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INTRODUCTION

In most cases, as mentioned in Chapter 3, national and international surveys collect data from a sample
instead of conducting a full census. However, for a particular population, there are thousands, if not millions of
possible samples, and each of them does not necessarily yield the same estimates of population statistics. Every
generalisation made from a sample, i.e. every estimate of a population statistic, has an associated uncertainty
or risk of error. The sampling variance corresponds to the measure of this uncertainty due to sampling.

This chapter explains the statistical procedures used for computing the sampling variance and its square
root, the standard error. More specifically, this chapter discusses how to estimate sampling variances for
population estimates derived from a complex sample design using replicate weights. First, the concept
of sampling variance is examined through a fictitious example for simple random sampling. Second, the
computation of the standard error is investigated for two-stage sampling. Third, replication methods for
estimating sampling variances are introduced for simple random samples and for two-stage samples.

SAMPLING VARIANCE FOR SIMPLE RANDOM SAMPLING

Suppose that a teacher decides to implement a mastery learning approach in his or her classroom. This
methodology requires that each lesson be followed by a student assessment. In the example given, the
teacher’s class has 36 students. The teacher quickly realises that it would be too time-consuming to grade
all assessments and therefore decides to select a sample of tests to find out whether the material taught has
been assimilated (Bloom, 1979).

However, the random sampling of a few tests can result in the selection of high achievers or low achievers
only, which would introduce an important error in the class mean performance estimate. These situations
are extreme examples, but drawing a random sample will always generate some uncertainty.

In the same example, before selecting some tests, the teacher grades all of them and analyses the results for
the first lesson. Figure 4.1 presents the distribution of the 36 students’ results. One student gets a grade 5,
two students get a grade 6, and so on.

Figure 4.1
T Distribution of the results of 36 students F
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The distribution of the student grades corresponds to a normal distribution. The population mean and the
population variance are respectively equal to:

N
IJZLZXI:(5+6+6+7+...+14+14+15):ﬂ):10
N3 36 36
N 5-102 +(6-1072 +...+(14=10)% +(15-10)°
AL T [(5-10° +(6-10° +..+(14-10" +(15-10°] _240__ ...
N3 36 36
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Table 4.1

Description of the 630 possible samples of 2 students selected from 36 students,
according to their mean

Sample mean Results of the two pled student: Number of combi of the two results Number of samples
5.5 5and 6 2 2
6.0 6and 6 1 4

5and 7 3
6.5 5and 8 4 10
6and 7 6
7.0 7and 7 3 16
5and 9 5
6and 8 8
7.5 5and 10 6 28
6 and 9 10
7 and 8 12
8.0 8and 8 6 38
5and 11 5
6and 10 12
7 and 9 15
8.5 5and 12 4 52
6and 11 10
7 and 10 18
8 and 9 20
9.0 9and9 10 60
5and 13 3
6and 12 8
7and 11 15
8 and 10 24
@5 5and 14 2 70
6and 13 6
7 and 12 12
8and 11 20
9 and 10 30
10.0 10 and 10 15 70
5and 15 1
6and 14 4
7 and 13 9
8and 12 16
9and 11 25
10.5 6 and 15 2 70
7 and 14 6
8and 13 12
9and 12 20
10 and 11 30
11.0 7 and 15 3 60
8and 14 8
9and 13 15
10 and 12 24
11 and 11 10
11.5 8 and 15 4 52
9and 14 10
10 and 13 18
11 and 12 20
12.0 9 and 15 5 38
10 and 14 12
11 and 13 15
12 and 12 6
12.5 10 and 15 6 28
11 and 14 10
12 and 13 12
13.0 11 and 15 5 16
12 and 14 8
13 and 13 2
13.5 12 and 15 4 10
13 and 14 6
14.0 13 and 15 3 4
14 and 14 1
14.5 14 and 15 2 2
630

The standard deviation is therefore equal to:
0=v0’=4/5.833=2.415

The teacher then decides to randomly select a sample of two students after the next lesson to save grading
time. The number of possible samples of 2 students out of a population of 36 students is equal to:
36!
2

=—=0630
(36-2)12!

