	521	(4.6)	40.9	(0.8)	554	(2.2)	545	(2.8)
		Second-generation	10.0	(1.3)	494	(8.7)	481	(9.2)	41.3	(1.8)	527	(6.0)	510	(6.6)
		First-generation	6.7	(0.9)	484	(14.0)	467	(15.1)	41.2	(2.0)	524	(5.3)	496	(6.1)
	Netherlands	Native	a	a	a	a	a	a	40.6	(1.5)	610	(2.8)	576	(2.6)
		Second-generation	a	a	a	a	a	a	44.2	(4.9)	529	(13.3)	507	(9.8)
		First-generation	a	a	a	a	a	a	39.9	(4.5)	512	(13.1)	504	(12.0)
	New Zealand	Native	13.5	(0.6)	545	(4.1)	559	(4.0)	35.3	(1.1)	576	(3.0)	579	(3.3)
		Second-generation	13.0	(1.9)	491	(17.4)	510	(17.9)	48.8	(2.7)	526	(10.5)	534	(12.3)
		First-generation	12.3	(1.5)	502	(10.5)	492	(13.0)	56.3	(2.2)	556	(6.4)	540	(6.7)
	Norway	Native	29.9	(0.8)	517	(3.2)	528	(3.8)	25.3	(0.9)	546	(3.5)	559	(4.0)
		Second-generation	24.6	(3.8)	449	(20.6)	430	(26.7)	39.8	(4.2)	485	(19.3)	476	(15.9)
		First-generation	24.2	(3.3)	431	(17.8)	438	(18.3)	27.6	(3.9)	497	(15.0)	503	(19.7)
	Sweden	Native	24.7	(0.7)	538	(2.6)	546	(2.8)	31.4	(1.1)	558	(3.2)	562	(2.8)
		Second-generation	24.4	(3.0)	504	(12.0)	528	(12.7)	43.8	(3.9)	506	(16.3)	525	(13.3)
		First-generation	16.2	(2.5)	448	(14.6)	458	(17.2)	47.0	(4.0)	457	(9.2)	473	(10.4)
	Switzerland	Native	7.5	(0.5)	564	(5.9)	518	(6.0)	17.9	(1.5)	616	(5.1)	576	(4.5)
		Second-generation	4.6	(0.8)	542	(14.6)	511	(23.3)	15.9	(1.7)	564	(10.3)	538	(10.3)
		First-generation	6.3	(1.8)	460	(12.6)	425	(17.5)	16.3	(2.1)	558	(14.1)	525	(12.9)
	United States	Native	12.6	(0.6)	486	(4.5)	497	(4.4)	64.7	(0.9)	510	(2.8)	526	(3.0)
		Second-generation	8.2	(1.3)	469	(17.1)	485	(16.1)	67.8	(2.7)	492	(7.9)	508	(8.4)
		First-generation	9.5	(1.9)	465	(18.7)	466	(23.7)	58.4	(2.9)	490	(7.5)	497	(8.6)
	Hong Kong-China	Native	12.1	(0.6)	553	(7.1)	510	(6.3)	53.8	(1.8)	597	(3.8)	546	(2.8)
		Second-generation	9.3	(0.9)	560	(7.8)	519	(7.0)	55.2	(1.9)	608	(4.6)	553	(3.3)
		First-generation	10.4	(1.0)	526	(9.5)	499	(9.0)	46.3	(1.5)	558	(5.3)	531	(4.2)
	Macao-China	Native	16.7	(2.4)	517	(12.9)	500	(11.9)	48.9	(2.9)	556	(7.4)	522	(5.9)
		Second-generation	18.2	(1.7)	535	(7.4)	500	(6.9)	49.2	(1.9)	557	(6.6)	522	(3.8)
		First-generation	11.7	(2.6)	544	(23.8)	529	(18.0)	48.1	(4.2)	547	(10.1)	523	(6.4)
	Russian Federation	Native	a	a	a		a	a	64.4	(2.0)	499	(3.9)	475	(3.6)
		Second-generation	a	a	a	a	a	a	59.8	(3.3)	479	(7.9)	455	(9.0)
		First-generation	a	a	a	a	a	a	57.0	(3.5)	480	(7.2)	441	(7.2)
	Belgium	Native	26.6	(0.9)	575	(3.1)	556	(2.5)	38.3	(1.3)	629	(2.2)	598	(2.3)
	(Flemish Community)	Second-generation	23.5	(3.5)	460	(18.3)	466	(16.1)	24.5	(3.7)	530	(19.2)	521	(17.2)
		First-generation	18.2	(3.6)	507	(16.2)	494	(18.6)	33.3	(4.2)	508	(14.1)	496	(17.3)
		Native	18.0	(1.0)	532	(6.1)	520	(6.2)	33.6	(1.5)	575	(5.0)	554	(4.5)
	(French Community)	Second-generation	17.2	(3.3)	505	(16.3)	491	(18.3)	26.0	(3.0)	518	(14.5)	502	(16.4)
		First-generation	12.4	(2.2)	472	(23.3)	434	(25.3)	26.3	(3.8)	503	(20.1)	479	(22.5)

Table 4.3b
Index of instrumental motivation in mathematics by students' expected level of education
Results based on students' self-reports

Table 4.4
Odds ratios of immigrant students expecting to complete a university-level programme (ISCED 5a, 6) compared to native students

Note: Values that are statistically significant are indicated in bold.

Table 4.5
Index of self－concept in mathematics and student performance on the mathematics scale
Results based on students＇self－reports

		Index of self－concept in mathematics					
		Native students		Second－generation students		First－generation students	
		Mean index	S．E．	Mean index	S．E．	Mean index	S．E．
U	Australia	0.10	（0．02）	0.23	（0．03）	0.28	（0．03）
돋	Austria	0.07	（0．02）	0.10	（0．07）	0.09	（0．06）
5	Belgium	－0．04	（0．02）	0.02	（0．04）	0.07	（0．05）
\bigcirc	Canada	0.16	（0．01）	0.20	（0．05）	0.42	（0．05）
\bigcirc	Denmark	0.25	（0．02）	0.03	（0．09）	0.21	（0．10）
山	France	－0．17	（0．02）	－0．20	（0．06）	0.02	（0．10）
－	Germany	0.12	（0．02）	0.18	（0．07）	0.30	（0．05）
	Luxembourg	0.05	（0．02）	0.05	（0．04）	0.17	（0．04）
	Netherlands	－0．01	（0．03）	0.01	（0．07）	0.04	（0．10）
	New Zealand	0.12	（0．02）	0.11	（0．05）	0.38	（0．04）
	Norway	－0．18	（0．02）	0.06	（0．14）	－0．21	（0．08）
O	Sweden	0.12	（0．02）	0.12	（0．08）	0.22	（0．06）
폳	Switzerland	0.13	（0．02）	0.09	（0．04）	0.26	（0．05）
$\stackrel{5}{5}$	United States	0.26	（0．02）	0.27	（0．06）	0.33	（0．06）
\bigcirc	OECD average	0.07	（0．01）	0.09	（0．02）	0.23	（0．02）
む	Hong Kong－China	－0．27	（0．03）	－0．24	（0．04）	－0．25	（0．03）
¢	Macao－China	－0．40	（0．06）	－0．16	（0．04）	－0．07	（0．07）
ธ๐	Russian Federation	0.14	（0．02）	0.07	（0．04）	0.08	（0．05）
	Belgium（Flemish Community）	－0．07	（0．02）	－0．02	（0．06）	0.05	（0．08）
	Belgium（French Community）	0.01	（0．03）	0.04	（0．06）	0.08	（0．07）

Change in the mathematics score per unit of the index of self－concept in mathematics

Regression estimate of the index of self－concept in mathematics

		Accounting for ESCS				Accounting for mathematics performance			
		Second－generation students		First－generation students		Second－generation students		First－generation students	
		Coef．	S．E．	Coef．	S．E．	Coef．	S．E．	Coef．	S．E．
0	Australia	0.16	（0．04）	0.18	（0．03）	0.15	（0．03）	0.19	（0．03）
产	Austria	0.09	（0．07）	0.08	（0．07）	0.24	（0．07）	0.26	（0．07）
$\stackrel{5}{5}$	Belgium	0.09	（0．04）	0.13	（0．06）	0.27	（0．05）	0.32	（0．06）
\bigcirc	Canada	0.05	（0．05）	0.24	（0．05）	0.00	（0．04）	0.30	（0．05）
\bigcirc	Denmark	－0．01	（0．10）	0.11	（0．10）	0.21	（0．11）	0.35	（0．10）
山	France	0.06	（0．07）	0.29	（0．10）	0.14	（0．07）	0.46	（0．09）
，	Germany	0.14	（0．08）	0.28	（0．06）	0.41	（0．07）	0.43	（0．06）
	Luxembourg	0.04	（0．05）	0.18	（0．05）	0.10	（0．05）	0.26	（0．04）
	Netherlands	0.05	（0．08）	0.07	（0．10）	0.18	（0．07）	0.29	（0．10）
	New Zealand	0.06	（0．06）	0.24	（0．04）	0.12	（0．06）	0.27	（0．04）
	Norway	0.38	（0．12）	0.17	（0．09）	0.52	（0．12）	0.40	（0．09）
¢	Sweden	0.12	（0．07）	0.25	（0．06）	0.19	（0．06）	0.60	（0．06）
돋	Switzerland	－0．02	（0．04）	0.16	（0．06）	0.16	（0．04）	0.44	（0．06）
5	United States	0.10	（0．06）	0.18	（0．06）	0.10	（0．06）	0.22	（0．06）
\bigcirc	OECD average	0.10	（0．02）	0.23	（0．02）	0.18	（0．02）	0.35	（0．02）
む	Hong Kong－China	0.05	（0．03）	0.07	（0．04）	－0．02	（0．03）	0.15	（0．04）
頻	Macao－China	0.23	（0．08）	0.33	（0．09）	0.22	（0．07）	0.36	（0．08）
ர๐	Russian Federation	－0．06	（0．05）	－0．05	（0．05）	－0．03	（0．04）	0.00	（0．05）
	Belgium（Flemish Community）	0.13	（0．06）	0.18	（0．08）	0.41	（0．07）	0.40	（0．09）
	Belgium（French Community）	0.02	（0．07）	0.05	（0．08）	0.14	（0．07）	0.22	（0．08）

