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ABSTRACT 

 The OECD Program for International Student Assessment (PISA) and the OECD Teaching and 

Learning International Survey (TALIS) constitute two of the largest ongoing international student and 

teacher surveys presently underway. Data generated from these surveys offer researchers and policy-

makers opportunities to identify particular educational institutional arrangements – that is, how aspects of 

educational systems are organised to promote equality of educational opportunity both within and between 

countries. Naturally, policy makers are interested in all three levels of the school system – students, 

teachers, and schools, in order to fully understand within and between country differences in relations 

between the inputs, processes, and outcomes of education. A serious limitation of these data collection 

efforts is that each survey is missing an important component of the educational system in their design – 

namely, PISA is missing teacher-level data and TALIS is missing student-level data. This limitation can be 

partly addressed by statistically linking both surveys. This involves the creation of a synthetic cohort of 

data – that is, a new data file that combines information from both surveys. This paper presents a 

systematic evaluation of a set of statistical matching methods focused on the goal of creating a synthetic 

file of PISA 2009 and TALIS 2008 data for Iceland. We evaluate the extent to which each method provides 

a matched data set that maintains the essential properties of PISA and TALIS, concentrating on a set of 

validity criteria established by Rässler (2002). The experimental study provides a proof of concept that 

statistically matching PISA and TALIS is feasible for countries that wish to draw on the added value of 

both surveys for research and policy analysis. 

Le Programme international pour le suivi des acquis des élèves  (PISA) et l’Enquête internationale sur 

l’enseignement et l’apprentissage (TALIS) de l'OCDE constituent deux des plus grande enquêtes 

internationales auprès des étudiants et des enseignants. Les données générées par ces enquêtes permettent 

aux chercheurs et aux décideurs en matière de politiques d’identifier les systèmes éducatifs sont organisés 

afin de promouvoir l'égalité des chances dans l'enseignement tant à l'intérieur des pays qu’entre les pays. 

Évidemment, les décideurs sont intéressés à tous les trois niveaux du système scolaire, c’est-à-dire aux 

élèves, aux enseignants, et aux écoles, afin de comprendre pleinement les différences dans les relations 

entre les intrants, les processus, et les résultats de l’éducation qui sont observées dans les pays et entre les 

pays. Une limitation importante associée à ces enquêtes relève du fait qu’un élément important du système 

éducatif manque à chacune d’elles - à savoir, pour PISA l’aspect enseignant, et pour TALIS la perspective 

des élèves. Cette limitation peut être partiellement résolue en reliant statistiquement les deux enquêtes. 

Cela implique la création d'une cohorte synthétique des données - un nouveau fichier de données qui 

combine les informations provenant des deux enquêtes. Cet article présente une évaluation systématique 

d'un ensemble de méthodes statistiques qui ont pour but de créer un fichier de synthèse des enquêtes PISA 

2009 et TALIS 2008 pour l'Islande. L’étude évalue la mesure dans laquelle chaque méthode fournit un 

ensemble de données qui maintient les propriétés psychométriques essentielles des enquêtes PISA et 

TALIS, en se concentrant sur un ensemble de critères de validité établis par Rässler (2002). Cette étude 

fournit la preuve de concept qu’il est possible de relier statistiquement PISA et TALIS pour les pays qui 

souhaitent s'appuyer sur la valeur ajoutée de chacune des enquêtes pour la recherche et l'analyse des 

politiques éducatives. 
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STATISTICAL MATCHING OF PISA 2009 AND TALIS 2008 DATA IN ICELAND 

David Kaplan, Department of Educational Psychology 

Alyn Turner, Department of Sociology 

University of Wisconsin – Madison 

 

Statement of Problem 

 

1. Equality of educational opportunity varies within and between schools (Jencks & Tach, 2006). In 

other words, schools do not unequivocally provide every student, regardless of family background, an 

equal chance to achieve at the level of his or her potential. Research from the United States suggests that 

differences in teaching, learning processes, and the allocation and use of resources have important effects 

on the level of equality of opportunity for individual students (Barr & Dreeben, 1983; Hanushek & 

Lindseth, 2009; Gamoran & Dreeben, 1986; Gamoran, Secada, & Marrett, 2000).  

2. Wide variation in students’ educational outcomes also exists across countries. The gap between 

the highest and lowest performing OECD countries, for example, is the equivalent of about two years of 

schooling. Moreover, the gap between the lowest and highest performing OECD and non-OECD countries 

and economies is the equivalent of six years of schooling. These gaps remain after taking into account 

differences in national income; GDP explains about 6% of the differences in average student performance 

(OECD, 2009). 

3. The OECD Program for International Student Assessment (PISA) and the OECD Teaching and 

Learning International Survey (TALIS) constitute two of the largest ongoing international student and 

teacher surveys presently underway. Data generated from these surveys offer researchers and policy-

makers opportunities to identify particular educational institutional arrangements – that is, how aspects of 

educational systems are organised to promote equality of educational opportunity both within and between 

countries. Naturally, policy makers are interested in all three levels of the school system – students, 

teachers, and schools, in order to fully understand within and between country differences in relations 

between the inputs, processes, and outcomes of education. A serious limitation of these data collection 

efforts is that each survey is missing an important component of the educational system in their design – 

namely, PISA is missing teacher level data and TALIS is missing student level data. The PISA and TALIS 

surveys are not, at present, linked. One desirable approach to linking the PISA survey to the TALIS survey 

is to sample schools and administer both PISA and TALIS. However, because a simultaneous 

administration of both surveys may not be feasible for many countries, this limits the extent to which 

information unique to each survey can be understood jointly. 

4. A more feasible approach to linking the PISA survey to the TALIS survey involves the creation 

of a synthetic cohort of data – that is, a new data file that combines information from both surveys. Two 
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approaches are common and will be explored in this study. The first is statistical matching which involves 

finding units in the two separate files that are “close” in some statistical sense, and then filling in missing 

data with the data from the unit and its match. The second approach involves “imputation", which treats the 

goal of creating a synthetic file in terms of a large missing data problem. The approach is to use 

information common to both surveys to impute plausible values of the missing data occurring in both 

surveys. Throughout this report, we will use the generic term statistical matching with the understanding 

that some procedures involve imputation of missing data. 

5. The current study is a systematic evaluation of a set of statistical matching methods focused on 

the goal of creating a synthetic file of PISA 2009 and TALIS 2008 data. We evaluate the extent to which 

each method provides a matched data set that maintains the essential properties of PISA and TALIS, 

concentrating on a set of validity criteria established by Rässler (2002) and described below. Our 

evaluation relies on an experimental comparison of the validity of each method relative to a standard. For 

this purpose, we use data from Iceland. We chose Iceland because it is the only OECD country that 

implemented PISA 2009 and TALIS 2008 on the population of PISA students, all TALIS teachers, and all 

PISA and TALIS schools. The experimental study will provide a proof of concept that statistically 

matching PISA and TALIS is feasible for countries that wish to draw on the added value of both surveys 

for research and policy analysis. 

6. The organisation of this report is as follows. In the next section, we outline the problem of 

statistical matching with particular focus on validity criteria that can be used to evaluate the quality of 

statistical matching. Next, we outline the methods to be examined in this paper. It should be noted that a 

large number of methods exist for statistical matching. We will examine six methods that are 

representative of the broad array of statistical matching methods available, including non-parametric 

parametric statistical matching algorithms. Our focus will also be on methodologies that are available 

within the R statistical programming environment (R Development Core Team, 2010). Our focus on the R 

statistical programming environment reflects our view that the open source and free nature of R can allow 

maximum accessibility across all countries to support statistical matching of PISA and TALIS. Next we 

will present the design of our study. The results will follow. The report closes with recommendations and 

limitations resulting from statistically matching PISA and TALIS. Annotated software code is made 

available in Annex A and Annex B. 