36
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There are 630 possible samples of 2 students out of a population of 36 students. Table 4.1 describes these
630 possible samples. For instance, there are two possible samples which provide a mean estimate of 5.5
for student performance. These two samples are: (i) the student with a grade 5 and the first student with
a grade 6; and (ii) the student with a 5 and the second student with a 6. Similarly, there are two ways of
selecting a sample that would produce a mean grade of 6: the two sampled students both receive a grade 6
or one student receives a 5 and the second student receives a 7. As only two students obtained a grade 6
(4.1), there is only one possible sample with two grades 6. Since Figure 4.1 shows that there is only one
student who received a grade 5 and three students who received a grade 7, there are three possible samples
of two students with a grade 5 and a grade 7.

As shown in Table 4.1, there are 2 possible samples with a mean of 5.5, 4 possible samples with a mean of
6, 10 possible samples with a mean of 6.5, 16 possible samples with a mean of 7, and so on.

Figure 4.2 is a chart of the frequency of samples by their mean estimates for all possible samples of 2 students
from 36.

Figure 4.2
T Sampling variance distribution of the mean r
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As for all distributions, this distribution of the means of all possible samples can be summarised by central
tendency indices and dispersion indices, such as the mean and the variance.

M= [(2x5.5)+(4x6)+(10x6.5)+(16x7) +(28x7.5) +(38x8) +.....+ (2x14.5)]/630=10

The mean of all possible sample means is equal to the student population mean, i.e. 10. This result is not
a coincidence, but a fundamental property of the mean of a simple random sample, i.e. the mean of the
means of all possible samples is equal to the population mean. In more formal language, the sample mean
is an unbiased estimate of the population mean. Stated differently, the expected value of the sample mean
is equal to the population mean.

However, it should be noted that there is an important variation around this expectation. In the example
considered, sample means range from 5.5 to 14.5. The variance of this distribution, usually denoted as the
sampling variance of the mean, can be computed as:

00 =[(55-10) +(5.5-10) +(6—=10)* +...+(145-10)* +(145-10)*]/630=2.833

Its square root, denoted as the standard error, is equal to:

o= JGZ([,, =4/2.833=1.68
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However, what information does the standard error of the mean give, or more specifically, what does the value
1.68 tell us? The distribution of the means of all possible samples follows approximately a normal distribution.
Therefore, based on the mathematical properties of the normal distribution, it can be said that:

= 68.2% of all possible sample means fall between -1 standard error and +1 standard error around the
mean; and

= 95.4% of all possible sample means fall between -2 standard errors and +2 standard errors.

Let us check the mathematical properties of the normal distribution on the sampling variance distribution
of the mean. Remember that the mean of the sampling variance distribution is equal to 10 and its standard
deviation, denoted by the term “standard error”, is equal to 1.68.

How many samples have a mean between p ; — o, and 1 ; + 0,;, i.e. between (10-1.68) and (10+1.68), or

between 8.32 and 11.68?

iy

Table 4.2 shows that there are 434 samples out of 630 with a mean comprised between 8.32 and 11.68;
these represent 68.8% of all samples. It can also be demonstrated that the percentage of samples with
means between p; — 26, and U + 20, i.e. between 6.64 and 13.36 is equal to 94.9%.

Table 4.2
Distribution of all possible samples with a mean between 8.32 and 11.68
Sample mean Number of samples Percentage of samples Cumulative % of sample
8.5 52 0.0825 0.0825
9.0 60 0.0952 0.1777
9.5 70 0.1111 0.2888
10.0 70 0.1111 0.4000
10.5 70 0.1111 0.5111
11.0 60 0.0952 0.6063
11.5 52 0.0825 0.6888
434

To estimate the standard error of the mean, the mean of all possible samples is computed. In reality though,
only the mean of one sample is known. This, as will be shown, is enough to calculate an estimate of the
sampling variance. It is therefore important to identify the factors responsible for the sampling variance from
the one sample chosen.

The first determining factor is the size of the sample. If the teacher, in our example, decides to select four
students instead of two, then the sampling distribution of the mean will range from 6 (the four lowest results
being 5, 6, 6, and 7) to 14 (the four highest results being 13, 14, 14, and 15). Remember that the sampling
distribution ranged from 5.5 to 14.5 with samples of two units. Increasing the sample size reduces the
variance of the distribution.

There are 58 905 possible samples of 4 students out of a population of 36 students. Table 4.3 presents the
distribution of all possible samples of 4 students for a population of 36 students. This distribution has a
mean of 10 and a standard deviation, denoted standard error, of 1.155.