[^13]Table 4.6
Index of self－efficacy in mathematics and student performance on the mathematics scale
Results based on students＇self－reports

		Index of self－efficacy in mathematics					
		Native students		Second－generation students		First－generation students	
		Mean index	S．E．	Mean index	S．E．	Mean index	S．E．
\％	Australia	0.08	（0．02）	0.21	（0．04）	0.24	（0．04）
폳	Austria	0.20	（0．02）	－0．17	（0．09）	－0．10	（0．05）
$\stackrel{5}{5}$	Belgium	－0．04	（0．02）	－0．03	（0．06）	－0．19	（0．06）
\bigcirc	Canada	0.24	（0．02）	0.23	（0．04）	0.40	（0．04）
\bigcirc	Denmark	－0．06	（0．02）	－0．23	（0．07）	－0．10	（0．07）
山	France	0.01	（0．03）	－0．13	（0．05）	－0．09	（0．11）
－	Germany	0.19	（0．02）	－0．09	（0．07）	0.01	（0．06）
	Luxembourg	0.19	（0．02）	－0．05	（0．04）	－0．07	（0．04）
	Netherlands	－0．08	（0．02）	－0．15	（0．06）	－0．17	（0．08）
	New Zealand	－0．02	（0．02）	－0．07	（0．05）	0.23	（0．04）
	Norway	－0．04	（0．03）	0.13	（0．13）	－0．18	（0．08）
．0	Sweden	0.03	（0．03）	0.16	（0．08）	－0．04	（0．07）
产	Switzerland	0.38	（0．03）	0.13	（0．04）	0.13	（0．04）
5	United States	0.29	（0．02）	0.22	（0．07）	0.24	（0．07）
\bigcirc	OECD average	0.09	（0．01）	0.02	（0．02）	0.07	（0．02）
む	Hong Kong－China	0.15	（0．03）	0.18	（0．03）	－0．05	（0．03）
\pm	Macao－China	0.00	（0．06）	0.09	（0．05）	0.17	（0．07）
$\stackrel{\square}{\square}$	Russian Federation	－0．07	（0．02）	－0．14	（0．05）	－0．13	（0．05）
	Belgium（Flemish Community）	－0．15	（0．02）	－0．25	（0．06）	－0．36	（0．07）
	Belgium（French Community）	0.13	（0．03）	0.08	（0．08）	－0．11	（0．09）

Change in the mathematics score per unit of the index of self－efficacy in mathematics

Native students		$\begin{aligned} & \text { Explained variance } \\ & \text { in student } \\ & \text { performance } \\ & \text { (r-squared x 100) } \\ & \hline \end{aligned}$	Second－ generation students		$\begin{gathered} \hline \text { Explained variance } \\ \text { in student } \\ \text { performance } \\ (\mathrm{r} \text {-squared } \times 100) \\ \hline \end{gathered}$	First－ generation students		$\begin{aligned} & \text { Explained variance } \\ & \text { in student } \\ & \text { performance } \\ & (\mathrm{r} \text {-squared } \times 100) \\ & \hline \end{aligned}$
Effect	S．E．	\％	Effect	S．E．	\％	Effect	S．E．	\％
49.5	（1．2）	27.4	47.6	（3．3）	24.2	52.2	（3．7）	29.2
45.7	（1．8）	26.6	38.9	（6．8）	18.8	29.4	（5．9）	9.3
45.9	（1．3）	19.5	39.2	（4．6）	15.9	34.8	（5．9）	12.9
42.8	（0．9）	28.4	47.5	（2．6）	33.9	48.1	（2．8）	30.3
50.7	（1．9）	28.6	43.5	（9．8）	15.3	41.8	（10．9）	14.8
46.1	（1．6）	25.8	44.2	（5．1）	22.7	62.8	（9．0）	31.0
48.2	（1．8）	26.5	42.8	（6．2）	23.8	51.5	（6．1）	26.1
37.0	（1．6）	20.6	40.8	（3．8）	20.4	49.0	（3．4）	25.3
44.4	（2．2）	22.4	36.2	（6．2）	11.7	45.4	（9．9）	21.1
52.8	（1．6）	28.4	57.4	（6．6）	28.7	46.4	（4．6）	22.9
46.8	（1．6）	30.9	49.0	（5．3）	36.7	41.1	（6．7）	20.8
53.7	（1．7）	35.0	52.1	（6．0）	29.6	41.3	（6．1）	22.0
50.7	（2．2）	31.5	46.0	（5．9）	21.8	53.9	（5．2）	24.3
45.9	（1．4）	27.2	53.1	（4．5）	37.7	43.4	（5．2）	22.6
45.9	（0．5）	25.1	47.2	（1．4）	24.0	49.8	（1．5）	24.1
53.7	（2．5）	31.5	51.5	（2．8）	31.3	52.6	（4．2）	25.3
40.1	（6．3）	16.9	43.4	（3．8）	19.3	45.8	（7．2）	22.8
49.1	（2．0）	20.5	28.5	（5．6）	8.1	39.3	（5．9）	13.3
54.1	（1．8）	23.8	44.2	（11．7）	11.8	35.2	（11．2）	11.0
47.3	（2．3）	26.4	37.8	（5．0）	17.8	36.6	（7．4）	15.6

Regression estimate of the index of self－efficacy in mathematics

Accounting for ESCS				Accounting for mathematics performance			
Second－generation students		First－generation students		Second－generation students		First－generation students	
Coef．	S．E．	Coef．	S．E．	Coef．	S．E．	Coef．	S．E．
0.20	（0．04）	0.17	（0．04）	0.16	（0．03）	0.17	（0．03）
－0．17	（0．09）	－0．12	（0．05）	－0．07	（0．08）	0.05	（0．06）
0.28	（0．05）	0.04	（0．06）	0.39	（0．05）	0.23	（0．06）
0.01	（0．04）	0.13	（0．04）	－0．05	（0．03）	0.20	（0．03）
0.08	（0．07）	0.15	（0．07）	0.22	（0．07）	0.31	（0．07）
0.13	（0．06）	0.16	（0．09）	0.12	（0．05）	0.29	（0．07）
0.06	（0．08）	0.18	（0．06）	0.24	（0．06）	0.20	（0．05）
－0．11	（0．05）	－0．06	（0．05）	－0．08	（0．04）	－0．02	（0．04）
0.12	（0．06）	0.05	（0．08）	0.22	（0．06）	0.30	（0．08）
0.08	（0．05）	0.23	（0．04）	0.12	（0．05）	0.27	（0．04）
0.32	（0．11）	0.08	（0．08）	0.43	（0．09）	0.27	（0．08）
0.33	（0．07）	0.17	（0．07）	0.34	（0．05）	0.51	（0．07）
－0．06	（0．05）	－0．01	（0．04）	0.11	（0．05）	0.28	（0．04）
0.13	（0．06）	0.18	（0．06）	0.06	（0．05）	0.15	（0．07）
0.12	（0．02）	0.13	（0．02）	0.15	（0．01）	0.23	（0．01）
0.12	（0．03）	－0．04	（0．04）	－0．04	（0．04）	0.04	（0．03）
0.12	（0．08）	0.20	（0．08）	0.07	（0．07）	0.21	（0．08）
－0．06	（0．05）	－0．05	（0．05）	－0．01	（0．05）	0.03	（0．04）
0.17	（0．06）	－0．05	（0．08）	0.41	（0．05）	0.20	（0．08）
0.24	（0．06）	0.00	（0．09）	0.26	（0．07）	0.16	（0．08）

Note：Values that are statistically significant are indicated in bold．

Table 4.7
Index of anxiety in mathematics and student performance on the mathematics scale
Results based on students' self-reports

乞 Australia

[^14]Table 4.8
Index of attitudes towards school and student performance on the mathematics scale
Results based on students＇self－reports