The Policy Context 

7. Effective educational policy rests on the availability of reliable information about both the 

structure and process of educational systems. In this section we describe one potential policy question that 

can be more fully understood by fusing PISA and TALIS data. The application of statistical matching is 

certainly not limited to this particular question.   

8. PISA obtains samples of students across more than 60 countries and economies, allowing 

researchers to relate variation in characteristics of national educational institutions to levels of performance 

and inequality in student learning. In other words, researchers can use PISA to identify particular 

educational institutional arrangements that promote educational excellence and equality among students. 

For example, recent research utilising data from PISA suggests that countries with a more strongly 

differentiated educational system tend to have higher levels of inequality of educational opportunity by 

social class and race/ethnicity; and countries with a more standardised educational system have lower 

levels of inequality of opportunity compared to those with unstandardised systems (Werfhorst & Mijs, 

2010).   

9. Although much has been documented relating institutional arrangements to student performance, 

more recently the focus has turned to detailed descriptions of how variation in the way educational systems 
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are structured shapes what takes place in the classroom. In other words, more attention is being paid to 

how the process of education varies within and between countries. PISA administers surveys of students 

and school administrators, and the patterns revealed from their responses suggest that the best performing 

education systems embrace the diversity in students’ capacities, interests, and social background with 

individualised approaches to learning. These education systems also provide clear and ambitious standards 

focused on complex, higher order thinking, and prioritise teacher and administration quality (OECD, 

2010b).   

10. An additional source of data on school processes comes from TALIS. While PISA links 

institutional characteristics to student performance, TALIS links institutional characteristics to aspects of 

school and classroom climate from the perspective of teachers and school administrators. For example, 

TALIS asks teachers and principals about the disciplinary climate of the school. Extant research suggests 

that classroom disciplinary climates affect student outcomes and attainment, and that many countries 

consider discipline a high priority policy issue (OECD, 2009). However, only by linking the TALIS and 

PISA surveys can researchers fully model the relations between institutional differentiation, disciplinary 

climate and student learning.    

11. Because learning occurs in the context of classrooms, aspects of teacher practices and classroom 

climate are key to understanding the mechanisms through which policy decisions might impact educational 

performance and inequality in learning. However, at present it appears difficult, for practical and/or 

political reasons, to design and implement a large international survey with data gathered from students, 

teachers and school leaders. Ideally, then, the goal would be to statistically combine PISA and TALIS in 

order to more carefully and universally describe school systems, with the intent of reporting associations 

between performance, equality, and educational policy, and how these factors combine to produce a social 

system, which can be described from the perspective of families, students, school staff, and school 

administrators. Statistically combining two relatively distinct data sources is the goal of statistical 

matching.  

Background on Statistical Matching 

12. Statistical matching involves filling in missing data from two surveys in order to obtain a 

“synthetic” set of data that can be considered as generated from a sample representative of some 

population of relevance to the original surveys. It is convenient to categorise statistical matching methods 

as non-parametric (i.e. those not based on an underlying model for the observed and missing data), semi-

parametric (combining non-parametric and parametric methods) or fully parametric (i.e. methods based on 

assuming an underlying model for observed and missing data described by a set of parameters). In both 

cases, however, the problem is one of addressing the issue of missing data – that is, TALIS is missing 

student-level data available from PISA, and PISA is missing teacher-level data available in TALIS.   

13. In the context of PISA and TALIS, we can consider two types of missing data: unit and item non-

response. However, when considering the matching of the two data sets, there becomes a very large 

amount of unit missing data because the surveys contain different items and units of analysis. What is 

required to move forward with statistical matching is a general theoretical framework for the problem of 

missing data.    

14. Following the seminal work Rubin (1976; see also Little & Rubin, 2002; Schafer, 1997; Enders, 

2010) the underlying mechanism that generates missing data can be considered either ignorable or non-

ignorable. An ignorable missing data mechanism is one in which inferences are not affected by the process 

that generated the missing data. There are two types of missing data mechanisms that can be considered 

ignorable. Take, for example, two variables, say age and income, and assume that there is missing data on 

income. If the missing data on income is unrelated to the observed values of both age and income, then the 
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missing data are considered to be missing completely at random or MCAR. Under the assumption of 

MCAR, such methods as listwise deletion or regression imputation can be used to treat missing data 

(although they might not be desirable approaches for other reasons). Next, imagine a situation in which the 

missing data on income is unrelated to observed income, but may be related to observed age. For example, 

perhaps older individuals do not report their incomes. This type of missing data is referred to as missing at 

random or MAR. Under MAR, inferences will be valid, and there now exist many methods for handling 

missing data under the assumption of MAR.   

15. In real data contexts, MCAR and MAR are fairly unrealistic assumptions. A more realistic 

situation is one in which the missing data mechanism is non-ignorable. Taking our example of age and 

income, we may find that missing data on income is related to income. That is, perhaps individuals with 

higher incomes do not report their incomes, irrespective of their age. This type of missing data problem is 

referred to as not missing at random or NMAR. Under NMAR, inferences derived from conventional 

approaches are not valid, and what is required is a substantive model of interest that incorporates a model 

of the missing data process.   

16. Despite the fact that NMAR is perhaps the more realistic scenario for missing data problems, 

advances in handling missing data have generally been made under the assumption of MAR, where the 

assumption of MCAR is considered mostly unrealistic. There is, however, one unique situation in which 

MCAR might be reasonably expected to hold – and that is where the missing data are missing by design. 

One example of missing by design is assessment plans that involved balanced incomplete block spiraling 

frameworks (see e.g. Kaplan, 1995) such as the design for the cognitive outcome assessments in PISA. 

Another example of concern to this report is the case of statistically matching different surveys. In the case 

of PISA and TALIS, the two surveys have no units in common but do have variables in common – in 

particular, variables from the survey of principals in both the PISA and TALIS samples. Because there are 

no units in common across the two surveys, the missing data are reasonably considered to be MCAR.
1
 

Levels of Validity in Statistical Matching 

17. An immediate question that is raised when considering the problem of filling in missing data, 

particularly in the context of large sample surveys such as PISA and TALIS, is the validity of the statistical 

match. This is of prime importance to our goal of matching PISA and TALIS insofar as the results of these 

surveys carry major policy consequences. An important discussion of the problem of validity in the context 

of statistical matching can be found in (Rässler, 2002). Following Rässler, 2002) four levels of validity can 

be distinguished when considering the problem of statistical matching. 

First Level Validity: Preserving Individual Values 

18. The most difficult level of validity that can be achieved in statistical matching concerns the 

ability of the matching procedure to reproduce the true but unknown individual values of the sample data. 

That is, does the algorithm provide the values for the missing data in PISA and TALIS that would have 

been observed had those variables been presented and answered? Because the true individual values are 

unknown, the only way that first level validity can be established is via a simulation study (Rässler, 2002). 

Although the data from Iceland provide an opportunity to assess first level validity, generally, it is usually 

impossible or at least unnecessary to achieve this level of validity. First, the algorithms that we will be 

examining are designed to reproduce expected values under a given model, and not individual values. 

Second, imputation algorithms are designed to produce a dataset that can be used for secondary analyses 

                                                      
1
 Of course, within a survey, missing data on some variables, including those that are common across PISA and 

TALIS might be MAR or NMAR. We will assume that missing data on variables in common to both PISA 

and TALIS are at least MAR. 
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based on summary statistics and not individual values. Thus, for this report, we will not assess first level 

validity.   

Second Level Validity: Preserving Joint Distributions 

19. The idea behind second level validity is that the joint distribution of all of the variables in the 

synthetic data set be preserved after statistical matching. For this to be true, we must first assume that the 

PISA and TALIS schools (within a country) were sampled independently within and across the surveys. 