This proves that the size of the sample does not affect the expected value of the sample mean, but it does
reduce the variance of the distribution of the sample means: the bigger the sample size, the lower the
sampling variance of the mean.
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Table 4.3
Distribution of the mean of all possible samples of 4 students out of a population of 36 students
Sample mean Number of possibl pl
6.00 3
6.25 10
6.50 33
6.75 74
7.00 159
7.25 292
7.50 510
7.75 804
8.00 1213
8.25 1700
8.50 2288
8.75 2 896
9.00 3531
9.25 4082
9.50 4553
9.75 4830
10.00 4949
10.25 4830
10.50 4553
10.75 4082
11.00 3531
11.25 2 896
11.50 2288
11.75 1700
12.00 1213
12.25 804
12.50 510
12.75 292
13.00 159
13.25 74
13.50 33
13.75 10
14.00 3

The second factor that contributes to the sampling variance is the variance of the population itself. For
example, if the results are reported out of a total score of 40 instead of 20, (i.e. the student results are all
multiplied by two), then the mean of the student results is 20, the variance is 23.333 (i.e. four times 5.8333)
and the standard deviation is equal to 4.83 (i.e. two times 2.415). The sampling variance from a sample of
two students will be equal to 11.333 (i.e. four times 2.8333) and that the standard error of the mean will be
equal to 3.3665 (i.e. two times 1.68).

The standard error of the mean is therefore proportional to the population variance. Based on these examples,
it can be established that the sampling variance of the mean is equal to:

, 0 (N-n
“i= N

and the standard error of the sample mean is equal to:
> o |[N-n
O - =AlO° = —
() () Jn V N=1

where:

0 = variance of the population,
O = standard deviation of the population,
n =sample size,

N = population size.
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Let’s check this formula with the example of two students selected:

o’ (N=-n) 5833 (36-2
o= | |- —|=28333
n \N-T) 2 [36-1

. Lo . (N=n S
As the size of the population increases, the ratio [ﬁ] tends toward 1. In such cases, a close approximation

of the sampling variance of the mean is given by:

2
2 (e

Sw="p
However, in practice, the population variance is unknown and is estimated from a sample. The sampling variance
estimate of the mean, just as a mean estimate, can vary depending on the sample. Therefore, being based on a

sample, only an estimate of the sampling variance of the mean (or any other estimate) can be computed.

In the remainder of this manual, the concepts of sampling variance and estimations of the sampling variance
will have the same symbol to simplify the text and the mathematical notations. That is, symbols depicting
the estimates of sampling variance will not have a hat (?) to differentiate them from true values, but the fact
that they are estimates is to be understood.

SAMPLING VARIANCE FOR TWO-STAGE SAMPLING

Education surveys and, more particularly, international surveys rarely sample students by simply selecting a
random sample of students. Schools get selected first and, within each selected school, classes or students
are randomly sampled.

One of the differences between simple random sampling and two-stage sampling is that for the latter, selected
students attending the same school cannot be considered as independent observations. This is because students
within a school will usually have more common characteristics than students from different educational
institutions. For instance, they are offered the same school resources, may have the same teachers, and
therefore are taught a common curriculum, and so on. Differences between students from different schools
are also greater if different educational programmes are not available in all schools. For instance, one would
expect to observe more differences between students from a vocational school and students from an academic
school, than those that would be observed between students from two vocational schools.

Further, within a country, within subnational entities, and within cities, people tend to live in areas according
to their financial resources. As children usually attend schools close to their homes, it is likely that students
attending the same school come from similar socio-economic backgrounds.

A simple random sample of 4 000 students is thus likely to cover the diversity of the population better
than a sample of 100 schools with 40 students observed within each school. It follows that the uncertainty
associated with any population parameter estimate (i.e. standard error) will be greater for a two-stage sample
than for a simple random sample of the same size.

The increase of the uncertainty due to the two-stage sample is directly proportional to the differences
between the first-stage units, known as primary sampling units (PSUs), i.e. schools for education surveys.
The consequences of this uncertainty are provided below for two extreme and fictitious situations:

= All students in the population are randomly assigned to schools. Therefore, there should not be any differences
between schools. Randomly selecting 100 schools and then within the selected schools randomly drawing
40 students would be similar, from a statistical point of view, to directly randomly selecting 4 000 students
as there are no differences between schools. The uncertainty associated with any population parameter
estimate would be equal to the uncertainty obtained from a simple random sample of 4 000 students.
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= All schools are different but within schools, all students are perfectly identical. Since within a particular
school, all students are identical: observing only 1 student, or 40, would provide the same amount of
information. Therefore, if 100 schools are selected and 40 students are observed per selected school, the
effective sample size of this sample would be equal to 100. Therefore, the uncertainty associated with any
population parameter estimate would be equal to the uncertainty obtained from a simple random sample
of 100 students.