		Index of attitudes towards school					
		Native students		Second－generation students		First－generation students	
		Mean index	S．E．	Mean index	S．E．	Mean index	S．E．
O	Australia	0.24	（0．02）	0.33	（0．03）	0.29	（0．04）
产	Austria	0.09	（0．02）	0.20	（0．09）	0.31	（0．06）
\％	Belgium	－0．21	（0．02）	－0．01	（0．05）	0.03	（0．08）
\bigcirc	Canada	0.02	（0．01）	0.14	（0．04）	0.25	（0．04）
\bigcirc	Denmark	－0．04	（0．02）	0.09	（0．09）	0.05	（0．10）
山	France	0.12	（0．02）	0.26	（0．06）	0.35	（0．08）
－	Germany	－0．12	（0．02）	0.08	（0．08）	0.13	（0．07）
	Luxembourg	－0．33	（0．02）	－0．09	（0．04）	0.05	（0．04）
	Netherlands	－0．22	（0．02）	－0．02	（0．06）	0.19	（0．08）
	New Zealand	0.05	（0．02）	0.39	（0．06）	0.20	（0．04）
	Norway	－0．22	（0．02）	－0．15	（0．16）	0.04	（0．09）
\％	Sweden	0.00	（0．02）	0.17	（0．08）	0.27	（0．06）
폳	Switzerland	0.00	（0．02）	0.13	（0．06）	0.21	（0．04）
5	United States	0.09	（0．02）	0.16	（0．05）	0.17	（0．08）
8	OECD average	－0．04	（0．00）	0.13	（0．02）	0.18	（0．02）
亠	Hong Kong－China	－0．52	（0．02）	－0．54	（0．02）	－0．50	（0．02）
\ddagger	Macao－China	－0．35	（0．04）	－0．37	（0．05）	－0．41	（0．07）
$\stackrel{\square}{\square}$	Russian Federation	0.20	（0．03）	0.09	（0．05）	0.18	（0．05）
	Belgium（Flemish Community）	－0．27	（0．02）	－0．03	（0．07）	－0．13	（0．10）
	Belgium（French Community）	－0．11	（0．03）	0.00	（0．07）	0.11	（0．11）

Change in the mathematics score per unit of the index of attitudes towards school

		Explained variance in student Native performance students （r－squared x 100）				p							
		Second－ generation students	Explained variance in student performance （r－squared x 100）	First－ generation students		Explained variancein studentperformance（r－squared x 100）$\%$							
		Effect	S．E．	\％	Effect		S．E．	\％	Effect	S．E．			
U	Australia				15.4	（1．2）	3.1	5.0	（2．2）	0.3	11.0	（3．5）	1.4
亡	Austria	0.6	（1．6）	0.0	－15．6	（6．9）	4.8	－10．4	（5．1）	1.7			
$\stackrel{\rightharpoonup}{0}$	Belgium	－1．3	（2．0）	0.0	－6．4	（5．5）	0.4	－0．6	（6．8）	0.0			
\bigcirc	Canada	8.2	（0．9）	1.0	11.1	（3．7）	1.8	－2．7	（3．3）	0.1			
\bigcirc	Denmark	8.6	（1．9）	0.8	10.1	（12．4）	1.4	－12．1	（8．0）	2.4			
山	France	9.7	（1．9）	1.2	1.2	（4．8）	0.0	－13．9	（6．6）	2.4			
－	Germany	－4．6	（1．8）	0.3	－7．8	（7．0）	0.7	－18．1	（5．8）	4.1			
	Luxembourg	－4．9	（1．9）	0.3	－9．2	（4．1）	1.1	－11．7	（3．6）	1.6			
	Netherlands	9.0	（2．6）	0.6	－4．2	（8．9）	0.2	－8．8	（7．4）	1.1			
	New Zealand	16.8	（1．8）	3.1	3.7	（5．8）	0.2	13.3	（5．2）	1.9			
	Norway	17.0	（1．9）	3.2	12.1	（10．5）	2.3	17.0	（7．8）	4.1			
U	Sweden	17.1	（1．5）	3.3	4.1	（9．4）	0.2	16.4	（7．1）	3.4			
돋	Switzerland	5.7	（1．9）	0.4	－10．3	（4．5）	1.3	－4．1	（6．1）	0.2			
－	United States	5.7	（1．4）	0.4	－1．0	（5．4）	0.0	15.8	（7．2）	2.8			
\bigcirc	OECD average	7.2	（0．4）	0.6	0.1	（1．4）	0.0	0.1	（1．6）	0.0			
$\stackrel{\square}{\square}$	Hong Kong－China	11.4	（3．3）	0.8	20.7	（5．1）	2.6	13.3	（4．4）	1.0			
$\underset{\square}{\text { ¢ }}$	Macao－China	4.6	（7．2）	0.2	2.1	（7．0）	0.0	－2．5	（14．2）	0.3			
\bigcirc	Russian Federation	5.4	（1．8）	0.3	－0．5	（5．6）	0.1	3.1	（5．4）	0.1			
	Belgium（Flemish Community）	0.7	（3．0）	0.0	－8．3	（8．6）	0.6	－23．7	（10．0）	5.4			
	Belgium（French Community）	1.4	（2．5）	0.0	－5．7	（6．8）	0.3	11.4	（9．0）	1.2			

Regression estimate of the index of attitudes towards school

Accounting for ESCS				Accounting for mathematics performance			
Second－generation students		First－generation students		Second－generation students		First－generation students	
Coef．	S．E．	Coef．	S．E．	Coef．	S．E．	Coef．	S．E．
0.13	（0．03）	0.05	（0．04）	0.09	（0．03）	0.05	（0．04）
0.11	（0．09）	0.21	（0．07）	0.11	（0．09）	0.21	（0．07）
0.27	（0．06）	0.30	（0．07）	0.19	（0．06）	0.23	（0．07）
0.13	（0．04）	0.22	（0．04）	0.11	（0．04）	0.24	（0．04）
0.24	（0．10）	0.16	（0．10）	0.20	（0．09）	0.15	（0．10）
0.20	（0．07）	0.30	（0．09）	0.20	（0．07）	0.31	（0．10）
0.22	（0．08）	0.26	（0．07）	0.15	（0．08）	0.21	（0．07）
0.21	（0．05）	0.34	（0．05）	0.22	（0．05）	0.34	（0．05）
0.24	（0．06）	0.44	（0．09）	0.23	（0．06）	0.46	（0．08）
0.40	（0．07）	0.13	（0．05）	0.39	（0．07）	0.15	（0．05）
0.13	（0．17）	0.37	（0．08）	0.14	（0．17）	0.37	（0．09）
0.28	（0．09）	0.40	（0．06）	0.23	（0．09）	0.44	（0．05）
0.19	（0．07）	0.27	（0．05）	0.16	（0．07）	0.26	（0．06）
0.15	（0．06）	0.16	（0．09）	0.09	（0．05）	0.11	（0．08）
0.22	（0．02）	0.26	（0．02）	0.20	（0．02）	0.26	（0．02）
0.01	（0．03）	0.07	（0．03）	－0．03	（0．03）	0.05	（0．03）
－0．01	（0．06）	－0．04	（0．09）	－0．01	（0．06）	－0．05	（0．08）
－0．11	（0．06）	－0．02	（0．05）	－0．10	（0．06）	－0．01	（0．05）
0.29	（0．08）	0.16	（0．10）	0.25	（0．08）	0.14	（0．10）
0.20	（0．07）	0.32	（0．10）	0.12	（0．07）	0.25	（0．10）

[^15]Table 4.9
Index of sense of belonging at school and student performance on the mathematics scale
Results based on students＇self－reports

		Index of sense of belonging at school					
		Native students		Second－generation students		First－generation students	
		Mean index	S．E．	Mean index	S．E．	Mean index	S．E．
\％	Australia	0.04	（0．02）	0.20	（0．04）	－0．04	（0．03）
号	Austria	0.46	（0．02）	0.29	（0．11）	0.36	（0．06）
$\stackrel{\square}{0}$	Belgium	－0．28	（0．01）	－0．22	（0．04）	－0．42	（0．08）
\bigcirc	Canada	0.02	（0．01）	0.05	（0．04）	－0．06	（0．04）
\bigcirc	Denmark	0.02	（0．02）	0.03	（0．08）	－0．11	（0．09）
－	France	－0．19	（0．02）	－0．10	（0．05）	－0．13	（0．08）
	Germany	0.24	（0．02）	0.38	（0．09）	0.12	（0．05）
	Luxembourg	0.36	（0．02）	－0．01	（0．04）	－0．04	（0．04）
	Netherlands	－0．05	（0．02）	－0．07	（0．07）	－0．11	（0．08）
	New Zealand	0.01	（0．02）	0.21	（0．06）	－0．21	（0．04）
	Norway	0.25	（0．02）	0.02	（0．12）	0.04	（0．11）
U	Sweden	0.24	（0．02）	0.22	（0．08）	0.30	（0．07）
	Switzerland	0.22	（0．03）	0.14	（0．05）	0.09	（0．04）
\bigcirc	United States	m	m	m	m	m	m
\bigcirc	OECD average	0.10	（0．01）	0.07	（0．02）	－0．01	（0．02）
$\stackrel{\rightharpoonup}{\square}$	Hong Kong－China	－0．57	（0．02）	－0．59	（0．02）	－0．70	（0．02）
$\frac{ \pm}{t}$	Macao－China	－0．64	（0．06）	－0．57	（0．03）	－0．71	（0．06）
$\stackrel{\square}{\sim}$	Russian Federation	－0．29	（0．02）	－0．31	（0．04）	－0．22	（0．05）
	Belgium（Flemish Community）	－0．27	（0．01）	－0．30	（0．08）	－0．35	（0．09）
	Belgium（French Community）	－0．31	（0．03）	－0．18	（0．04）	－0．46	（0．11）

Change in the mathematics score per unit of the index of sense of belonging at school