Then, we can assume that the synthetic file is a random sample from a synthetic distribution. Rässler 

(2002) shows that this will only hold if the variables unique to PISA and unique to TALIS are 

conditionally independent given the variables common to both surveys.     

Third Level Validity: Preserving Covariance/Correlation Structures 

20. Both PISA and TALIS not only inform education policy for countries, but they both serve as 

important sources for research and analysis. In that case, statistical modeling method that rely on the 

covariances and higher order moments of the data – such as regression analysis and factor analysis – are 

often employed as analytic methodologies. If the goal is statistical modeling of the synthetic data, then the 

covariance structure of the data before and after matching should be the same. As with second level of 

validity, the synthetic data set should represent a sample from a synthetic population that has the same 

covariance structure as the actual population of interest. Following Rässler (2002) if we let           be 

the covariances of the variables in the synthetic population, and          be the covariances of the true 

population, then the only way in which these two covariances are equal to each other is if x  and y  are on 

average conditionally uncorrelated give the common variables z  used in the match.
2
 

Fourth Level Validity: Preserving Marginal Distributions 

21. The lowest level of validity and a minimum requirement for statistical matching is that the 

marginal distributions of the individual variables in the original surveys be preserved after the statistical 

match. Formally, if      is the marginal distribution of the PISA variables and       is the joint distribution of 

the PISA variables and variables common to PISA and TALIS in the synthetic sample, then after the match 

they should not differ meaningfully from     and       the marginal and joint distributions from PISA, 

respectively. This report provides tables and figures to assess fourth level validity.  

Methodology 

22. In this section, we describe statistical matching methods we evaluate in the context of the PISA-

TALIS match. As noted earlier, there are scores of different methods that can be used for statistical 

matching, and it is beyond the scope of this report to evaluate every approach that is currently available. 

Our approach for this report, therefore, is to examine a handful of the most representative approaches and 

to provide a detailed evaluation of their usefulness and validity in providing a statistical match. For our 

experimental study with Iceland, we concentrate on the third and fourth levels of validity described earlier 

because these are the most important levels for research and policy analysis using PISA and TALIS.   

23. A common feature of all statistical matching methods, and, admittedly, a limitation in the context 

of PISA and TALIS, is that the data must be aggregated to a common unit of analysis. For PISA and 

TALIS, the only level of analysis common across the surveys is the school. Thus, student and teacher data 

                                                      
2
 To see this, let                                be the synthetic covariances. Then, because          

                                 , the only way for                    is if the                .This 

report provides an assessment of third level validity. 
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must be aggregated to their respective school level before statistical matching can proceed. In doing so, the 

multilevel structure of each survey is lost. Statistical matching, therefore, takes place by identifying school 

level variables that are common across PISA and TALIS. Any number of variables will do, but the more 

variables in common, the more information can then be brought to bear to create the match. In cases in 

which a variable has been measured on a different scale across the two surveys, the extant literature 

suggests that they should be converted to z-scores, even if the variables are categorical (e.g. Rässler, 2002). 

Differences in the scales of categorical variables can also be handled by collapsing one, or both, to a 

common set of categories.  

24. We organise this section as follows. First, we describe a non-parametric approach based on so-

called “hot deck imputation” – namely distance hot deck matching. The remaining approaches are 

parametric and based on file concatenation and multiple imputation (Rubin, 1986; 1987). The file 

concatenation perspective sees statistical matching as a missing data problem with the goal of imputing 

values for the missing data. However, rather than imputing a single value for a missing data point and 

treating it as fixed, the multiple imputation framework accounts for uncertainty about the missing data by 

creating multiple plausible missing values resulting in multiple data sets. The data sets are then combined 

in specific ways for analysis purposes.  

25. Within the multiple imputation perspective, we describe approaches derived from the frequentist 

and Bayesian frameworks of statistics. Within the frequentist framework, we examine two methods – 

stochastic regression imputation and predictive mean matching. Within the Bayesian framework, we 

describe Bayesian linear regression imputation via chained equations, Bayesian bootstrap predictive mean 

matching, and the EM bootstrap – the latter being a hybrid of Bayesian and frequentist methods.  

Nonparametric Hot Deck Matching 

26. Hot deck imputation procedures require that a distinction be made between a “donor” data set 

and a “recipient" data set. As noted by D’Orazio, Di Zio, and Scanu (2006), there are several factors that 

need to be considered when designating a donor and recipient data set. The two most important, according 

to D’Orazio, Di Zio, and Scanu (2006), concerns the phenomenon under study and the accuracy of 

information contained in the two surveys. In the former case, matching PISA and TALIS should yield a 

synthetic data set that retains the ability to draw valid and reliable inferences of policy relevance. In the 

latter case, it does not make much sense to match two data sets in which the information from either or 

both surveys is inaccurate. An example concerns matching data sets when the matching units were 

obtained at very different time points. In such cases, it may not be reasonable to assume that the synthetic 

file represents independent and identically distributed observations from the same population. In the case 

of PISA 2009 and TALIS 2008, it is true that these surveys were not implemented at the same time. At the 

school level within a country, the argument would have to be made that TALIS schools are different from 

their corresponding PISA schools, perhaps due to the implementation of some country level policy during 

the interim in which PISA and TALIS were implemented. We are assuming that within a country, the time 

difference between the implementation of PISA 2009 and TALIS 2008 did not result in important 

exogenous changes across schools. 

27. In addition to these substantive concerns the sample sizes of the data sets is also a consideration. 

In the case of PISA and TALIS, the school sample sizes are markedly different; PISA, on average, samples 

twice as many schools as TALIS. Thus, it is common practice to assign the role of recipient data set to the 

smaller of the two – in this case TALIS. We can see why this is reasonable. If TALIS were the donor 

survey, then records in TALIS would be imputed more than once into PISA, which could then artificially 

reduce the variability of the distributions of the variables in the synthetic data set. 
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28. The essence of hot deck imputation is that missing data in a recipient file (TALIS) are filled in 

with actual values from a donor data file (PISA) based on a pre-specified algorithm. This approach requires 

that the donor data set be at least as large as, or larger than the recipient data set. Once a PISA donor is 

found for a TALIS recipient, the missing data for the TALIS recipient is given the value of the PISA 

donor. The resulting synthetic data set has a sample size equivalent to that of the original TALIS sample. A 

number of algorithms exist for hot deck matching, however for this paper we will focus our attention only 

on nearest neighbor hot deck matching. For our analyses, we use the R program StatMatch (D’Orazio, 

2011) for non-parametric hot deck matching. 

Distance Hot Deck Matching 

29. Distance hot deck matching is perhaps the oldest form of hot deck matching and has been used in 

a variety of applications. The idea is simple. The algorithm finds a school in PISA that is closest to a 

school in TALIS based on a chosen metric of “distance”. For the purposes of this report, we chose the 

Euclidean distance metric. Once that school is found, the missing data for the TALIS school is given the 

value obtained from the PISA school. If two or more donor schools are found to match a TALIS school, 

then one school is chosen at random. 

Frequentist Approaches to Statistical Matching 

30. As noted earlier, in addition to nonparametric methods based on variants of hot deck imputation, 

parametric statistical matching in the form of file concatenation and multiple imputation can also be 

considered. In this case, the resulting synthetic data set has a sample size, which is the sum of the sample 

sizes of the separate surveys. In this section, we consider two frequentist-based statistical matching 

methods followed by three statistical matching methods derived from the Bayesian perspective. The two 

frequentist approaches discussed next are implemented in the R software program mice (van Buuren & 

Groothuis-Oudshoorn, 2010). 

