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INTRODUCTION

National and international surveys usually collect data from a sample. Dealing with a sample rather than
the whole population is preferable for several reasons.

First, for a census, all members of the population need to be identified. This identification process presents
no major difficulty for human populations in some countries, where national databases with the name and
address of all, or nearly all, citizens may be available. However, in other countries, it is not possible for the
researcher to identify all members or sampling units of the target population, mainly because it would be
too time-consuming or because of the nature of the target population.

Second, even if all members of a population are easily identifiable, researchers may still draw from a
sample, because dealing with the whole population:

= might require unreasonable budgets;
= is time-consuming and thus incompatible with publication deadlines;

= does not necessarily help with obtaining additional and/or required information.

Drawing a sample can be done in several ways depending on the population characteristics and the
survey research questions. All sample designs aim to avoid bias in the selection procedure and achieve the
maximum precision in view of the available resources. Nevertheless, biases in the selection can arise:

= If the sampling is done by a non-random method, which generally means that the selection is consciously
or unconsciously influenced by human choices. The importance of randomness in the selection procedure
should not be underestimated;

= If the sampling frame (list, index, or other population record) that serves as the basis for selection does
not cover the population adequately, completely or accurately.

Biases can also arise if some sections of the population are impossible to find or refuse to co-operate. In
educational surveys, schools might refuse to participate and within participating schools, some students might
refuse to participate or simply be absent on the day of the assessment. The size of the bias introduced by
the school or student non-response is proportional to the correlation between the school, or the student,
propensity to participate and the variables measured with cognitive tests or contextual questionnaires. For
instance, it may be that low achievers are more likely to be absent on the day of the assessment than high
achievers. On the other hand, it would be less likely to observe a correlation between the height of a student
and his/her propensity to participate. The non-response would therefore not introduce a bias in the height
mean estimate.

To limit the size of the bias due to non-response, international education surveys require a minimal student
participation rate. For PISA, this minimum is 80%.

Finally, if the sampling units do not have the same chances to be selected and if the population parameters
are estimated without taking into account these varying probabilities, then results might also be biased. To
compensate for these varying probabilities, data need to be weighted. Weighting consists of acknowledging
that some units in the sample are more important than others and have to contribute more than others for
any population estimates. A sampling unit with a very small probability of selection will be considered as
more important than a sampling unit with a high probability of selection. Weights are therefore inversely
proportional to the probability of selection.

Nevertheless, a sample is only useful to the extent that it can estimate some characteristics of the whole
population. This means that statistical estimates computed on the sample, including a mean, a standard
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eviation, a correlation, a regression coefficient, and so on, can be generalised to the population. This
deviation lation n fficient, and n, can b neralised to th lation. Th
generalisation is more reliable if the sampling requirements have been met.

Depending on the sampling design, selection probabilities and procedures to compute the weights will
vary. These variations are discussed in the following sections.

WEIGHTS FOR SIMPLE RANDOM SAMPLES

Selecting members of a population by simple random sampling is the most straightforward procedure. There
are several ways to draw such a sample, e.g.:

= The N members' of a population are numbered and n of them are selected by random numbers without
replacement;

= N numbered discs are placed in a container, mixed well, and n of them are selected at random;
. . N .
= The N population members are arranged in a random order, and every ™ member is then selected; or

= The N population members are each assigned a random number. The random numbers are sorted from
lowest to highest or highest to lowest. The first n members make up one random sample.

The simple random sample gives an equal probability of selection to each member of the population. If n
members are selected from a population of N members according to a simple random procedure, then the
probability of each member i to be part of the sample is equal to:

p:i= N

For example, if 40 students are randomly selected from a population of 400 students, the probability of each
student i to be part of the sample is equal to:

_n_40 _

=—= =0.1
P N 400

In other words, each student has one chance out of ten of being selected.

As mentioned previously, weights are usually defined as the inverse of the probability of selection. In the
case of a simple random sample, the weight will be equal to:

The weight of each of the 40 students selected from a population of 400 students will therefore be equal
to:

wo L _N_400_0
pi n 40

This means that each student in the sample represents himself or herself, as well as nine other students.

Since each unit has the same selection probability in a simple random sample, the weight attached to each

selected unit will also be identical. Therefore, the sum of the weights of the selected units will be equal to

the population size, i.e. N.