Of course, there is no education system in the world that can be identified with either of these extreme
situations. Nevertheless, in some education systems, differences between schools appear to be very small,
at least regarding the survey’s measure, for example, of academic performance, while in some other
educational systems, differences between schools can be quite substantial.

The academic performance of each student can be represented by a test score, or by the difference between
his/her score and the country average score. In education research, it is common to split the difference
between the student’s score and the country average score into three parts: (i) the difference between the
student’s performance and the corresponding class mean; (ii) the difference between this class mean and
the corresponding school mean; (iii) the difference between this school mean and the country mean. The
first difference relates to the within-class variance (or the residual variance in terms of variance analysis). It
indicates how much student scores can vary within a particular class. The second difference — the difference
between the class mean and the school mean - is related to the between-classes-within-school variance. This
difference reflects the range of differences between classes within schools. This between-classes-within-school
variance might be substantial in educational institutions that offer both academic and vocational education.
The third difference — the difference between the school average and the country average — is called the
between-school variance. This difference indicates how much student performance varies among schools.

To obtain an estimate of these three components of the variance, it would be necessary to sample several
schools, at least two classes per school and several students per class. PISA randomly selects 15-year-olds
directly from student lists within the participating schools. Therefore, generally speaking, it is impossible to
distinguish the between- and within-classes variances. PISA can only provide estimates of the between- and
the within-school variances.

Table 4.4 provides the between-school and within-school variances on the mathematics scale for PISA 2003.
In northern European countries, the between-school variance is very small compared to the within-school
variance. In these countries, the student variance mainly lies at the within-school level. In terms of student
achievement then, schools in such countries do not vary greatly. However, in Austria, Belgium, Germany
and Hungary, for instance, more than 50% of differences in the student performance are accounted for at
the school level. This means that the student performance differs substantially among schools. Therefore, the
uncertainty associated with any population parameters will be larger for these countries when compared to
the uncertainty for northern European countries, given a comparable sample size of schools and students.

As Kish (1987) noted:

“Standard methods for statistical analysis have been developed on assumptions of simple random
sampling. Assuming independence for individual elements (or observations) greatly facilitates the
mathematics used for distribution theories of formulas for complex statistics. [...] However, independent
selection of elements is seldom realised in practice, because much research is actually and necessarily
accomplished with complex sample designs. It is economical to select clusters that are natural grouping
of elements, and these tend to be somewhat homogeneous for most characteristics. The assumptions
may fail mildly or badly; hence standard statistical analysis tends to result in mild or bad underestimates
in length of reported probability intervals. Overestimates are possible, but rare and mild.”
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Table 4.4
Between-school and within-school variances on the mathematics scale in PISA 2003
Between-school variance Within-school variance

AUS 1919.11 7 169.09
AUT 5296.65 4299.71
BEL 7 328.47 5738.33
CAN 1261.58 6250.12
CHE 3 092.60 6 198.65
CZE 4972.45 4 557.50
DEU 6206.92 4 498.70
DNK 1109.45 7 357.14
ESP 1476.85 6 081.74
FIN 336.24 6 664.98
FRA 3822.62 4 536.22
GBR 1881.09 6338.25
GRC 3387.52 5991.75
HUN 5 688.56 4 034.66
IRL 1246.70 6110.71
ISL 337.56 7 849.99
ITA 4922.84 4 426.67
JPN 5387.17 4 668.82
KOR 3531.75 5011.56
LUX 2596.36 5 806.97
MEX 2 476.01 3916.46
NLD 5528.99 3326.09
NOR 599.49 7 986.58
NZL 1740.61 7 969.97
POL 1033.90 7 151.46
PRT 2 647.70 5151.93
SVK 3734.56 4 873.69
SWE 986.03 8199.46
TUR 6 188.40 4891.13
USA 2395.38 6731.45

Note: The results are based on the first plausible value for the mathematics scale, denoted PV1MATH in the PISA 2003 database (www.pisa.oecd.org).