		Change in the mathematics score per unit of the index of sense of belonging at school								
		Native students		Explained variance in student performance （r－squared x 100）	Second－ generation students		Explained variance in student performance （r－squared x 100）	First－ generation students		Explained variance in student performance （r－squared x 100）
		Effect	S．E．	\％	Effect	S．E．	\％	Effect	S．E．	\％
\％	Australia	3.7	（1．6）	0.2	－5．9	（3．1）	0.4	3.8	（3．6）	0.2
＋	Austria	1.7	（1．5）	0.0	2.1	（6．7）	0.2	2.5	（5．3）	0.1
\bigcirc	Belgium	5.3	（1．7）	0.2	6.0	（4．8）	0.3	10.0	（8．8）	0.8
\bigcirc	Canada	－0．6	（1．0）	0.0	－2．2	（2．6）	0.1	－7．8	（2．9）	0.8
－	Denmark	3.1	（1．9）	0.1	2.9	（11．1）	0.1	5.0	（8．6）	0.6
$\stackrel{\text { U }}{ }$	France	3.3	（1．4）	0.1	－5．1	（5．3）	0.4	－5．9	（9．3）	0.4
	Germany	－0．7	（1．9）	0.0	－2．7	（6．1）	0.1	－3．6	（7．0）	0.2
	Luxembourg	3.3	（1．7）	0.2	3.8	（3．7）	0.2	3.3	（4．3）	0.1
	Netherlands	7.9	（2．6）	0.6	－5．2	（5．7）	0.3	3.8	（7．4）	0.2
	New Zealand	2.6	（1．6）	0.1	－6．4	（5．7）	0.5	12.9	（4．9）	1.5
	Norway	－0．6	（1．6）	0.0	－8．4	（9．0）	1.1	2.3	（6．2）	0.1
．	Sweden	－0．3	（1．5）	0.0	－2．3	（9．2）	0.1	15.1	（6．3）	3.2
듣	Switzerland	6.7	（1．9）	0.6	－0．3	（5．2）	0.0	14.5	（5．0）	2.3
$\stackrel{\rightharpoonup}{0}$	United States	m	m	m	m	m	m	m	m	m
－	OECD average	0.7	（0．5）	0.0	－1．4	（1．5）	0.0	2.1	（1．7）	0.0
$\stackrel{\square}{\square}$	Hong Kong－China	12.4	（2．8）	0.8	14.6	（4．4）	1.2	19.3	（5．3）	1.7
＋	Macao－China	12.4	（9．1）	1.2	8.4	（6．9）	0.6	－8．2	（10．9）	0.6
\bigcirc	Russian Federation	11.5	（1．5）	1.2	5.0	（6．4）	0.3	8.8	（5．4）	0.9
	Belgium（Flemish Community）	2.8	（1．9）	0.1	8.4	（7．7）	0.6	6.7	（8．6）	0.4
	Belgium（French Community）	7.1	（2．8）	0.4	4.1	（5．4）	0.2	9.4	（11．0）	0.7

Regression estimate of the index of sense of belonging at school

Accounting for ESCS		Accounting for mathematics performance	

		students		First－generation students		students		First－generation students	
		Coef．	S．E．	Coef．	S．E．	Coef．	S．E．	Coef．	S．E．
U	Australia	0.18	（0．04）	－0．07	（0．04）	0.16	（0．01）	－0．07	（0．01）
茞	Austria	－0．11	（0．11）	－0．06	（0．07）	－0．16	（0．02）	－0．09	（0．01）
$\stackrel{\rightharpoonup}{3}$	Belgium	0.13	（0．04）	－0．09	（0．09）	0.10	（0．01）	－0．09	（0．02）
\bigcirc	Canada	0.03	（0．04）	－0．09	（0．04）	0.03	（0．01）	－0．08	（0．01）
\bigcirc	Denmark	0.11	（0．08）	－0．06	（0．10）	0.04	（0．02）	－0．10	（0．02）
－	France	0.16	（0．05）	0.14	（0．09）	0.10	（0．01）	0.09	（0．02）
	Germany	0.22	（0．09）	－0．05	（0．06）	0.13	（0．02）	－0．13	（0．01）
	Luxembourg	－0．32	（0．04）	－0．33	（0．05）	－0．35	（0．01）	－0．37	（0．01）
	Netherlands	0.05	（0．08）	0.00	（0．09）	0.02	（0．02）	0.00	（0．02）
	New Zealand	0.26	（0．06）	－0．21	（0．04）	0.21	（0．01）	－0．21	（0．01）
	Norway	－0．20	（0．14）	－0．15	（0．11）	－0．24	（0．03）	－0．22	（0．03）
ひ	Sweden	0.03	（0．08）	0.13	（0．07）	－0．02	（0．02）	0.07	（0．02）
产	Switzerland	0.03	（0．08）	－0．06	（0．05）	－0．03	（0．01）	－0．04	（0．01）
\bigcirc	United States	m	m	m	m	m	m	m	m
－	OECD average	0.04	（0．02）	－0．05	（0．02）	－0．02	（0．02）	－0．10	（0．02）
む	Hong Kong－China	0.02	（0．03）	－0．07	（0．03）	－0．02	（0．01）	－0．10	（0．01）
\＃	Macao－China	0.09	（0．07）	－0．06	（0．08）	0.07	（0．02）	－0．07	（0．02）
®๐	Russian Federation	－0．02	（0．05）	0.06	（0．05）	－0．01	（0．01）	0.08	（0．01）
	Belgium（Flemish Community）	0.05	（0．09）	－0．03	（0．09）	0.00	（0．08）	－0．06	（0．09）
	Belgium（French Community）	0.19	（0．06）	－0．11	（0．12）	0.16	（0．05）	－0．10	（0．11）

[^16]
Annex c

LIST OF CONTRIBUTORSTO PISA

Annex C: \quad The development and implementation of PISA a collaborative effort

Members of the PISA Governing Board

Chair: Ryo Watanabe
Australia: Wendy Whitham
Austria: Helmut Bachmann and Jürgen Horschinegg
Belgium: Dominique Barthélémy, Christiane Blondin and Liselotte van de Perre

Brazil: Eliezer Pacheco
Canada: Satya Brink and Dianne Pennock
Czech Republic: Jan Koucky
Denmark: Jørgen Balling Rasmussen
Finland: Jari Rajanen
France: Gérard Bonnet
Germany: Hans Konrad Koch, Elfriede Ohrnberger and Botho Priebe

Greece: Vassilis Koulaidis
Hong Kong-China: Esther Ho Sui Chu
Hungary: Péter Vári
Iceland: Júlíus K. Björnsson
Indonesia: Bahrul Hayat
Ireland: Gerry Shiel
Italy: Giacomo Elias and Angela Vegliante
Japan: Ryo Watanabe
Korea: Kye Young Lee
Latvia: Andris Kangro
Luxembourg: Michel Lanners
Macao-China: Lam Fat Lo
Mexico: Felipe Martínez Rizo
Netherlands: Jules L. Peschar
New Zealand: Lynne Whitney
Norway: Alette Schreiner
Poland: Stanislaw Drzazdzewski
Portugal: Glória Ramalho
Russian Federation: Galina Kovalyova
Serbia: Dragica Pavlovic Babic
Slovak Republic: Vladimir Repas
Spain: Carme Amorós Basté, Guillermo Gil and Josu Sierra Orrantia
Sweden: Anita Wester
Switzerland: Katrin Holenstein and Heinz Rhyn
Thailand: Sunee Klainin
Tunisia: Néjib Ayed
Turkey: Sevki Karaca and Ruhi Kilç
United Kingdom: Lorna Bertrand and Liz Levy
United States: Mariann Lemke and Elois Scott

Uruguay: Pedro Ravela
Special Advisor: Eugene Owen

PISA 2003 National Project Managers
Australia: John Cresswell and Sue Thomson
Austria: Günter Haider and Claudia Reiter
Belgium: Luc van de Poele
Brazil: Mariana Migliari
Canada: Tamara Knighton and Dianne Pennock
Czech Republic: Jana Paleckova
Denmark: Jan Mejding
Finland: Jouni Välijärvi
France: Anne-Laure Monnier
Germany: Manfred Prenzel
Greece: Vassilia Hatzinikita
Hong Kong-China: Esther Ho Sui Chu
Hungary: Péter Vári
Iceland: Almar Midvik Halldorsson
Indonesia: Bahrul Hayat
Ireland: Judith Cosgrove
Italy: Maria Teresa Siniscalco
Japan: Ryo Watanabe
Korea: Mee-Kyeong Lee
Latvia: Andris Kangro
Luxembourg: Iris Blanke
Macao-China: Esther Ho Sui Chu (2003) and
Lam Fat Lo (2006)
Mexico: Rafael Vidal
Netherlands: Erna Gille
New Zealand: Fiona Sturrock
Norway: Marit Kjaernsli
Poland: Michal Federowicz
Portugal: Lídia Padinha
Russian Federation: Galina Kovalyova
Serbia: Dragica Pavlovic Babic
Slovak Republic: Paulina Korsnakova
Spain: Guillermo Gil
Sweden: Karin Taube
Switzerland: Huguette McCluskey
Thailand: Sunee Klainin
Tunisia: Néjib Ayed
Turkey: Sevki Karaca
United Kingdom: Rachael Harker and Graham Thorpe
United States: Mariann Lemke
Uruguay: Pedro Ravela

OECD Secretariat

Andreas Schleicher (overall co-ordination of PISA and member country relations)
Cécile Bily (administrative support)
John Cresswell (project management)
Miyako Ikeda (project management)
Juliet Evans (editorial support)
Claire Shewbridge (project management)
Sophie Vayssettes (statistical support)

PISA Editorial Group

(Subgroup of the PISA Governing Board)
Wendy Whitham (Chair) (Australia)
Stanislaw Drzazdzewski (Poland)
Jürgen Horschinegg (Austria)
Dianne Pennock (Canada)
Heinz Rhyn (Switzerland)
Gerry Shiel (Ireland)