Stochastic Regression Imputation 

31. A common approach to statistical matching is based on linear regression analysis. Under the 

assumption that the missing data are at least MAR, the regression imputation approach uses linear 

regression to obtain predicted values for the missing observations. Thus, in the case of statistically 

matching PISA and TALIS, variables that are unique to TALIS would be regressed on the variables 

common to PISA and TALIS. From here, missing data is filled in using the predicted values of the TALIS 

missing data. The method proceeds similarly for filling in missing PISA data. The difficulty with linear 

regression imputation is that because the imputed values are predictions from a regression equation, they 

will lie precisely on the regression line and hence lead to underestimation of residual variability. This lack 

of variability in the imputed values is clearly not realistic, and, moreover, will result in an overestimation 

of the correlations (and hence R2 ) in subsequent analyses. To remedy this problem, a residual value is 

drawn from a normal distribution with a mean of zero and a variance equal to the residual variance of the 

regression equation. This residual value is added to the predicted value, yielding stochastic regression 

imputation. 

32. With only one residual drawn from a normal distribution, the imputed missing data value is still 

treated as unique and fixed. Given that missing data are, by definition, unknown, it may be more 

reasonable to obtain multiple plausible values of the missing data by drawing multiple residual values from 

the normal distribution. These multiple draws, when added to the regression equation, will yield multiply 

imputed data sets. Subsequent analyses are then based on analysing all of the data sets simultaneously and 

then pooling the results according to rules set down by Rubin (1987). 
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Semi-Parametric Predictive Mean Matching  

33. Regression imputation and hot deck matching sets the groundwork for so-called predictive mean 

matching introduced by Rubin (1986). In our context, the essential idea is that a missing value in PISA is 

imputed by matching its predicted value based on regression imputation to the predicted values of the 

observed data on the basis of some distance metric. Then, the procedure uses the actual observed value for 

the imputation. That is, for each regression, there is a predicted value for the missing data and also a 

predicted value for the observed data. The predicted value for the observed data is then matched to a 

predicted value of the missing data using, say, a nearest neighbor distance metric. Once the match is found, 

the actual observed value (rather than the predicted value) replaces the missing value. In this sense, 

predictive mean matching operates much like hot deck matching. Thus, the combination of the parametric 

prediction equation with non-parametric hot deck matching yields this semi-parametric procedure. 

Bayesian Approaches to Statistical Matching 

34. In the previous section, we concentrated on two approaches to statistical matching that lie within 

the so-called “frequentist” paradigm of statistics. This paradigm is most closely associated with Sir R. A. 

Fisher and rests on a view that equates probability with long run frequency and the idea of identically 

repeatable experiments. Along with likelihood theory (also associated with Fisher), the general frequentist 

paradigm views parameters (such as population means, variances, and regression coefficients) as unknown 

and fixed. A sample, taken from the population is then used to provide an estimate of the unknown 

parameters, and the notion of identically repeatable samples from the population allows us to estimate the 

sample variability around the estimates of the model parameters. 

35. In contrast to the frequentist school of statistics, the Bayesian school adopts an entirely different 

view of statistical inference. Specifically, the Bayesian school views any unknown quantity, and 

particularly parameters, as random, possessing a probability distribution that characterizes our uncertainty 

about the average value and variation of the parameter. This probability distribution is referred to in the 

Bayesian literature as the prior distribution. Bayes' theorem is used to link the prior distribution to the 

actual data distribution (analogously, the likelihood) yielding a posterior distribution of the model 

parameters (see Kaplan & Depaoli, in press, for an overview of Bayesian inference). 

36. The central reason for adopting a Bayesian perspective to the problem of statistical matching (and 

other missing data problems more generally) is that by viewing parameters probabilistically and specifying 

a prior distribution on the parameters of interest, the imputation method (described next) is Bayesianly 

proper (Shafer, 1997) insofar as the imputations reflect uncertainty about the missing data as well as 

uncertainty about the unknown model parameters. Moreover, this view of statistical inference allows for 

the incorporation of prior knowledge, which can further reduce uncertainty in model parameters. 

Bayesian Regression Imputation via Chained Equations 

37. In this section we concentrate our discussion on a Bayesianly proper form of multiple imputation 

using the method of chained equations.
3
 

                                                      
3
 Another popular form of Bayesianly proper imputation involves the data augmentation algorithm of Tanner and 

Wong (1987). The method of chained equations recognises that in many instances, it might be better to 

engage in a series of single univariate imputations along with diagnostic checking rather than a omnibus 

multivariate model for imputation that might be sensitive to specification issues. An overview of previous 

work on chained equations can be found in Tanner and Wong (1987). 
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38. The essence of the chained equations approach is that a univariate regression model consistent 

with the scale of the variable with missing data is used to provide predicted values of the missing data 

given the observed data. Thus, if a variable with missing data is continuous, then a normal model is used. If 

a variable were a count, then a Poisson model would be appropriate. This is a major advantage over other 

Bayesianly proper methods such as data augmentation that assume a common distribution for all of the 

variables. Once a variable of interest is “filled-in”, that variable, along with the variables for which there is 

complete data, is used in the sequence to fill in another variable. In general, the order of the sequence is 

determined by the amount of missing data, where the variable with least amount of missing data is imputed 

first, and so on. 

39. Once the sequence is completed for all variables with missing data, the posterior distribution of 

the regression parameters is obtained and the process is started again. Specifically, the filled-in data from 

the previous cycle, along with complete data are used for the second and subsequent cycles (Enders, 2010). 

The algorithm that generates the sequence of iterations is based on the so-called Gibbs sampler (Geman & 

Geman, 1984) a very popular method for obtaining draws from posterior distributions. Finally, the 

algorithm can run these sequences simultaneously m  number of times obtaining m imputed data sets. For 

the purposes of this report, we utilise the chained equation algorithm implemented in the R software 

program mice (van Buuren & Groothuis-Oudshoorn, 2010). 

Bayesian Bootstrap Predictive Mean Matching 

40. Multiple imputation via chained equations is inherently a parametric method. That is, in 

estimating a Bayesian linear regression the posterior distributions are obtained via Bayes' theorem, which 

requires parametric assumptions. It may be desirable, however, to relax assumptions regarding the 

posterior distributions of the model parameters, and to do this requires a replacement of the step that draws 

the conditional predictive distribution of the missing data given the observed data. A hybrid of predictive 

mean matching, referred to as posterior predictive mean matching, proceeds first by obtaining parameter 

draws using classical multiple imputation approaches. However, the final step then uses those values to 

obtain predicted values of the data followed by conventional predictive mean matching. 

41. Posterior predictive mean matching sets the groundwork for Bayesian bootstrap predictive mean 

matching (BBPMM). The goal of BBPMM is to further relax the distribution assumptions associated with 

draws from the posterior distributions of the model parameters.  The algorithm begins by forming a 

Bayesian bootstrap of the observations Rubin (1981). The Bayesian bootstrap (BB) is quite similar to 

conventional frequentist bootstrap (Efron, 1979) except that it provides a method for simulating the 

posterior distribution of the parameters of interest rather than the sampling distribution of parameters of 

interest, and as such, is more robust to violations of distributional assumptions associated with the posterior 

distribution. For specific details, see Rubin (1981). Next, BBPMM obtains estimates of the regression 

parameters from the BB sample. This is followed by the calculation of predicted values of the observed 

and missing data based on the regression parameters from the BB sample. Then, predictive mean matching 

is performed as described earlier. As with conventional MI, these steps can be carried out m 1  times to 

create m  multiply imputed data sets. For this report, we use the R software program BaBooN (Meinfelder, 

2011). 

A Hybrid Method: The EM Bootstrap 

42. In this section we examine an approach that combines Bayesian imputation concepts with the 

frequentist idea of bootstrap sampling. Essentially, bootstrapping is a data-based simulation method which 

relies on drawing repeated samples from the data to estimate the sample distribution of almost any statistic, 

and was developed as a simplified alternative to inferences derived from statistical theory (Efron and 
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Tibshirani, 1993). Specifically, this section considers the implementation of the EM algorithm with 

bootstrapping. 