Kish established a state-of-the-art knowledge of the sampling variance according to the type of estimator
and the sampling design. The sampling variance distributions are well known for univariate and multivariate
estimators for simple random samples. The use of stratification variables with a simple random sample
still allows for the mathematical computation of the sampling variances, but with a substantial increase
of complexity. As shown in Table 4.5, the computation of sampling variances for two-stage samples is
available for some designs, but it becomes quite difficult to compute for multivariate indices.

Table 4.5
Current status of sampling errors
Complex analytical statistics
Selection methods Means and total of entire samples Subclass means and differences e.g. coefficients in regression
Simple random selection of elements Known Known Known
Stratified selection of elements Known Available Conjectured
Complex cluster sampling Known for some sampling design Available Difficult

Note: Row 1 refers to standard statistical theory (Kish and Frankel, 1974).
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Authors of sampling manuals usually distinguish two types of two-stage sampling (Cochran, 1977; Kish, 1995):
= two-stage sampling with first-stage units of equal sizes,
= two-stage sampling with first-stage units of unequal sizes.

Beyond this distinction, different characteristics of the population and of the sampling design need to be
taken into account in the computation of the sampling variance, because they affect the sampling variance.
Some of the factors to be considered are:

= Is the population finite or infinite?

= Was size a determining criterion in the selection of the first-stage units?

= Was a systematic procedure used for selecting first-stage or second-stage units?

= Does the sampling design include stratification variables?

The simplest two-stage sample design occurs with infinite populations of stage-one and stage-two units.
As both stage units are infinite populations, PSUs are considered to be of equal sizes. If a simple random
sample of PSUs is selected and if, within each selected PSU, a simple random sample of stage-two units is
selected, then the sampling variance of the mean will be equal to:

2 2
2 O’between,PSU o within_PSU

()
nPSU nPSU nwr'lhin

Let’s apply this formula to an education survey and consider the population of schools as infinite and the
population of students within each school as infinite. The computation of the sampling variance of the mean

is therefore equal to:

2 2
2 between_school o within_ school
@ n

school nstudents

Under these assumptions, the sampling variance of the mean and its square root, i.e. the standard error,
in Denmark are computed as below. Table 4.6 presents the between-school and within-school variance as
well as the numbers of participating schools and students in Denmark and Germany.
, 1109.45 735714
Sw="0, T io1a
206 4218

0, =N7.13=267

=5.39+1.74=7.13

The sampling variance of the mean and its square root, i.e. the standard error, in Germany are equal to:

» _6206.92 4498.70
W16 4660

04 =1/29.71=545

If both samples were considered as simple random samples, then the standard error of the mean for Denmark

=2874+0.97=29.71

and Germany would be respectively equal to 1.42 and 1.51.

Table 4.6

Between-school and within-school variances, number of participating schools and students
in Denmark and Germany in PISA 2003

Denmark Germany
Between-school variance 1109.45 6206.92
Within-school variance 7 357.14 4 498.70
Number of participating schools 206 216
Number of participating students 4218 4 660
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Based on these results, the following observations can be made:

= The standard error of the mean is larger for a two-stage sampling than for a simple random sampling.
For example, in the case of Germany, the standard errors for simple random sampling and for two-stage
sampling are 1.51 and 5.45, respectively. Considering a two-stage sample as a simple random sample
will therefore substantially underestimate standard errors and consequently, confidence intervals will
be too narrow. The confidence interval on the mathematic scale average, i.e. 503, would be equal to:
[503 —(1.96%1.51);503 +(1.96*1.51)] = [500.05;505.96] in the case of a simple random sample, but equal to
[503 - (1.96%5.45);503 + (1.96*5.45)] = [492.32; 513.68] in the case of a two-stage sample. This indicates
that any estimated mean value between 492.32 and 500.05 and between 505.96 and 513.68 may or may not
be considered as statistically different from the German average, depending on the standard error used.

= The sampling variance of the mean for two-stage samples is mainly dependent on the between-school

variance and the number of participating schools. Indeed, the between-school variance accounts for 76%

. . . . 539 ,
of the total sampling variance in Denmark, i.e. 53~ =0.76. In Germany, the between-school variance
accounts for 97% of the total sampling variance, i.e. %‘:097. Therefore, one should expect larger

sampling variance in countries with larger between-school variance, such as Austria and Germany.

However, the PISA population cannot be considered as an infinite population of schools with an infinite
population of students. Further:

= Schools have unequal sizes.
= The PISA sample is a sample without replacement, i.e. a school cannot be selected twice.
= Schools are selected proportionally to their sizes and according to a systematic procedure.