PISA Expert Groups

Mathematics Expert Group

Jan de Lange (Chair) (Utrecht University, Netherlands)
Werner Blum (Chair) (University of Kassel, Germany)
Vladimir Burjan (National Institute for Education, Slovak Republic)
Sean Close (St Patrick's College, Ireland)
John Dossey (Consultant, United States)
Mary Lindquist (Columbus State University, United States)
Zbigniew Marciniak (Warsaw University, Poland)
Mogens Niss (Roskilde University, Denmark)
Kyung-Mee Park (Hongik University, Korea)
Luis Rico (University of Granada, Spain)
Yoshinori Shimizu (Tokyo Gakugei University, Japan)

Reading Expert Group

Irwin Kirsch (Chair) (Educational Testing Service, United States)
Marilyn Binkley (National Center for Educational Statistics, United States)
Alan Davies (University of Edinburgh, United Kingdom) Stan Jones (Statistics Canada, Canada)
John de Jong (Language Testing Services, Netherlands)
Dominique Lafontaine (Université de Liège Sart Tilman, Belgium)
Pirjo Linnakylä (University of Jyväskylä, Finland)
Martine Rémond (Institut National de Recherche

Pédagogique, France)

Science Expert Group

Wynne Harlen (Chair) (University of Bristol, United Kingdom)
Peter Fensham (Monash University, Australia)
Raul Gagliardi (University of Geneva, Switzerland)
Svein Lie (University of Oslo, Norway)
Manfred Prenzel (Universität Kiel, Germany)
Senta A. Raizen (National Center for Improving Science Education (NCISE), United States)
Donghee Shin (KICE, Korea)
Elizabeth Stage (University of California, United States)

Problem Solving Expert Group

John Dossey (Chair) (Consultant, United States)
Beno Csapo (University of Szeged, Hungary)
Jan De Lange (Utrecht University, Netherlands)
Eckhard Klieme (German Institute for International Educational Research, Germany)
Wynne Harlen (University of Bristol, United Kingdom)
Ton de Jong (University of Twente, Netherlands)
Irwin Kirsch (Educational Training Service, United States)
Stella Vosniadou (University of Athens, Greece)

PISA Technical Advisory Group

Keith Rust (Chair) (Westat)
Ray Adams (ACER, Australia)
Pierre Foy (Statistics Canada, Canada)
Aletta Grisay (Belgium)
Larry Hedges (The University of Chicago, United States)
Eugene Johnson (American Institutes for Research, United States)
John de Jong (Language Testing Services, Netherlands)
Irwin Kirsch (Educational Testing Service, United States)
Steve May (Ministry of Education, New Zealand)
Christian Monseur (HallStat SPRL, Belgium)
Norman Verhelst (Citogroep, Netherlands)
J. Douglas Willms (University of New Brunswick, Canada)

PISA Consortium

Australian Council for Educational Research

Ray Adams (Project Director of the PISA Consortium) Alla Berezner (data management, data analysis)

Eveline Gebhardt (data processing, data analysis)
Marten Koomen (management)
Dulce Lay (data processing)
Le Tu Luc (data processing)
Greg Macaskill (data processing)
Barry McCrae (science instruments, test development
mathematics and problem solving)
Martin Murphy (field operations and sampling)
Van Nguyen (data processing)
Alla Routitsky (data processing)
Wolfram Schulz (Coordinator questionnaire development, data processing, data analysis) Ross Turner (Coordinator test development)
Maurice Walker (sampling, data processing, questionnaire development)
Margaret Wu (test development mathematics and problem solving, data analysis)
John Cresswell (test development science)
Juliette Mendelovits (test development reading)
Joy McQueen (test development reading)
Beatrice Halleux (translation quality control)

Westat

Nancy Caldwell (Director of the PISA Consortium for
field operations and quality monitoring)
Ming Chen (weighting)
Fran Cohen (weighting)
Susan Fuss (weighting)
Brice Hart (weighting)
Sharon Hirabayashi (weighting)
Sheila Krawchuk (sampling and weighting)
Christian Monseur (consultant) (weighting)
Phu Nguyen (weighting)
Mats Nyfjall (weighting)
Merl Robinson (field operations and quality monitoring)
Keith Rust (Director of the PISA Consortium for sampling and weighting)
Leslie Wallace (weighting)
Erin Wilson (weighting)

Citogroep

Steven Bakker (science test development)
Bart Bossers (reading test development)
Truus Decker (mathematics test development)
Janny Harmsen (office/meeting support)
Erna van Hest (reading test development and quality monitoring)

Kees Lagerwaard (mathematics test development)
Gerben van Lent (mathematics test development)
Ger Limpens (mathematical test development)
Ico de Roo (science test development)
Maria van Toor (office support and quality monitoring)
Norman Verhelst (technical advice, data analysis)

Educational Testing Service

Irwin Kirsch (reading test development)
National Institute for Educational Policy

Research of Japan

Hanako Senuma (mathematics test development)

Other experts

Kai von Ahlefeld (layout)
Cordula Adelt (questionnaire development)
Aletta Grisay (technical advice, data analysis, translation, questionnaire development)
Anne-Lise Prigent (editorial review)

READER'S GUIDE

Data underlying the figures

The data referred to in Chapters 1, 2, 3, and 4 of this report are presented in Annex B. In these tables, as well as in data tables included in Chapter 5, the following symbols are used to denote missing data:
a The category does not apply in the country concerned. Data are therefore missing.
c There are too few observations to provide reliable estimates (i.e. there are fewer than 3% of students for this cell or too few schools for valid inferences). However, these statistics were included in the calculation of cross-country averages.
m Data are not available. These data were collected but subsequently removed from the publication for technical reasons.
n Data are negligible i.e. they do not occur in any significant numbers.
w Data have been withdrawn at the request of the country concerned.

Calculation of the OECD average

An OECD average was calculated for most indicators presented in this report. The OECD average takes the OECD countries as a single entity, to which each country contributes with equal weight. The OECD average corresponds to the arithmetic mean of the respective country statistics and for this report only applies to the selection of OECD case countries (see definition below).

Rounding of figures

Because of rounding, some figures in tables may not exactly add up to the totals. Totals, differences and averages are always calculated on the basis of exact numbers and are rounded only after calculation. When standard errors in this publication have been rounded to one or two decimal places and the value 0.0 or 0.00 is shown, this does not imply that the standard error is zero, but that it is smaller than 0.05 or 0.005 respectively.

Reporting of student data

The report uses " 15 -year-olds" as shorthand for the PISA target population. In practice, this refers to students who were aged between 15 years and 3 (complete) months and 16 years and 2 (complete) months at the beginning of the assessment period and who were enrolled in an educational institution, regardless of the grade level or type of institution, and of whether they were attending full-time or part-time.

Abbreviations used in this report

The following abbreviations are used in this report:
ESCS Index of economic, social and cultural status (see Annex A1 for definition)
HISEI Highest international socio-economic index of occupational status (corresponds to the highest occupational status of either the mother or father)

ISCED International Standard Classification of Education (the ISCED levels are explained in Annex A1)

SE Standard error
SD Standard deviation
SOPEMI Système d'Observation Permanente des Migrations (Continuous Reporting System on Migration). This was established in 1973 by the OECD to provide its European member states a mechanism for sharing of information on international migration.

Terminology used in this report

Native students or non-immigrant students: Students with at least one parent born in the country of assessment. Students born in the country who have one foreign-born parent (children of "combined" families) are included in the native category, as previous research indicates that these students perform similarly to native students.

Immigrant students: This group includes both first-generation students and second-generation students (see definitions below).

First-generation students: Students born outside of the country of assessment whose parents are also foreign-born.

Second-generation students: Students born in the country of assessment with foreign-born parents.

Case countries: This includes the 17 countries covered in this report. Fourteen OECD countries: Australia, Austria, Belgium, Canada, Denmark, France, Germany, Luxembourg, the Netherlands, New Zealand, Norway, Sweden, Switzerland and the United States; as well as three partner countries: Hong Kong-China, Macao-China and the Russian Federation.

Further documentation

For further information on the PISA assessment instruments and the methods used in PISA, see the PISA 2003 Technical Report (OECD, 2005) and the PISA Web site (www.pisa.oecd.org).

References

Alba, R. and Nee, V. (1997), "Rethinking assimilation theory for a new era of immigration. International Migration Review", Vol. 31, pp. 826-874.

Abedi, J. (2003), Impact of Student Language Background on Content Based Performance: Analyses of Extant Data, CRESST/University of California, Los Angeles, CA.

Artelt, C. (2000), Strategisches Lernen, Waxmann, Münster.
Bandura, A. (1994), Self Efficacy: The Exercise of Control, Freeman, New York, NY.
Bankston, C. and Zhou, M. (1995), "Effects of minority-language literacy on the academic achievement of Vietnamese youth In New Orleans", Sociology of Education, Vol. 68, pp. 1-17.

Bauer, T., Lofstrom, M. and Zimmermann, K. F. (2000), "Immigration policy, assimilation of immigrants, and natives‘ sentiments toward immigrants: Evidence from 12 OECD countries", Swedish Economic Policy Rewiew, Vol. 7, pp. 11-53.

Baumert, J. and Schümer, G. (2001), "Familiäre Lebensverhältnisse, Bildungsbeteiligung und Kompetenzerwerb", in Baumert J, et al., PISA 2000: Basiskompetenzen von Schülerinnen und Schülern im internationalen Vergleich, pp. 159-200, Leske and Budrich, Opladen.

Baumert, J., Stanat, P. and Watermann, R. (eds.), (2006), Herkunftsbedingte Disparitäten im Bildungswesen: Differenzielle Bildungsprozesse und Probleme der Verteilungsgerechtigkeit, VS Verlag für Sozialwissenschaften, Wiesbaden.

Becker, B. E. and Luthar, S. S. (2002), "Social-emotional factors affecting achievement outcomes among disadvantaged students: Closing the achievement gap", Educational Psychologist, Vol. 37(4), pp. 197-214.