43. Briefly, EM stands for expectation-maximisation and is an algorithm that is widely used to obtain 

maximum likelihood estimates of model parameters in the context of missing data problems. The essence 

of the EM algorithm proceeds as follows. Using a set of starting values for the means and the covariance 

matrix of the data (perhaps obtained from listwise deletion), the E-step of the EM algorithm creates the 

sufficient statistics necessary to obtain regression equations that yield the predictions of the missing data 

given the observed data and the initial set of model parameters. The next step is to use the “filled-I” data to 

obtain new estimates of model parameters via the M-step, which is simply the use of straightforward 

equations to obtain new estimates of the vector of means and the covariance matrix of the data. The 

algorithm then iterates back to the E-step to obtain new regression equations. The algorithm cycles 

between the E-step and the M-step until a convergence criterion has been met, at which point the 

maximum likelihood estimates have been obtained. The E-step and M-step are the likelihood counterparts 

of the Bayesian I-step and P-step in data augmentation. 

44. The EM algorithm has been extended to handle the problem of multiple imputation without the 

need for computationally intensive draws from the posterior distribution, as with the data augmentation 

approach. The idea is to extend the EM algorithm using a bootstrap approach. This approach is labeled 

EMB (Honaker & King, 2010) and implemented in the R program Amelia (Honaker, King & Blackwell, 

2010), which we use in our analyses below. 

45. Following (Honaker & King, 2010) and Honaker (personal communication, June 2011) the first 

step is to bootstrap the PISA and TALIS concatenated data set to create m  versions of the incomplete data, 

where m  ranges typically from 3 to 5 as in other multiple imputation approaches. Bootstrap resampling 

involves taking a sample of size n with replacement from the original dataset. Here, the m bootstrap 

samples of size n are obtained from the PISA and TALIS concatenated file, where n is the total sample size 

of the file. Second, for each bootstrapped data set, the EM algorithm is run. It is here that Honaker & King 

(2010) allow for the inclusion of prior distributions on the model parameters estimated via the EM 

algorithm. Notice that because m bootstrapped samples are obtained, and that each EM run on these 

samples may contain priors, then once the EM algorithm has run, the model parameters will be different. 

Indeed, with priors, the final results are the maximum a priori (MAP) estimates; the Bayesian counterpart 

of the maximum likelihood estimates. Finally, missing values are imputed based on the final converged 

estimates for each of the m datasets. These m versions can then be used in subsequent analyses. 

Data and Methods 

46. The PISA 2009 survey design samples schools proportional to size followed by a sample of the 

target student population within those schools.
4
 

47. The target student population was based on target age rather than school grade levels to allow for 

international comparability. The eligible age range at the time of the assessment was between 15 years and 

3 months and 16 years and 2 months to ensure that students were assessed before they completed 

compulsory education. Also, only those who had completed at least 6 years of formal schooling were 

eligible for the study and those with intellectual disabilities or limited language proficiency in the language 

of the test were excluded.  PISA 2009 collected student-level and school-level data from reports by 

students, school administrators, and parents across 34 OECD member countries and 41 partner countries 

and economies during the survey window of March to September 2009. 

                                                      
4
 There are additional complexities to the sampling designs of PISA and TALIS that can be found in their respective 

technical reports. 
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48. For TALIS 2008, a two-stage stratified probability sample was employed with lower secondary 

education teachers (level 2 of the 1997 revision of the International Standard Classification of Education, 

ISCED 97) as second stage units randomly selected from randomly selected schools. The surveys were in 

the field from October 2007 to May 2008. TALIS 2008 provides teacher-level and school-level data from 

reports by teachers and school administrators across 16 OECD-member countries and 7 partner countries 

and economies.
5
 

An Experimental Study Using Data from Iceland 

49. In total, 142 schools participated in the TALIS survey and/or the PISA survey. Of these, 122 

PISA and TALIS schools could be matched. The 20 schools that were unmatched were eligible for TALIS 

or PISA, but not both. An additional 39 schools were excluded due to large amounts of missing data on 

variables needed for the matching procedures. Finally, 5 schools were excluded because they were 

identified to be influential outliers. Thus, the statistical matching procedures utilise data from 78 schools in 

Iceland with full information from the PISA and TALIS data sets. 

50. For our experiment with data from Iceland, preliminary analyses indicated that randomly deleting 

data would yield a sample size that was likely too small to effectively judge the quality of the matching 

procedures. To address this problem, we duplicated the Iceland data and then removed PISA data for half 

the sample and TALIS data for the other half of the sample. This led to a sample of 78 schools with PISA 

data and 78 schools with TALIS data. Because the duplication and subsequent deletion of the data were not 

dependent on any of the observed PISA, TALIS or common variables, the missing data are missing 

completely at random.
6
 

Variables 

51. PISA administers surveys to school principals and to students. TALIS administers surveys to 

school principals and to teachers. Common variables are drawn from the school principal surveys from 

PISA and TALIS. These are the variables that are used in the matching methods to generate the matched 

data sets. 

Matching Variables 

52. We were able to match on several indicators and indices that are similar in both the PISA and 

TALIS school administrator surveys. Both sets of data include information on school sector, the size of the 

school community, the total enrollment in the school, a measure of the availability of school material 

resources, the extent to which teacher absenteeism interferes with student learning, a measure of the extent 

to which student-related factors affect the school climate, and a measure of the disciplinary climate of the 

school.
7
 

                                                      
5
 To be included in the TALIS study, a minimum of 200 schools must participate in the surveys. 

6
 Doubling the sample is not recommended in general. The results of the match will be artificially improved as a 

result of the duplication. However, for the purposes of our experiment, which compares statistical matching 

strategies using the same duplicated data, we do not expect this strategy to influence our recommendations 

for the preferred matching method. This is because each method is equally subject to the artificial 

improvements risked by the data duplication.  

7
 Information about the average disciplinary climate for each school was drawn from student surveys in PISA and the 

teacher surveys in TALIS, averaged to the school level. It has been shown that there is a high level of 

agreement on indicators of disciplinary climates among teachers and students (OECD, 2009, pg. 204) these 

variables are suitable to use as matching variables.  
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53. There may be other variables in the student or parent surveys from PISA, or the teacher surveys 

from TALIS that can be used for the matching procedure. These would need to be standardised and 

averaged to the school level prior to applying the matching procedures. Including more variables for the 

match is generally better, although increasing the variables included in the matching procedure necessitates 

a larger school sample in both PISA and TALIS. Also, in certain contexts, a reduced set of variables may 

be used depending on their usefulness for the statistical matching procedure. For example, in Iceland there 

are very few private schools. Because of the lack of variation in the school sector variable, it is not useful 

for the match. 

54. Another consideration for matching is to match within meaningful subpopulations. Researchers 

may wish to match within private schools and within public schools, for example. This would be a useful 

strategy if schools within sub-populations differ greatly from each other. Sub-populations could be defined 

within school sector, regions, governance structures, etc. We did not do this for the current analysis 

because the private schools were dropped from the sample for reasons unrelated to their school sector 

designation. 

Unique Variables 

55. The central focus of PISA 2009 was proficiency in reading. PISA identified a cumulative or 

cyclical model of how engagement in reading activities (e.g. enjoyment of reading and diversity of reading 

materials) and approaches to learning (e.g. summarising skills and memorization strategies) promote 

reading performance at the end of compulsory education (OECD, 2010b, pg. 25). These skills are of 

interest to researchers studying inequality because they have been shown to mediate the effects of 

socioeconomic advantage on reading achievement (OECD, 2010b, pg. 91). To measure students' 

engagement in reading and learning strategies, we chose one indicator of each: enjoyment of reading 

(joyread) and summarising skills (metasum). According to analysis of PISA 2009, 18% of the student 

variation in reading performance across OECD countries can be explained by variation in students’ 

enjoyment of reading (OECD, 2010b pg. 28) (22% for Iceland). Also, 21% of the variation in reading 

performance across OECD countries can be explained by variation in summarising skills (OECD, 2010b, 

pg. 47) (20% for Iceland). Both measures are averaged to the school level for analysis. 