Y=Y =N
i=1 i=1
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In the example,
40

Y 10 =400

i=1

Furthermore, since all sampled units have the same weight, the estimation of any population parameter
should not be affected by the weights. For instance, consider the mean of some characteristic, X. The
weighted mean is equivalent to the sum of the product of the weight and X divided by the sum of the
weights.

n
X wix
_ =
Hix

2w
i=1
Since w; is a constant, the weighted mean and the unweighted mean will be equal.

n n n
WX WX XX,
7 _ =l _ i=1 _ =l
Hixy=—, = n
n
W owl
i=1

However, even with an equi-probabilistic sample, statistical software packages might return different results
for weighted and unweighted data. As mentioned in Chapter 2, SAS® proposes for instance four options
for dividing the weighted sum of square, i.e. (i) the number of valid observations; (ii) the number of valid
observations minus 1; (iii) the sum of the weights for the valid observations; and (iv) the sum of the weights
for the valid observations minus 1. By default, SAS® divides the weighted sum of square by (n—1) while
SPSS® divides it by the sum of the weight minus 1.

i=1

Table 3.1
Height and weight of ten persons
Individual Weight Height
1 10 160
2 10 162
E 10 164
4 10 166
5 10 168
6 10 170
7 10 172
8 10 174
9 10 176
10 10 178
Table 3.2
Weighted and unweighted standard deviation estimate
Standard deviation esti
SAS® unweighted estimate 6.0553
SAS® weighted estimate default option 19.14854
SAS® weighted estimate option = N 18.1659
SAS® weighted estimate option = DF 19.14854
SAS® weighted estimate option = WGT 5.74456
SAS® weighted estimate option = WDF 5.7735
SPSS® unweighted estimate 6.0553
SPSS® weighted estimate 5.7735
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Table 3.1 presents the height of ten individuals and Table 3.2, the different standard deviation estimates
returned by SPSS® and SAS®.

Table 3.2 clearly indicates how a population estimate can be affected by the weighting process offered in
the statistical software, even with an equi-probabilistic sample. Data analysts are strongly recommended to
carefully read the software documentation related to the weights.

SAMPLING DESIGNS FOR EDUCATION SURVEYS
Simple random sampling is very rarely used in education surveys because:

= |t is too expensive. Indeed, depending on the school population size, it is quite possible that selected
students would attend many different schools. This would require the training of a large number of test
administrators, the reimbursement of a large amount of travel expenses and so on;

= It is not practical. One would have to contact too many schools; and

= It would be impossible to link, from a statistical point of view, student variables to school, class, or
teacher variables. Educational surveys usually try to understand the statistical variability of the student’s
outcome measure by school or class level variables. With just one or only a few students per school, this
statistical relationship would have no stability.

Therefore, surveys in education usually draw up a student sample in two steps. First, a sample of schools
is selected from a complete list of schools containing the student population of interest. Then, a simple
random sample of students or classes is drawn from within the selected schools. In PISA, usually 35 students
from the population of 15-year-olds are randomly selected within the selected schools. If less than 35 15-
year-olds attend a selected school, then all of the students will be invited to participate.

This two-stage sampling procedure will have an impact on the calculation of the weights and, similarly, the
school selection procedure will affect the characteristics and properties of the student sample.

Suppose that the population of 400 students is distributed in 10 schools, each school containing 40 students.
Four schools are selected randomly and within schools, ten students are selected according to a similar
procedure. Each school, denoted i, has a selection probability equal to:

P = Me ~ 2 _ 0.4 with N, being the number of schools and n,. the number of schools sampled.

N, 10

sC

Within the four selected schools, each student, denoted j, has a selection probability equal to:

n. 10
pZ,ij_ N, :470:025

1

with N, being the number of students in school i and n, the number of students sampled in school i. This
means that within each selected school, each student has a chance of one in four of being sampled.

The final selection probability for student j attending school i is equal to the product of the school selection
probability by the student selection probability within the school, i.e.:
n.n

sc i

Nsc Ni

py = p1,ip2,i/ =

In the example, the final student probability is equal to:
n.n,  4*10

sC

NN, 10%40

=04*0.25=0.10

Py =P_iPyj =
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The school weight, denoted w, ;, the within-school weight, denoted w, ;, and the final student weight,

denoted w;;, are respectively equal to:

1 1
W, = =— = 25
- Pii 04
‘/VZ,U = 1 :L :4
P 025
I/:i :i =10
p; 0.1

Table 3.3 presents the selection probability at the school level, at the within-school level, and the final
probability of selection for the selected students, as well as the weight for these different levels where
schools 2, 5, 7 and 10 have been selected.