Berry, J.W. (1992), "Acculturation and adaptation in a new society", International Migration Review, Vol. 30, pp. 69-85.
Betts, J. R. and Lofstrom, M. (2000), "The educational attainment of immigrants: Trends and implications", in G. J. Borjas (ed.), Issues in the Economics of Immigration, pp. 51-115, The University of Chicago Press, Chicago, IL.
Bialystok, E. (2001), Bilingualism in development.Language, literacy \& cognition, Cambridge: University Press.

Blum, R. W. and Libbey, H. P. (2004), "School connectedness. Strengthening health and educational outcomes for teens: Executive summary", Journal of School Health, Vol. 74(7), pp. 231-233.

Borjas, G. J. (1987), "Self-selection and the earnings of immigrants", American Economic Review, Vol. 77(4), pp. 531-553.

Borjas, G. J. (1999), Heaven's Door:Immigration Policy and the American Economy, Princeton University Press, Princeton.

Bourhis, R.Y., et al., (1997), "Towards an interactive acculturation model: A social psychological approach", International Journal of Psychology, Vol. 32, pp. 369-386.

Buchmann, C. and Parrado, E. (2006), "Educational achievement of immigrant-origin and native students: A comparative analysis informed by institutional theory", in D. P. Baker and A. W. Wiseman (eds.)", The Impact of Comparative Education Research on Institutional Theory, Oxford, UK, Elsevier Science, forthcoming.
Burgers, J. (1998), "In the margin of the welfare state: Labour market position and housing conditions of undocumented immigrants in Rotterdam", Urban Studies, Vol. 35(10), pp. 1855-1868.
Castles, S. (1995), "How nation-states respond to immigration and ethnic diversity", New community, Vol. 21(3), pp. 293-308.

Castles, S. (2000), "International migration at the beginning of the twenty-first century: Global trends and issues", International Social Science Journal, Vol. 52(165), pp. 269-281.

Castles, S. and Miller, M. J. (1993), The Age of Migration: International Population Movements in the ModernWorld, Palgrave Macmillan, Houndmills, UK.

Castles, S. and Miller, M. J. (2003), The Age of Migration: International Population Movements in the ModernWorld (3rd ed.), Guildford, New York, NY.

Catalano, R., et al. (2004), "The importance of bonding to school for healthy development: Findings from the Social Development Research Group", Journal of School Health, Vol. 74(7), pp. 252-261.

Chiquiar, D. and Hanson, G. H. (2005), "International migration, self-selection, and the distribution of wages: Evidence from Mexico and the United States", Journal of Political Economy, Vol. 113, pp. 239-281.
Chiswick, B. (1999), "Are immigrants favourably self-selected?" American Economic Review, Papers and Proceedings, Vol. 82(2), pp. 181-185.

Chiswick, B. R. (2000), "Are Immigrants Favorably Self-Selected? An Economic Analysis", IZA Discussion Paper No. 131, Institute for the Study of Labor (IZA), Bonn.
Chiswick, B. R. and Miller, P.W. (2003), "The complementarity of language and other human capital: Immigrant earnings in Canada", Economics of Education Review, Vol. 22, pp. 469-480.
Christensen, G. (2004), "What Matters for Immigrant Achievement Cross-Nationally? A Comparative Approach Examining Immigrant and Non-Immigrant Student Achievement", Unpublished Dissertation, Stanford University, Stanford, CA.

Cohen, J. and Cohen, P. (1983), Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences (2nd ed.), Hillsdale, Erlbaum, New Jersey.
Coie, J. D. and Jacobs, M. R. (1993), "The role of social context in the prevention of conduct disorder", Development and Psychopathology, Vol. 5, pp. 263-275.

Conchas, G. (2001), "Structuring failure and success: Understanding the variability in Latino school engagement", Harvard Educational Review, Vol. 71(3), pp. 475-504.

Coradi Vellacott, et al. (2003), Soziale Integration und Leistungsförderung. Thematischer Bericht der Erhebung PISA 2000, Bundesamt für Statistik (BFS)/Schweizerische Konferenz der kantonalen Erziehungs direktoren (EDK), Neuchâtel.

Cummins, J. (1979a), "Cognitive/Academic language proficiency, linguistic interdependence, the optimum age question and some other matters", Working Papers on Bilingualism, Vol. 19, pp. 121-129.

Cummins, J. (1979b), "Linguistic interdependence and the educational development of bilingual children", Review of Educational Research, Vol. 49, pp. 222-251.

Cummins, J. (1981), "The role of primary language development in promoting educational success for language minority students", in Office of Bilingual Bicultural Education (eds.), Schooling and language minority students:A theoretical framework, pp. 3-49, California State Department of Education, Los Angeles, CA.

Deci, E. L. and Ryan, R. M. (1985), Instrinic Motivation and Self-Determination in Human Behavior. Plenum Press, New York, NY.
Eccles, J. S. Wigfield, A. and Schiefele, U. (1998), "Motivation to succeed", in W. Damon and N. Eisenberg (eds.), Handbook of child psychology (Vol. 3, pp. 1017-1095), Wiley, New York, NY.

Entorf, H. and Minoiu, N. (2004), "PISA results: What a difference immigration law makes", IZA Discussion Paper No. 1021, Institute for the Study of Labor (IZA), Bonn.

Esser, H. (2001), "Integration und ethnische Schichtung", Arbeitspapiere des Mannheimer Zentrums für Europäische Sozialforschung, Vol. 40, MZES, Mannheim.

Eurydice (2004), Integrating Immigrant Children into Schools in Europe, Eurydice, Brussels.
Fase,W. (1994), Ethnic Divisions inWestern European Education, Waxmann, Münster.
Freeman, G. P. (1995), "Modes of immigration politics in liberal democratic states", International Migration Review, Vol. 29, pp. 881-902.
Freeman, G. and Ögelman, N. (1998), "Homeland citizenship policies and the status of third country nationals in the European Union", Journal of Ethnic and Migration Studies, Vol. 24(4), pp. 769-789.

Freeman, G. and Ögelman, N. (2000), "State regulatory regimes and immigrant informal economic activity", in J. Rath (eds.), Immigrant Businesses:The Economic, Political and Social Environment pp. 107-123, Palgrave Macmillan, Houndmills, UK.

Freeman, G. P. (2004), "Immigrant incorporation in Western democracies", International Migration Review, Vol. 38(3), pp. 945-969.
Fuligni, A. J. (1997), "The academic achievement of adolescents from immigrant families: The roles of family background, attitudes, and behaviour", Child Development, Vol. 68(2), pp. 351-363.

Ganzeboom, H. B. G., De Graaf P. M. and Treiman D. J. (1992), "A standard international socio-economic index of occupational status", Social Science Research, Vol. 21(1), Elsevier Ltd., pp. 1-56.

Gibson, M. A. and Ogbu, J. U. (1991), Minority Status and Schooling: A Comparative Study of Immigrant and Involuntary Minorities, Garland, New York, NY.
Glenn, C. L. and de Jong, E. J. (1996), Educating Immigrant Children: Schools and Language Minorities in Twelve Nations, Garland, New York, NY.

Gomolla, M. and Radtke, F. O. (2002), Institutionelle Diskriminierung. Die Herstellung ethnischer Differenz in der Schule, Leske and Budrich, Opladen.
Gonzalez, G. C. (2002), "Family Background, Ethnicity, and Immigration Status: Predicting School Success for Asian and Latino Students", Unpublished Dissertation, Harvard University, Cambridge, MA.

Greene, J. P. (1997), "A meta-analysis of the Rossell and Baker review of bilingual education research", Bilingual Research Journal, Vol. 21, pp. 103-122.
Hakuta, K. (1999), "The debate on bilingual education", Developmental and Behavioral Pediatrics, Vol. 20, pp. 36-37.
Hawkins, J. D., Doueck, H. J. and Lishner, D. M. (1988), "Changing teaching practices in mainstream classrooms to improve bonding and behavior of low achievers", American Educational Research Journal, Vol. 25(1), pp. 31-50.
Jones, F. E. (1987), "Age at immigration and education: Further explorations", International Migration Review, Vol. 21(1), pp. 70-85.

Joppke, C. and Morawska, E. (2003), "Integrating immigrants in liberal nation-states: Policies and practices," in C. Joppke and E. Morawska (eds.), Toward assimilation and citizenship: Immigrants in liberal nation-states pp. 1-36, Palgrave Macmillan, Houndmills, UK.
Jungbluth, P. (1999), "Lehrererwartungen und Ethnizität: Innerschulische Chancendeterminanten bei Migrantenkindern in den Niederlanden" (Teacher expectations and ethnicity: Within-school determinants of migrant students' chances in the Netherlands), Zeitschrift für Pädagogik, Vol. 40(1), pp. 113-125.
Kao, G and Tienda, M. (1995), "Optimism and achievement: The educational performance of immigrant youth", Social Science Quarterly, Vol. 76(1), pp. 1-19.

Kao, G., Tienda, M. and Schneider, B. (1996), "Racial and ethnic variation in academic performance research", Sociology of Education and Socialization, Vol. 11, pp. 263-297.
Kennedy, E. and Park, H. (1994), "Home language as a predictor of academic achievement: A comparative study of Mexican- and Asian-American youth", Journal of Research and Development in Education, Vol. 27, pp. 188-194.
King, G. (1997), A Solution to the Ecological Inference Problem, Princeton University Press, Princeton, NJ.
Klieme, E. and Stanat, P. (2002), "Zur Aussagekraft internationaler Schulleistungsvergleiche: Befunde und Erklärungsansätze am Beispiel von PISA" (The meaning of international comparisons of student performance: Findings and explanations using PISA as an example), Bildung und Erziehung, Vol. 55, pp. 25-44.
Libbey, H. P. (2004), "Measuring student relationship to school: Attachment, bonding, connectedness, and engagement", Journal of School Health, Vol. 74(7), pp. 274-283.