56. We chose two predictor variables of interest that measure teachers’ job-related attitudes: teacher 

job satisfaction (jobsat) and teacher self-efficacy (selfef). Job satisfaction influences aspects of teachers’ 

behaviour such as performance, absenteeism, and turnover (OECD, 2009, p.111). Similarly, teachers’ self-

efficacy influences their instructional standards and coping strategies (OECD, 2009, p. 111). Both job 

satisfaction and teacher self-efficacy are linked to instructional practices and student achievement (Ashton 

and Webb, 1986; Ross, 1998). The job satisfaction measure is taken from one item in the TALIS teacher 

survey, which asks the teachers to indicate how strongly they agree with the statement “All in all, I am 

satisfied with my job”. The self-efficacy measure is a composite of four items in the teacher survey. 

Teachers are asked to indicate how strongly they agree with the statements: “I feel that I am making a 

significant educational difference in the lives of my students”, “If I try really hard, I can make progress 

with even the most difficult and unmotivated students”, “I am successful with the students in my class”, 

and ``I usually know how to get through to students". Both the job satisfaction measure and the teacher 

self-efficacy measure are averaged to the school-level for analysis. 

Results for Iceland 

57. Software code for the statistical matching methods is presented in Annex A and software code for 

implementing the validity checks is given in Annex B for the hot deck matching method only. Validity 

checking for the other methods would be implemented in the same way. 
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58. An inspection of Table 1 shows the descriptive statistics for the Iceland data for the original data 

and Tables 2 to 7 show the results for each statistical matching algorithm. A complete set of descriptive 

statistics are provided including the mean, standard deviation, median, trimmed mean, mean absolute 

deviation, minimum, maximum, range, skewness, kurtosis, and standard error of the mean. A visual 

comparison of the results suggests that most of the methods do a reasonably good job of reproducing 

marginal descriptive values. Exceptions include stochastic regression imputation and Bayesian regression 

imputation using chained equations. Hot deck matching does a reasonable job except with respect to 

skewness and kurtosis estimates. 

59. An inspection of Tables 1 to 7 shows an assessment of third level validity -- namely the 

preservation of the correlation/covariance structure of the data. Recall, that preservation of the 

correlation/covariance structure requires that the conditional correlations among the unique variables given 

the matching variable should be close to zero. As an example, inspection of Table 2 for hot deck matching 

reveals that the conditional correlations are very small and not greater than 0.02. When compared to the 

values in Table 1, we see that hot deck matching does an excellent job of preserving correlation/covariance 

structure of the data. Overall, the results indicate that while most methods do a reasonably good job of 

meeting third level validity, BBPMM and the EM bootstrap stand out as being the best methods in terms of 

these validity criteria. 

60. Figures 1 to 6 provide a visual inspection of the descriptive statistics results presented above. 

Specifically, the kernal density plots represent smoothed histograms. We compare the distribution of the 

synthetic data (solid line) against the original data (dotted lines). We find that most procedures yield a 

kernel density plot that matches the distribution of the original variables quite well. In addition, we also 

present quantile-quantile (Q-Q) plots. A Q-Q plot is a graphical approach for comparing two probability 

distributions by plotting their quantiles against each other. If the two probability distributions being 

compared are similar, the points in the Q-Q plot will lie approximately on a straight line. A close 

inspection reveals that BBPMM provides the best Q-Q plots overall, and particularly better than the EM 

bootstrap method. 

 

Table 1. Summary Statistics and Conditional Covariance Matrix for Original Iceland Data 
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Table 2. Summary Statistics and Conditional Covariance Matrix for Iceland Data 

Hot Deck Distance Matching 

 
 

Table 3. Summary Statistics and Conditional Covariance Matrix for Iceland Data 

Stochastic Regression Imputation 

 
 

Table 4. Summary Statistics and Conditional Covariance Matrix for Iceland Data 

Predictive Mean Matching 
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Table 5. Summary Statistics and Conditional Covariance Matrix for Iceland Data. Bayesian 

Regression Imputation 

 
 

Table 6. Summary Statistics and Conditional Covariance Matrix for Iceland Data. Bayesian 

Bootstrap Predictive Mean Matching 

 
 

Table 7. Summary Statistics and Conditional Covariance Matrix for Iceland Data 

EM Bootstrap 

 
 

Discussion 

61. The purpose of this report was to provide a proof of concept on how one might implement a 

statistical match of PISA and TALIS. We argued at the beginning of the report that statistically matching 

PISA and TALIS might be a reasonable option for countries that are unable to administer both surveys to 

the same sample of schools. Our analyses suggest that statistically matching PISA and TALIS is feasible 

and can be considered by countries interested in gleaning added value from both surveys. 

62. Among the methodologies that were considered in this report, two stand out as deserving serious 

consideration for matching PISA and TALIS – Bayesian bootstrap predictive mean matching, and the EM-
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bootstrap. Both methodologies worked quite well with respect to Rässler's (2002) third and fourth level 

validity criteria. It should be noted that both algorithms were implemented without the specification of 

priors on the model parameters. We anticipate that the implementation of priors would influence the 

comparability of the method to other methods depending on the precision of the priors. That is, highly 

precise priors around incorrect model parameters would likely result in poor performance compared to 

precise priors around correct values. An issue regarding the use of priors for the BBPMM or the EM-

bootstrap concerns how priors might be elicited. Findings from matching current cycles of PISA and 

TALIS could be used to inform the specification of priors for future statistical matching exercises. 

63. The use of statistical matching and imputation methods has consequences for subsequent 

modeling activities. Specifically, the type of matching method being employed can influence the variation 

in model parameters. For example, in the case of regression imputation (without a stochastic component), 

the standard error of regression coefficients would be underestimated, leading to an inflated R2  and thus an 

increase in Type I errors. Adding a stochastic component improves on this problem, but the imputed data is 

still being treated as though it is known. Methods that involve multiple imputation restore variability back 

into the data through the creation and analysis of multiple data sets. From Rubin (1987) we know that the 

efficiency of an estimate is a function of the number of imputations and the rate of the missing data. For 

hot deck matching the issue of sampling variability in the estimates is complicated. First, because the 

sample size is the size of the recipient sample, there may likely be a loss of power. However, variability in 

the estimates may be reduced because the recipient data set treats the imputed data as though it were 

known. Moreover, we suspect that the sampling variability of the estimates will differ as a function of the 

type of distance metric being used (where here we used a nearest neighbour distance metric). At present, 

we know of no systematic comparative examination of the methods used in this report with respect to 

sampling variability of parameter estimates, and thus, we cannot provide systematic guidance on this issue. 

A conservative approach, however, would be to create different synthetic data sets using the methods 

proposed here with differing assumptions as a rough “sensitivity analysis” to gauge changes in estimates 

and standard errors. 

64. As noted earlier, statistical matching is typically limited to single-level data structures. In the case 

of PISA and TALIS, this requires aggregation of student- and teacher-level data to the school level, 

respectively. Thus, the well-known problems associated with data aggregation are present in the 

statistically matched file. However, there does exist a two-level statistical matching algorithm in the 

software program mice (van Buuren & Groothuis-Oudshoorn, 2010) based on the Gibbs sampling 

algorithm. For future cycles, should countries participating in PISA use a teacher questionnaire, and 

assuming that there are teacher-level variables common to TALIS and the PISA teacher questionnaires, 

two-level statistical matching may be feasible and certainly worth exploring. 