Table 3.3

School, within-school, and final probability of selection and corresponding weights
for a two-stage, simple random sample with the first-stage units being schools of equal size

School Within-school | Within-school Final student Final student Sum of final
School size probability School weight probability weight probability weight weights

School label N; Py w, P w, Py w; nw;
1 40

2 40 0.4 2.5 0.25 4 0.1 10 100
3 40
4 40

5 40 0.4 2.5 0.25 4 0.1 10 100
6 40

7 40 0.4 2.5 0.25 4 0.1 10 100
8 40
9 40

10 40 0.4 2.5 0.25 4 0.1 10 100

Total 10.0 400

As shown in Table 3.3, the sum of the school weights corresponds to the number of schools in the population,
i.e. 10, and the sum of the final student weights corresponds to the number of students in the population,
i.e. 400.

In practice, schools differ in size. Often, school enrolment numbers tend to be larger in urban areas than rural
areas. If schools are selected by simple, random sampling, the school selection probability will not change,
but within the selected schools, the student selection probability will vary according to the school size. In a
small school, the student selection probability will be large, while in a very large school, this probability will
be small. Table 3.4 shows an example of the results obtained from schools of different enrolment sizes.

Table 3.4

School, within-school, and final probability of selection and corresponding weights
for a two-stage, simple random sample with the first-stage units being schools of unequal size

School Within-school | Within-school | Final student Final student Sum of final
School label School size probability School weight probability weight probability weight weights

1 10

2 15 0.4 2.5 0.66 1.5 0.27 3.75 37.5

3 20

4 25

5 30 0.4 2.5 0.33 3.0 0.13 7.50 75.0

6 35

7 40 0.4 2.5 0.25 4.0 0.10 10.00 100.0

8 45

9 80

10 100 0.4 2.5 0.10 10.0 0.04 25.00 250.0
Total 400 10.0 462.5
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Table 3.5

School, within-school, and final probability of selection and corresponding weights
for a simple and random sample of schools of unequal size (smaller schools)

School Within-school | Within-school | Final student Final student Sum of final

School label School size probability School weight probability weight probability weight weight
1 10 0.4 2.5 1.00 1.0 0.40 4.00 40.0

2 15 0.4 2.5 0.66 1.5 0.27 3.75 37.5

E 20 0.4 25 0.50 2.0 0.20 5.00 50.0

4 25 0.4 2.5 0.40 2.5 0.16 6.25 62.5
Total 10.0 190.0

Table 3.6

School, within-school, and final probability of selection and corresponding weights
for a simple and random sample of schools of unequal size (larger schools)

School Within-school | Within-school | Final student Final student Sum of final
School label School size probability School weight probability weight probability weight weight
7 40 0.4 2.3 0.250 4.0 0.10 10.00 100.0
8 45 0.4 2.5 0.222 4.5 0.88 11.25 112.5
9 80 0.4 2.5 0.125 8.0 0.05 20.00 200.0
10 100 0.4 2.5 0.100 10.0 0.04 25.00 250.0
Total 10.0 662.5

With a simple, random sample of schools of unequal size, all schools have the same selection probability
and the sum of school weights is equal to the number of schools in the population. However, the sum of
the final student weights are not necessarily equal to the number of students in the population. Further, the
final student weights differ among schools depending on the size of each school. This variability reduces the

reliability of all population parameter estimates.

Table 3.5 and Table 3.6 present the different probabilities and weights if the four smallest schools or the
four largest schools are selected. As shown in these two tables, the sums of final student weights vary
substantially from the expected value of 400. The sum of school weights, however, is always equal to the

number of schools in the population.

The focus of international education surveys such as PISA is more on the student sample than on the
school sample. Many authors even consider that such studies do not draw a school sample per se. They
just consider the school sample as an operational stage to draw the student sample. Therefore, a sampling
design that consists of a simple random sample of schools is inappropriate as it would underestimate or
overestimate the student population size. It would also result in an important variability of final student
weights and consequently increase the sampling variance.