= Stratification variables are included in the sample design.

These characteristics of the sampling design will influence the sampling variance, so that the formula used
above is also inappropriate. Indeed, Learning for Tomorrow’s World — First Results from PISA 2003 (OECD,
2004a) indicates that the standard errors for the mean performance in mathematics for Denmark and
Germany are 2.7 and 3.3, respectively.

This shows that the PISA sample design is quite efficient in reducing the sampling variance. However, the
design becomes so complex that there is no easy formula for computing the sampling variance or even mean.

Since the IEA 1990 Reading Literacy Study, replication or resampling methods have been used to compute
estimates of the sampling variance for international education surveys. Even though these methods have
been known since the late 1950s, they have not been used often as they require numerous computations.
With the availability of powerful personal computers in the 1990s and the increased use of international
databases by non-mathematicians, international co-ordinating centres were encouraged to use resampling
methods for estimating sampling variances from complex sample designs.

According to Rust and Rao (1996):
“The common principle that these methods have is to use computational intensity to overcome
difficulties and inconveniences in utilizing an analytic solution to the problem at hand. Briefly, the
replication approach consists of estimating the variance of a population parameter of interest by
using a large number of somewhat different subsamples (or somewhat different sampling weights) to
calculate the parameter of interest. The variability among the resulting estimates is used to estimate
the true sampling error of the initial or full-sample estimate.”

In the following sections, these methods will first be described for simple random samples and for two-stage
samples. The PISA replication method will be presented subsequently.
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REPLICATION METHODS FOR SIMPLE RANDOM SAMPLES

There are two main types of replication methods for simple random samples. These are known as the
Jackknife and the Bootstrap. One of the most important differences between the Jackknife and the Bootstrap
is related to the procedure used to produce the repeated subsamples or replicate samples. From a sample
of n units, the Jackknife generates in a systematic way n replicate samples of n—1 units. The Bootstrap
randomly generates a large number of repetitions of n units selected with replacement, with each unit
having more than one chance of selection.

Since PISA does not use a Bootstrap replication method adapted to multi-stage sample designs, this section
will only present the Jackknife method.

Suppose that a sample of ten students has been selected by simple random sampling. The Jackknife method
will then generate ten subsamples, or replicate samples, each of nine students, as in Table 4.7.

Table 4.7
The Jackknife replicates and sample means
Student [ v [ 2 [ 3 ] 4 | 5 | e | 7 ] 8 ] 9 [ 10 ] Mean
Value 10 11 12 13 14 15 16 17 18 19 14.50
Replication 1 0 1 1 1 1 1 1 1 1 1 15.00
Replication 2 1 0 1 1 1 1 1 1 1 1 14.88
Replication 3 1 1 0 1 1 1 1 1 1 [ 14.77
Replication 4 1 1 1 0 1 1 1 1 1 1 14.66
Replication 5 1 1 1 1 0 1 1 1 1 1 14.55
Replication 6 1 1 1 1 1 0 1 1 1 1 14.44
Replication 7 1 1 1 1 1 1 0 1 1 1 14.33
Replication 8 1 1 1 1 1 1 1 0 1 1 14.22
Replication 9 1 1 1 1 1 1 1 1 0 1 14.11
Replication 10 1 1 1 1 1 1 1 1 1 0 14.00

As shown in Table 4.7, the Jackknife generates ten replicate samples of nine students. The sample mean
based on all ten students is equal to 14.5. For the first replicate sample, student 1 is not included in the
calculation of the mean, and the mean of the nine students included in replicate sample 1 is 15.00. For
the second replicate sample, the second student is not included and the mean of the other nine students is
equal to 14.88, and so on.

The Jackknife estimate of sampling variance of the mean is equal to:

n-1g 4 A
2 =t (9“)_9)2

jack =
n i=1

With é(,) representing the statistic estimate for replicate sample i, and 6 representing the statistic estimate
based on the whole sample.

Based on the data from Table 4.7, the Jackknife sampling variance of the mean is equal to:

ol :% [(15.00-14.50) + (14.88-14.50)" +.... + (14.11-14.50)* + (14.00-14.50)*]

)

o= 120(1 .018519)=0.9167

)

The usual population variance estimator is equal to:

n 2
0'2=1—1 (X,. —/:L) = %[(10—14.5)2+(11—14.5)2+...+(18—14.5)2 +(19—14.5)2]=9.17
n—1755
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Therefore, the sampling variance of the mean, estimated by the mathematical formula, is equal to:

2 _ ()'2 _ 91 7 _
G(ﬁ)—n——w—o.917
As shown in this example, the Jackknife method and the mathematical formula provide identical estimation

of the sampling variance. Rust (1996) mathematically demonstrates this equality.