65. In the context of cross-national education research, statistical matching within countries may 

allow for a more nuanced analysis of cross-national differences. Recall that while both PISA and TALIS 

allow researchers to link institutional characteristics to aspects of school and classroom climate, only PISA 

offers measures of student learning, and only TALIS provides information about teachers’ job-related 

attitudes. In order to fully understand cross-national differences in outcomes, it is necessary to provide a 

complete description of the inputs and processes that relate to differences in outcomes across countries. In 

all, 24 countries participated in the TALIS 2008 survey, and each of these also participated in PISA 2009. 

Matching the TALIS and PISA surveys for each of these 24 countries is beyond the scope of the current 

study, however the potential for statistical matching to provide complete information on multiple countries 

is promising. For example, PISA data suggest that the best performing education systems prioritise teacher 

and administration quality, provide clear and ambitious standards focused on complex, higher order 

thinking, and embrace the diversity in students capacities, interests, and social background through 

individualised approaches to learning (OECD, 2010a). TALIS 2008 data suggest that professional 
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development, teaching practices, teachers’ beliefs and attitudes, school and teacher evaluation methods are 

important for understanding and improving educational processes (OECD, 2009).  

66. In the absence of a new design that formally links through the administration of PISA and TALIS 

jointly, statistical matching provides the next best approach for addressing these important policy 

questions. 

67. To conclude, this report demonstrated the feasibility of statistically matching PISA and TALIS, 

as well as demonstrated the effectiveness of six algorithms that could be employed for this purpose. The 

feasibility of statistically matching PISA and TALIS is supplemented by the accessibility of free and open 

source software – specifically, software packages found within the R statistical computing environment (R 

Development Core Team, 2010).  

68. In the absence of a direct implementation of both surveys, countries may wish to pursue this line 

of investigation. It should be noted, however, that substantive applications for these matching procedures 

are still in their infancy. The case of Iceland’s data for PISA and TALIS offers an exciting opportunity to 

investigate these methods, but the small sample size limited the additional manipulations that could be 

done to investigate these methods further (and determine, for example, the effect of the level of error in the 

imputed data on further analyses). More research is therefore needed to form firm conclusions regarding 

how and when matching would be desirable 
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Figure 1. Kernel Density Plots for Matched Iceland Data 

Hot Deck Distance Matching 

 

 
 

Figure 2. Quantile-Quantile Plots for Matched Iceland Data 

Hot Deck Distance Matching 
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Figure 3. Kernel Density Plots for Matched Iceland Data 

Linear Regression Ignoring Model Error 

 
 

Figure 8. Quantile-Quantile Plots for Matched Data 

Linear Regression Ignoring Model Error 
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Figure 5. Kernel Density Plots for Matched Iceland Data 

Predictive Mean Matching 

 
 

Figure 6. Quantile-Quantile Plots for Matched Iceland Data 

Predictive Mean Matching 
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Figure 7. Kernel Density Plots for Matched Iceland Data 

Multiple Imputation with Chained Equations 

 
 

Figure 4. Quantile-Quantile Plots for Matched Iceland Data 

Multiple Imputation with Chained Equations 
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Figure 9. Kernel Density Plots for Matched Iceland Data 

Bayesian Predictive Mean Matching 

 
 

Figure 10. Quantile-Quantile Plots for Matched Iceland Data 

Bayesian Predictive Mean Matching 
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Figure 11. Kernel Density Plots for Matched Iceland Data 

EM Bootstrap 

 
 

Figure 12. Quantile-Quantile Plots for Matched Iceland Data 

EM Bootstrap 
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ANNEX A 

# R Scripts for PISA-TALIS Matching Project 

# David Kaplan and Alyn Turner 

# University of Wisconsin-Madison 
 

################################################# 

# Amelia (EM Boostrap) 

################################################# 

 

#Step 1: Read in data file that includes PISA and TALIS schools 

pisatalis <- read.csv("datafile.csv",header=T) 

 

#Step 2: Set bounds on variables to be imputed. These should be determined by the actual distributions of each 

variable. 

bds <- matrix(c(1,-3.5,3.5, 2,1,4, 3,-3.5,3.5, 4,-3.5,3.5), nrow = 4, ncol=3, byrow=TRUE) 

 

#Step 3: Run the AMELIA program, specifiying the data object, the number of imputed data sets desired, and the 

bounds for imputed variables 

amelia <- amelia(x=pisatalis,m=5, bounds=bds) 

 

#Step 4: Save imputed datasets 

write.amelia(amelia,file.stem="amelia",extension=".csv") 

 

################################################## 

# BaBooN (Bayesian Predictive Mean Matching) 

################################################## 

 

#Step 1: Read in data file that includes PISA and TALIS schools 

pisatalis <- read.csv("datafile.csv",header=T) 

 

#Step 2: Run BaBooN program, specifying the data object, number of iterations desired, the name of the output 

file, and the number of imputed data sets desired. 

pisatalis.bbpmm <- BBPMM(pisatalis, nIter=5, outfile="BaBooN.csv", M=5) 

 

########################################################## 

# MICE pmm (Predictive Mean Matching) 

########################################################## 

 

#Step 1: Read in data file that includes PISA and TALIS schools 

pisatalis <- read.csv("datafile.csv",header=T) 

 

#Step 2: Prepare program to run "PMM", and specify bounds for imputed variables based on variable distributions 

ini <- mice(pisatalis,max=0,pri=F) 

meth <- ini$meth 

meth["x1"] <- "pmm" 

meth["x2"] <- "pmm" 

meth["y1"] <- "pmm" 

meth["y2"] <- "pmm" 

post <- ini$post 

post["x1"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

post["x2"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(1,4))" 

post["y1"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

post["y2"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

 

#Step 3: Run the MICE program, specifying the data object, number of desired imputed datasets, the method (defined in Step 2), and the desired number of iterations, 

and bounds (defined in Step 2) 

pisatalis.pmm <- mice(pisatalis, m = 5, meth = meth, maxit = 5, post=post) 

 

#Step 4: Write the imputed data sets to a file 

pisatalis.complete.pmm <- complete(pisatalis.pmm, "long", inc=T) 

write.table(pisatalis.complete.pmm,file="pmm.csv",sep=",") 

 

########################################################## 

# MICE norm (Bayesian Linear Regression) 

########################################################## 

 

#Step 1: Read in data file that includes PISA and TALIS schools 

pisatalis <- read.csv("datafile.csv",header=T) 

 

#Step 2: Prepare program to run "NORM", and specify bounds for imputed variables based on variable distributions 

ini <- mice(pisatalis,max=0,pri=F) 

meth <- ini$meth 

meth["x1"] <- "norm" 

meth["x2"] <- "norm" 
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meth["y1"] <- "norm" 

meth["y2"] <- "norm" 

post <- ini$post 

post["x1"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

post["x2"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(1,4))" 

post["y1"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

post["y2"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

 

#Step 3: Run the MICE program, specifying the data object, number of desired imputed datasets, the method(defined in Step 2), and the desired number of iterations, 

and bounds (defined in Step 2) 

pisatalis.norm <- mice(pisatalis, m = 5, meth = meth, maxit = 5, post=post) 

pisatalis.complete.norm <- complete(pisatalis.norm, "long", inc=T) 

 

#Step 4: Write the imputed data sets to a file 

write.table(pisatalis.complete.norm,file="norm.csv",sep=",") 

 

####################################################### 

# MICE norm.nob (Non-Bayesian Linear Regression) 

###################################################### 

 

#Step 1: Read in data file that includes PISA and TALIS schools 

pisatalis <- read.csv("datafile.csv",header=T) 

 