In order to avoid these disadvantages, schools are selected with probabilities proportional to their size
(PPS). Larger schools will therefore have a higher probability of selection than smaller schools, but students
in larger schools have a smaller within-school probability of being selected than students in small schools.
With such procedures, the probability of a school to be selected is equal to the ratio of the school size
multiplied by the number of schools to be sampled and divided by the total number of students in the

population:
Ni * nsc
p'l,i =
N
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The formulae for computing the within-school probabilities and weights remain unchanged. The final
probability and weight are still the product of the school and within-school probabilities or weights. For
instance, the school probability for school 9 is equal to:

N,*n, 80%4 4

= s -2-08
Prs N 400 5

The student within-school probability for school 9 is equal to:

n, 10
=2 =—=0.125
Pay N, 80

The final probability is equal to:

py;=0.8%0.125 = 0.1

As shown in Table 3.7, the school and within-school weights differ among schools, but final student weights
do not vary. The weights therefore do not increase sampling variability. Further, the sum of final student
weights corresponds to the total number of students in the population. However, the sum of school weight
differs from the expected value of ten, but this does not present a major problem as such educational
surveys are primarily and mainly interested in the student sample.

Table 3.7

School, within-school, and final probability of selection and corresponding weights
for PPS sample of schools of unequal size

School Within-school | Within-school | Final student Final student Sum of final
School label School size probability School weight probability weight probability weight weight

1 10

2 15

3 20 0.2 5.00 0.500 2.0 0.1 10 100

4 25

5 30

6 35

7 40 0.4 2.50 0.250 4.0 0.1 10 100

8 45

9 80 0.8 1.25 0.125 8.0 0.1 10 100

10 100 1.0 1.00 0.100 10.0 0.1 10 100
Total 400 9.75 400

With a PPS sample of schools, and an equal number of students selected in each selected school, the sum
of the final student weights is always equal to the total number of students in the population (non-response
being ignored at this stage). This will be the case even if the smallest or the largest schools get selected. The
sum of the school weights, however, is not equal to the number of schools in the population. If the four
smallest schools get selected, the sum of school weights is equal to 25.666. If the four largest schools get
selected, the sum of school weights is equal to 6.97.

In order to keep the difference between the number of schools in the population and the sum of the school
weights in the sample minimal, schools are selected according to a systematic procedure. The procedure
consists of first sorting the schools according to their size. A sampling interval is computed as the ratio
between the total number of students in the population and the number of schools in the sample, i.e.:

_ N _400
. 4

Int =100
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A random number from a uniform distribution [0;1] is drawn. Let us say 0.752. This random number is
then multiplied by the sampling interval, i.e. 0.752 by 100 = 75.2. The school which contains the student
number 76 is selected. Then the sampling interval is added to the value 75.2. The school which contains
the student having the student number 176 will be selected. This systematic procedure is applied until the
number of schools needed in the sample has been reached. In the example, the four selection numbers will
be the following: 75.2, 175.2, 275.2 and 375.2. See Table 3.8.

Table 3.8
Selection of schools according to a PPS and systematic procedure
School label School size From student number To student number Part of the sample

1 10 1 10 No
2 15 11 25 No
3 20 26 45 No
4 25 46 70 No
5 30 71 100 Yes
6 35 101 135 No
7 40 136 175 No
8 45 176 220 Yes
9 80 221 300 Yes
10 100 301 400 Yes

Sorting the school sampling frame by the measure of size and then using a systematic selection procedure
prevents obtaining a sample of only small schools or (more likely) a sample with only large schools. This
therefore reduces the sampling variance on the sum of the school weights, which is an estimate of the
school population size.

WHY DO THE PISA WEIGHTS VARY?

As demonstrated in the previous section, a two-stage sample design with a PPS sample of schools should
guarantee that all students have the same probability of selection and therefore the same weight. However,
the PISA data still needs to be weighted.

Different factors contribute to the variability of weights:

= Oversampling or undersampling of some strata of the population. Usually, the school population is
divided into different subgroups, called strata. For instance, a country might decide for convenience
to separate the urban schools from the rural schools in the list of schools. In most cases, the number of
students selected in the rural stratum and in the urban stratum will be proportional to what these two strata
represent in the whole population. This stratification process guarantees for instance that a predefined
number of schools within each stratum will be selected. Without the stratification, this number might
vary. Nevertheless, for national reporting purposes, a country might decide to sample more students
than what would have been sampled based on a proportional allocation in some part of the student
population. Suppose that 90% of the student population in a country pursue academic tracks and 10%
of the students pursue vocational tracks. If the national centre staff wants to compare the performance of
the students by track, then it would be necessary to sample more vocational students than what would
be sampled based on a proportional allocation. Further, since PISA 2003, the OECD offers countries
the opportunity to adjudicate the data at a subnational level. This process however requires countries to
sample at least 50 schools and 1 500 students per subnational entities. This requirement of course leads
to some oversampling. Some subnational entities were separately adjudicated for Italy, Spain and the
United-Kingdom in PISA 2003 and PISA 2006, and Belgium in PISA 2006.
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Lack of accuracy or no updated size measure for schools on the school sampling frame. When schools
are selected with a probability proportional to their size, a measure of size needs to be included in the
school list. In PISA, this measure of size is the number of 15-year-olds in each school in the population,
but national statistics per school and per date of birth are not always available. Therefore, the measure of
size can be the number of students in the modal grade for 15-year-olds, or the total number of students
in the school divided by the number of grades. Further, even if national statistics per school and per
date of birth are available, these data might be one or two years old. Therefore, inconsistencies between
the number of 15-year-olds at the time of testing and the measure of size used in the school sample
frame generate some variability in the final student weights. Let us suppose that school 9 in Table 3.7 has
100 15-year-old students at the time of testing. When schools were selected from the list of schools, the
measure of size was set at 80. The school weight was set at 1.25. The within-school weight will be equal
to 100 divided by 10, i.e. 10 rather than 8. Therefore, the final student weight will be equal to 12.5 instead
of the expected 10.

School and within-school weight adjustment for school and student non-response. Some schools, and
within the selected and participating schools, some students might refuse to participate. To compensate for
this non-response, a weight adjustment is applied at each level where non-response occurs. For instance,
if only 25 students out of the 35 selected students from a participating school are present on the day of
the assessment, then the weight of the participating students will be multiplied by a ratio of 35 by 25. The
student participation rates vary from one school to another, and therefore the final student weights vary.
A similar procedure is also applied to compensate for the school non-response. It should be noted that
student non-response adjustment has been modified for counterbalancing different participation rates.
More information about these adjustment factors is available in the PISA Technical Reports (Adams and
Wau, 2000; OECD, 2005, forthcoming).

CONCLUSION

This chapter briefly described: (i) what a weight is and how to compute it; (ii) what the PISA sampling design
is and why such a design is considered the most appropriate; (iii) why the PISA final student weights show

some variability.

All statistical analyses or procedures concerning the PISA data should be weighted. Unweighted analyses

will provide biased population parameter estimates.

1.

Notes
N usually represents the size of the population and n the size of the sample.
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User's Guide

Preparation of data files

All data files (in text format) and the SAS® control files are available on the PISA website
(www.pisa.oecd.org).

SAS® users

By running the SAS® control files, the PISA data files are created in the SAS® format. Before starting
analysis, assigning the folder in which the data files are saved as a SAS® library.

For example, if the PISA 2000 data files are saved in the folder of “c:\pisa2000\data\”, the PISA 2003
data files are in “c:\pisa2003\data\”, and the PISA 2006 data files are in “c:\pisa2006\data\”, the
following commands need to be run to create SAS® libraries:

libname PISA2000 “c:\pisa2000\data\”;

libname PISA2003 “c:\pisa2003\data\”;

libname PISA2006 “c:\pisa2006\data\”;

run;

SAS® syntax and macros

All syntaxes and macros in this manual can be copied from the PISA website (www.pisa.oecd.org).
The 17 SAS® macros presented in Chapter 17 need to be saved under “c:\pisa\macro\”, before
staring analysis. Each chapter of the manual contains a complete set of syntaxes, which must be
done sequentially, for all of them to run correctly, within the chapter.

Rounding of figures

In the tables and formulas, figures were rounded to a convenient number of decimal places, although
calculations were always made with the full number of decimal places.

Country abbreviations used in this manual

AUS | Australia FRA | France MEX | Mexico

AUT | Austria GBR | United Kingdom NLD | Netherlands
BEL | Belgium GRC | Greece NOR | Norway

CAN | Canada HUN | Hungary NZL | New Zealand
CHE | Switzerland IRL Ireland POL | Poland

CZE | Czech Republic ISL Iceland PRT | Portugal

DEU | Germany ITA Italy SVK | Slovak Republic
DNK | Denmark JPN Japan SWE | Sweden

ESP Spain KOR | Korea TUR | Turkey

FIN Finland LUX | Luxembourg USA | United States
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