Liebig, T. and Sousa-Poza, A. (2004), "Migration, self-selection and income inequality: An international analysis", KYKLOS, Vol. 57, pp. 125-146.
Limbird, C. and Stanat, P. (2006), "Sprachförderung bei Schülerinnen und Schülern mit Migrationshintergrund: Ansätze und ihre Wirksamkeit", in J. Baumert , P. Stanat and R. Watermann (eds.), Herkunftsbedingte Disparitäten im Bildungswesen: Differenzielle Bildungsprozesse und Probleme der Verteilungsgerechtigkeit pp. 257-308. Wiesbaden: VS Verlag für Sozialwissenschaften.
Lonczak, H. S., et al. (2002), "The effects of the Seattle Social Development Project: Behavior, pregnancy, birth, and sexually transmitted disease outcomes by age 21", Archives of Pediatric Adolescent Health, Vol. 156, pp. 438-447.

Losen, D. and Orfield, G. (eds.) (2002), Minority Issues in Special Education, The Civil Rights Project at Harvard University and Harvard Education Press, Cambridge, MA.

Marsh, H. W. (1986), "Verbal and math self-concepts: An internal/external frame of reference model", American Educational Research Journal, Vol. 23(1), pp. 129-149.

Marsh, H.W. (1993), "The multidimensional structure of academic self-concept: Invariance over gender and age", American Educational Research Journal, Vol. 30(4), pp. 841-860.

Marsh, H.W., et al. (2005), "Academic self-concept, interest, grades and standardized test scores: Reciprocal effects models of causal ordering", Child Development, Vol. 76, pp. 397-416.
Massey, D. S., et al. (1993), "Theories of international migration: A review and appraisal", Population and Development Review, Vol. 19(3), pp. 341-466.

Meece, J. L., Wigfield, A. and Eccles, J. S. (1990), Predictors of math anxiety and its influence on young adolescents' course enrolment intentions and performance in mathematics, Journal of Educational Psychology, Vol. 82(1), pp. 60-70.

Meyers, E. (2004), International Immigration Policy: A Theoretical and Comparative Analysis. Palgrave Macmillan, Houndmills, UK.

Müller, A. G. and Stanat, P. (2006), "Schulischer Erfolg von Schülerinnen und Schülern mit Migrationshintergrund: Analysen zur Situation von Zuwanderern aus der ehemaligen Sowjetunion und aus der Türkei", in J. Baumert, P. Stanat and R. Watermann (eds.), Herkunftsbedingte Disparitäten im Bildungswesen: Differenzielle Bildungsprozesse und Probleme der Verteilungsgerechtigkeit, VS Verlag für Sozialwissenschaften, Wiesbaden, forthcoming.

OECD (1999), Classifying Educational Programmes: Manual for ISCED-97 Implementation in OECD Countries, OECD, Paris.

OECD (2001a), Trends in International Migration: SOPEMI 2000 Edition, OECD, Paris.
OECD (2001b), Knowledge and Skills for Life: First Results from the OECD Programme for International Student Assessment (PISA) 2000, OECD, Paris.

OECD (2002), PISA 2000 Technical Report, OECD, Paris.
OECD (2003a), The PISA 2003 Assessment Framework - Mathematics, Reading, Science and Problem Solving Knowledge and Skills, OECD, Paris.

OECD (2003b), Learners for Life: Student Approaches to Learning: Resultsfrom PISA 2000, OECD, Paris.
OECD (2003c), Student Engagement in School: A Sense of Belonging and Participation. Results from PISA 2000, OECD, Paris.

OECD (2004a), Learning for Tomorrow'sWorld: First Results from PISA 2003, OECD, Paris.
OECD (2004b), Recent Trends in Migration Movements and Policies in Hong Kong, China, OECD, Paris.
OECD (2005a), Trends in International Migration: SOPEMI 2004 Edition, OECD, Paris.
OECD (2005b), PISA 2003 Technical Report, OECD, Paris.
Pajares, F. and Miller, M. D. (1994), "The role of self-efficacy and self-concept beliefs in mathematical problem-solving: A path analysis", Journal of Educational Psychology, Vol. 86, pp. 193-203.

Pajares, F. and Miller, M. D. (1995), "Mathematics self-efficacy and mathematics outcomes:The need for specificity of assessment", Journal of Counseling Psychology, Vol. 42, pp. 190-198.

Passel, J., Capps, R. and Fix, M. (2004), Undocumented Immigrants: Facts and Figures. The Urban Institute, Washington, DC.

Pendakur, K. and Pendakur R. (2002), "Language knowledge as human capital and ethnicity", International Migration Review, Vol. 36(1).

Pitkänen, P., Kalekin-Fishman and Verma, G. K. (2002), Education and Immigration. Settlement Policies and Current Challenges, Routledge Falmer, London.
Portes, A. and Hao, L. (1998), "E pluribus unum: Bilingualism and loss of language in the second generation", Sociology of Education, Vol. 71, pp. 269-94.

Portes, A. and Hao, L. (2004). "The Schooling of Children of Immigrants: Contextual Effects on the Educational Attainment of the Second Generation." Proceeding of National Academy of Science Vol. 101(33) pp. 11920-27.

Portes, A. and Rumbaut, R. (2001), Legacies. The Story of the Second Generation, University of California Press, Berkeley, CA.

Power, C., Manor, O. and Fox, J. (1991), Health and Class: The Early Years, Chapman and Hall, London.

Pulkkinen, L. and Tremblay, R. E. (1992), "Adult life-styles and their precursors in the social behaviour of children and adolescents", European Journal of Personality, Vol. 4(3), pp. 237-251.

Ramirez, O. M. and Dockweiler, C. J. (1987), "Mathematics anxiety: A systematic review, in R. Schwarzer and H. M. van der Ploeg and C. D. Spielberger (eds.), Advances in Test Anxiety Research, Vol. 5, pp. 157-175, Swets North America, Berwyn, PA.

Reich, H. H., et al. (2002), Spracherwerb zweisprachig aufwachsender Kinder und Jugendlicher: Ein Überblick über den Stand der nationalen und internationalen Forschung, Behörde für Bildung und Sport, Amt für Schule (BSJB), Hamburg.

Rivera-Batiz, F. L. (1999), "Undocumented workers in the labor market: An analysis of the earnings of legal and illegal Mexican immigrants in the United States", Journal of Population Economics, Vol. 12(1), pp. 91-116.

Robinson, W. S. (1950), "Ecological correlations and the behavior of individuals", American Sociological Review, Vol. 15(3), pp. 351-357.
Rodgers, B. (1990), "Behavior and personality in childhood as predictors of adult psychiatric disorder", Journal of Child Psychology and Psychiatry, Vol. 31(3), pp. 393-414.

Rossell, C. H. and Baker, K. (1996), "The educational effectiveness of bilingual education", Research in the Teaching of English, Vol. 30, pp. 7-74.

Rüesch, P. (1998), Spielt die Schule eine Rolle? Schulische Bedingungen ungleicher Bildungschancen von Immigrantenkindern. Eine Mehrebenenanalyse, Lang, Bern.
Rumbaut, R. (1995), "The new Californians: Comparative research findings on the educational progress of immigrant children", in R. Rumbaut and W. Cornelius (eds.), California's Immigrant Children (pp. 17-69), Center for U.S.-Mexican Studies, La Jolla, CA.

Rumberger, R.W. (1995), "Dropping out of middle school: A multi-level analysis of students and schools", American Educational Research Journal, Vol. 32(3), pp. 583-625.
Schmid, C. L. (2001), "Educational achievement, language-minority students, and the new second generation", Sociology of Education (Extra Issue), pp. 71-87.
Schneider, W. (1996), "Zum Zusammenhang zwischen Metakognition und Motivation bei Lernund Gedächtnisvorgängen", in C. Spiel, U. Kastner-Koller and P. Deimann (eds.), Motivation und Lernen aus der Perspektive lebenslanger Entwicklung, pp. 121-133, Waxmann, Münster.
Schnepf, S.V. (2005), "How different are immigrants? A cross-country and cross-survey analysis of educational achievement", in C. Parsons and T. Smeeding (eds.), Immigration and the Transformation of Europe, Cambridge University Press, Cambridge, UK.
Schümer, G. (2004), "Zur doppelten Benachteiligung von Schülern aus unterpriveligierten Gesellschaftsschichten im deutschen Schulwesen", in G. Schümer, K. J.Tillmann and M.Weiß (eds.), Die Institution Schule und die Lebenswelt der Schüler:Vertiefende Analysen der PISA-2000-Daten zum Kontext von Schülerleistungen, pp. 73-114, VS Verlag für Sozialwissenschaften, Wiesbaden.
Schwarzer, R., Seipp, B. and Schwarzer, C. (1989), "Mathematics performance and anxiety: A meta-analysis", in R. Schwarzer, H. M. van der Ploeg and C. D. Spielberger (eds.), Advances in Test Anxiety Research, Vol. 6, pp. 105-119, Swets North America, Berwyn, PA.
Schwippert, K., Bos, W. and Lankes, E. M. (2003), "Heterogenität und Chancengleicheit am Ende der vierten Jahrgangsstufe im internationalen Vergleich", in W. Bos et al. (eds.), Erste Ergebnisse aus IGLU pp. 265-302, Waxmann, Münster.
Shajek, A., Lüdtke, O. and Stanat, P. (2006), "Akademische Selbstkonzepte bei Jugendlichen mit Migrationshintergrund", Unterrichtswissenschaft, for thcoming.
Shavit, Y. and Blossfeld, H.-P. (1993), Persistent inequality: Changing educational stratification in thirteen countries, Boulder.