#Step 2: Prepare program to run "NORM.NOB", and specify bounds for imputed variables based on variable 

distributions 

ini <- mice(pisatalis,max=0,pri=F) 

meth <- ini$meth 

meth["x1"] <- "norm.nob" 

meth["x2"] <- "norm.nob" 

meth["y1"] <- "norm.nob" 

meth["y2"] <- "norm.nob" 

post <- ini$post 

post["x1"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

post["x2"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(1,4))" 

post["y1"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

post["y2"] <- "imp[[j]][,i] <- squeeze(imp[[j]][,i],c(-3.5,3.5))" 

 

#Step 3: Run the MICE program, specifying the data object, number of desired imputed datasets, the method(defined in Step 2), and the desired number of iterations, 

and bounds (defined in Step 2) 

pisatalis.normnob <- mice(pisatalis, m = 5, meth = meth, maxit = 5, post=post) 

 

#Step 4: Write the imputed data sets to a file 

pisatalis.complete.normnob <- complete(pisatalis.normnob, "long", inc=T) 

write.table(pisatalis.complete.normnob,file="normnob.csv",sep=",") 

 

################################### 

# StatMatch (Hot Deck Distance Matching) 

################################### 

 

#Step 1: Read in data file that includes PISA and TALIS schools 

pisatalis <- read.csv("datafile.csv",header=T) 

 

#Step 2: Identify TALIS schools 

talisrow <- c(1:78) 

 

#Step 3: Identify PISA schools 

pisarow <- c(79:156) 

 

#Step 4: Set donor and recipient data frames 

pisa.don <- pisatalis[pisarow, c(3:4,5:10)] # donor data.frame 

talis.rec <- pisatalis[talisrow, c(1:2,5:10)] # recipient data.frame 

 

#Step 5: Run Hot deck Matching program using the Euclidean distance function, specifying the columns that 

include the variables on which the match is to be based 

out.NND <- NND.hotdeck(data.rec=talis.rec, data.don=pisa.don,dist.fun="Euclidean", match.vars=c(3:8)) 

 

#Step 6: Create synthetic data.set, without the duplication of the matching variables 

fused.1 <- create.fused(data.rec=talis.rec, data.don=pisa.don, mtc.ids=out.NND$mtc.ids, z.vars=c("y1","y2")) 

 

#Step 7: Write the dataset to a file 

write.table(fused.1,file="hotdeck.csv",sep=",") 
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ANNEX B 

 

## Script for calculating marginal distributions and conditional covariance matrix 

## Needed to check third and fourth order validity 

 

require(MASS) 

require(psych) 

require(graphics) 

require(xtable) 

require(Zelig) 

 

##Set working directory 

#getwd() 

#setwd("~Desktop/OECD") 

 

pisatalis <- read.csv("~/Documents/Data Fusion/OECD/Analysis/Iceland/Data/Iceland78.csv",header=T) 

pisatalis <- pisatalis[c(-11:-13)] 

pisatalis 

#move header over, delete column, delete original NA's 

hotdeck <- read.csv("~/Documents/Data Fusion/OECD/Analysis/Iceland/Data/Match/Matched/hotdeck.csv",header=T) 

hotdeck 

 

#################################################################### 

## Marginal distributions and plots for original and fused files 

 

summary.matched <- describe(hotdeck[,1:4]) 

summary.matched 

summary.matched.xtable <- xtable(summary.matched,caption='Summary Statistics on Matched Iceland Data: Hot 

Deck Distance Matching.') 

print(summary.matched) 

print(summary.matched.xtable) 

 

#################################################################### 

## Calculate conditional covariance matrix of x and y given z. Values should be close to zero 

 

fused <- read.csv("~/Documents/Data Fusion/OECD/Analysis/Iceland/Data/Match/Matched/hotdeck.csv",header=T) 

fused1 <- fused 

print(fused1) 

 

fusedcov <- cov(fused1) 

fusedcov 

fusedcor <- cov2cor(fusedcov) 

fusedcov 

 

fusedcovxy <- fusedcov[1:2,3:4] 

fusedcovxy 

fusedcorxy <- fusedcor[1:2,3:4] 

fusedcorxy 

 

sigmaxy <- print(fusedcov[1:2,3:4]) 

sigmaxz <- print(fusedcov[1:2,5:10]) 

sigmazzinv <- print(solve(fusedcov[5:10, 5:10])) 

sigmazy <- print(fusedcov[5:10,3:4]) 

sigmaxx <- print(fusedcov[1:2,1:2]) 

sigmayy <- print(fusedcov[3:4,3:4]) 

sigmayx <- print(t(sigmaxy)) 

sigmayz <- print(t(sigmazy)) 

sigmazx <- print(t(sigmaxz)) 

 

condcovxy <- print(sigmaxy - (sigmaxz%*%sigmazzinv%*%sigmazy)) 

condvarx <- print(sqrt(sigmaxx-(sigmaxz%*%sigmazzinv%*%sigmazx))) 

condvary <- print(sqrt(sigmayy-(sigmayz%*%sigmazzinv%*%sigmazy))) 

 

a <- rbind(condvarx,t(condcovxy)) 

b <- rbind(condcovxy, condvary) 

 

condcovfull <- cbind(a,b) 

condcovfull 

 

condcorrfull <- print(cov2cor(condcovfull)) 

 

condcorrxy <- print(condcorrfull[1:2,3:4]) 

condcorrxy 

corrxy_mean<- xtable(condcorrxy,caption='Conditional Correlation for Matrix Matched Iceland Data: Hot Deck 

Distance Matching.') 
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print(corrxy_mean) 

 

#################################################################### 

## Create density plots for fused and original variables 

 

par(mfrow=c(2,2),oma=c(5,0,0,0),font=2,font.lab=2,cex.main=1.2,cex.lab=1.2,cex.sub=1) 

 

plot(density(fused1$x1, na.rm=TRUE),main="",ylim=c(0,2),xlab='Self Efficacy') 

lines(density(pisatalis$x1,na.rm=TRUE),lty=3) 

 

plot(density(fused1$x2, na.rm=TRUE),main="",ylim=c(0,2),xlab='Job Satisfaction') 

lines(density(pisatalis$x2,na.rm=TRUE),lty=3) 

 

plot(density(fused1$y1, na.rm=TRUE),main="",ylim=c(0,2),xlab='Enjoyment of Reading') 

lines(density(pisatalis$y1,na.rm=TRUE),lty=3) 

 

plot(density(fused1$y2, na.rm=TRUE),main="",ylim=c(0,2),xlab='Summarising Skills') 

lines(density(pisatalis$y2,na.rm=TRUE),lty=3) 

 

mtext("Kernel density plots for Matched Iceland Data: Hot Deck Distance 

Matching.",cex.main=1,side=1,outer=TRUE) 

 

########################################################### 

 

# Compare imputed values to original with qqplot 

# This assesses 4th level validity 

 

par(mfrow=c(2,2),oma=c(5,0,0,0),font=2,font.lab=2,cex.main=1.2,cex.lab=1.2,cex.sub=1) 

qqplot(fused1$x1,pisatalis$x1,plot.it=TRUE,ylab='Original',xlab='Self Efficacy - Matched') 

qqplot(fused1$x2,pisatalis$x2,plot.it=TRUE,ylab='Original',xlab='Job Satisfaction - Matched') 

qqplot(fused1$y1,pisatalis$y1,plot.it=TRUE,ylab='Original',xlab='Enjoyment of Reading - Matched') 

qqplot(fused1$y2,pisatalis$y2,plot.it=TRUE,ylab='Original',xlab='Summarising Skills - Matched') 

mtext("qqplots plots for Matched Iceland Data: Hot Deck Distance Matching.",cex.main=1,side=1,outer=TRUE) 

 

####################################################################  
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