Skeldon, R. (1997), Migration and Development: A Global Perspective, Longman, London.
Skolverket (2005), Reading literacy and students with a foreign background: Further analyses from the PISA 2000 results, English summary of report p. 227, Skolverket, Stockholm.

Slavin, R. E. and Cheung, A. (2003), Effective reading programs for English language learners. A bestevidence synthesis, Johns Hopkins University, Baltimore.
Stanat, P. (2004), "The role of migration background for student performance: An international comparison", paper presented at the Annual Meeting of the American Educational Research Association (AERA), San Diego, USA.
Stanat, P. (2006), "Schulleistungen von Jugendlichen mit Migrationshintergrund: Die Rolle der Zusammensetzung der Schülerschaft", in J. Baumert, P. Stanat and R. Watermann (eds), Herkunftsbedingte Disparitäten im Bildungswesen: Differenzielle Bildungsprozesse und Probleme der Verteilungsgerechtigkeit, VS Verlag für Sozialwissenschaften, Wiesbaden.
Steinberg, L. (1996), Beyond the classroom:Why school reform has failed and what parents need to do, Simon and Shuster, New York, NY.
Stevenson, H. W., Chen, C. and Lee, S.-Y. (1993), "Mathematics achievement of Chinese, Japanese, and American children: Ten years later", Science, Vol. 259(1), pp. 53-58.

Stevenson, H.W. and Stigler, J. (1992), The Learning Gap:Why our schools are failing and what we can learn from Japanese and Chinese education, Summit Books, New York, NY.
Suárez-Orozco, M. M. (2001), "Globalization, immigration, and education:The research agenda", Harvard Educational Review, Vol. 71(3), pp. 345-365.
Suárez-Orozco, M. M. and Suárez-Orozco, C. (1995), Transformations: Migration, Family Life, and Achievement Motivation Among Latino Adolescents, Stanford University Press, Stanford, CA.

Warm, T.A. (1985), "Weighted maximum likelihood estimation of ability in Item Response Theory with tests of finite length", Technical Report CGI-TR-85-08, U.S. Coast Guard Institute, Oklahoma City.

Waters, M. (1999), Black Identities: West Indian Immigrant Dreams and American Realities, Harvard University Press, Cambridge, MA.
Westerbeek, K. (1999), The colours of my classroom. A study into the effects of the ethnic composition of classrooms on the achievement of pupils from different ethnic backgrounds, European University Institute, Florence.

Wigfield, A., Eccles, J. S. and Rodriguez, D. (1998), "The development of children's motivation in school contexts", Review of Research in Education, Vol. 23, pp. 73-118.

Wigfield, A., and Meece, J. L. (1988), "Math anxiety in elementary and secondary students", Journal of Educational Psychology, Vol. 80, pp. 210-216.

Willig, A. C. (1985), "A meta-analysis of selected studies on the effectiveness of bilingual education", Review of Educational Research, Vol. 55, pp. 269-317.
Yeung, A. S. and McInerney, D. M. (1999, February), "Students' perceived support from teachers: Impacts on academic achievement, interest in schoolwork, attendance, and self-esteem", paper presented at the International Conference on Teacher Education at the Hong Kong Institute of Education, Hong Kong, China.

Yoshikawa, H. (1994), "Prevention as cumulative protection: Effects of early family support and education on chronic delinquency and risks", Psychological Bulletin, Vol. 115(1), pp. 28-54.
Zimmerman, B. J. (1999), "Commentary: Toward a cyclically interactive view of self-regulated learning", International Journal of Educational Research, Vol. 31(6), pp. 545-551.

Zimmerman, B. J. (2000), "Self-efficacy: An essential motive to learn", Contemporary Educational Psychology, Vol. 25, pp. 82-91.

Table of Contents

FOREWORD 3
EXECUTIVE SUMMARY 7
READER'S GUIDE 13
CHAPTER 1
COUNTRIES' IMMIGRATION HISTORIES AND POPULATIONS. 15
Introduction 16
Immigration and integration 17
Immigration histories and general approaches to immigration and integration 18
Immigrant populations 21
Research questions addressed in the report 24
Immigrant students in the PISA sample 25
CHAPTER 2
PERFORMANCE OF IMMIGRANT STUDENTS IN PISA 2003 29
Introduction 30
Immigrant student performance in the OECD and partner countries 30
Performance of immigrant students and the language spoken at home 46
Performance of immigrant students and gender 49
Performance of immigrant students in the context of migration trends in the receiving country. 49
Conclusions 54
CHAPTER 3
BACKGROUND CHARACTERISTICS, MATHEMATICS PERFORMANCE AND LEARNING ENVIRONMENTS OF IMMIGRANT STUDENTS 57
Introduction 58
Immigrant families' educational and socio-economic background 60
Relationships between performance differences and differences in educational and socio-economic background among immigrant and non-immigrant student groups 64
Disparities specifically related to students' immigrant status 69
Differences between immigrant and native students within and between schools 71
Summary and conclusions. 79
CHAPTER 4
IMMIGRANT STUDENTS' APPROACHES TO LEARNING 83
Introduction ${ }^{1}$ 84
Students' interest and motivation in mathematics 88
Students' self-related beliefs 97
Emotional dispositions in mathematics 103
Students' attitudes towards and perceptions of schools 104
Summary of differences between immigrant and non-immigrant students in learning characteristics 110
Conclusions 114
CHAPTER 5
POLICIES AND PRACTICES TO HELP IMMIGRANT STUDENTS ATTAIN PROFICIENCY IN THE LANGUAGE OF INSTRUCTION 117
Introduction 118
PISA 2003 supplementary survey on national policies and practices to help immigrant students attain proficiency in the language of instruction 118
Policies and practices designed to help newly arrived immigrant adults attain proficiency in the case countries' official language(s) 121
Assessment of language proficiency in pre-primary (ISCED 0) and primary (ISCED 1) education 128
Language support for immigrant students in pre-primary education (ISCED 0) 129
Language support for immigrant students in primary education (ISCED 1) and lower secondary education (ISCED 2) 131
Country descriptions of language support measures in primary (ISCED 1) and lower secondary (ISCED 2) education 134
Supplementary classes to improve proficiency in immigrant students' native languages 145
Additional school resources 153
Summary and conclusions 153
REFERENCES 157
ANNEX A
ANNEX A1: TECHNICAL BACKGROUND 165
ANNEX A2: SUMMARY DESCRIPTIONS OF THE FIVE LEVELS OF READING PROFICIENCY 173
ANNEX B
ANNEX B1: DATA TABLES FOR CHAPTERS 1, 2, 3 AND 4 175
ANNEX C
ANNEX C1: THE DEVELOPMENT AND IMPLEMENTATION OF PISA - A COLLABORATIVE EFFORT 219

From:
Where Immigrant Students Succeed
A Comparative Review of Performance and Engagement in PISA 2003

Access the complete publication at:

https://doi.org/10.1787/9789264023611-en

Please cite this chapter as:

OECD (2006), "Technical Notes", in Where Immigrant Students Succeed: A Comparative Review of Performance and Engagement in PISA 2003, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/9789264023611-8-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

[^0]: Source: OECD PISA 2003 database.

[^1]: Note: Data for the stock of foreign-born population are by: country of birth in Canada, Luxembourg and New Zealand (2001) and in Australia, Austria, the Netherlands and Norway (2002); place of birth in the United States (2003); and nationality in Belgium (2002), France (1999),
 Germany (2002) and Switzerland (2003).

 1. Source: OECD (2005), Trends in International Migration (SOPEMI 2004), OECD, Paris.
 2. Authors' calculation.
 3. Yugoslavia and Slovenia.
 4. Bosnia-Herzegovina, Slovenia, Croatia and the former Yugoslavia (other).
 5. Refers to persons who immigrated before the dissolution of the former Yugoslavia and persons from Bosnia-Herzegovina.
 6. Montenegro, Serbia, Bosnia-Herzegovina, Croatia and Macedonia.
 7. Serbia/Montenegro, Bosnia-Herzegovina and Croatia.
 8. Serbia/Montenegro and Bosnia-Herzegovina.
 9. Serbia/Montenegro, the former Yugoslav Republic of Macedonia, Bosnia-Herzegovina and Croatia.
[^2]: Source: OECD PISA 2003 database.

[^3]: Note: Differences that are statistically significant are indicated in bold.

[^4]: Note: Differences that are statistically significant are indicated in bold.

[^5]: Note：Differences that are statistically significant are indicated in bold．

[^6]: Note：Differences that are statistically significant are indicated in bold

[^7]: Note: Differences that are statistically significant are indicated in bold.

[^8]: Note: Statistically significant differences from native students' scores are indicated in bold.

[^9]: Note: Statistically significant differences are indicated in bold.

[^10]: Note: Statistically significant differences are indicated in bold.

[^11]: Note：Values that are statistically significant are indicated in bold．

[^12]: Note: Values that are statistically significant are indicated in bold.

[^13]: Note：Values that are statistically significant are indicated in bold．

[^14]: Note: Values that are statistically significant are indicated in bold.

[^15]: Note：Values that are statistically significant are indicated in bold．

[^16]: Note：Values that are statistically significant are indicated in bold．