X |- x ,
A _A_[(; ] ’H;X’]__i+ S [L_l]
Ro=H= n-—1 n n-1 = "Iln-1 n
1 Z (n=1) 1 1 N
=_ - 1— - —hGn=(n=11]=— _
(n_U[x [ ]( - )] oy L Aln=(n=D]== b - )
Therefore,
A 2 1 N
(“(i)‘“)—( 17 (x;, -1y
13 g XA
SV VY- i1 _ ~2
= 2 = C o N B = e S S T T ©
2 AT Az_(”—h 1 L2 6'_2
:Gjark_TI:1 (I'L(i)_»u') - n (n_,l)G - n

The Jackknife method can also be applied to compute the sampling variance for other statistics, such
as regression coefficients. As an example, in Table 4.8, the procedure consists of the computation of
11 regression coefficients: 1 based on the whole sample and 10 others based on one replicate sample.
The comparison between the whole sample regression coefficient and each of the ten replicate regression
coefficients will provide an estimate of the sampling variance of that statistic.

Table 4.8
Values on variables X and Y for a sample of ten students
Student [ 1+ ] 2 [ 3] 4 ] 5 [ e ] 7 ] 8 ] 9 10
Value Y [ 1o [ v [ 12 | 13 [ 14 [ 15 | 16 [ 17 | 18 | 19
Value X | 10 [ 13 [ a4 [ 9 [ [ w2 [ ie [ 17 [ 18 | s

The regression coefficient for the whole sample is equal to 0.53. The regression coefficients for ten replicate
samples are shown in Table 4.9.

Table 4.9
Regression coefficients for each replicate sample
Regression coefficient
Replicate 1 0.35
Replicate 2 0.55
Replicate 3 0.56
Replicate 4 0.64
Replicate 5 0.51
Replicate 6 0.55
Replicate 7 0.51
Replicate 8 0.48
Replicate 9 0.43
Replicate 10 0.68
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2 n-1 (é‘

The Jackknife formula, i.e. 67, = " (,)—é)z, can be applied to compute the sampling variance of the

i=1

regression coefficient.

2 ”—_12@,)—6)2 = % [(035-0.53)" +(0.55-0.53)+ ...(0.68—-0.53)*]= 0.07

i=1

o jack =

This result is identical to the result that the usual sampling variance formula for a regression coefficient
would render.

REPLICATION METHODS FOR TWO-STAGE SAMPLES

There are three types of replication methods for two-stage samples:
1. the Jackknife, with two variants: one for unstratified samples and another one for stratified samples;
2. the Balanced Repeated Replication (BRR) and its variant, Fay’s modification;

3. the Bootstrap.

PISA uses BRR with Fay’s modification.!

The Jackknife for unstratified two-stage sample designs

If a simple random sample of PSUs is drawn without the use of any stratification variables, then it can be
shown that the sampling variance of the mean obtained using the Jackknife method is mathematically equal
to the formula provided earlier in this chapter, i.e.:

2 2
2 _ o-between, PSU + Gwithim PSU

o=
()
n nPSU nwithin

PSU

Consider a sample of ten schools and within selected schools, a simple random sample of students. The
Jackknife method for an unstratified two-stage sample consists of generating ten replicates of nine schools.
Each school is removed only once, in a systematic way.

For the first replicate, denoted R1, school 1 has been removed. As shown in Table 4.10, the weights of the
other schools in the first replicate are adjusted by a factor of 1.11, i.e. % or, as a general rule, by a factor of
%, with G being the number of PSUs and the number of replicates in the sample. This adjustment factor
is then applied when school replicate weights and within school replicate weights are combined to give the
student replicate weights. For the second replicate, school 2 is removed and the weights in the remaining
schools are adjusted by the same factor, and so on.

Table 4.10
The Jackknife replicates for unstratified two-stage sample designs

Replicate R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
School 1 0.00 1.1 1.11 1.11 1.11 1.1 1.11 1.1 1.1 1.1

School 2 1.1 0.00 1.1 1.1 1.1 1.1 1.1 1.1 1.11 1.11
School 3 1.1 1.1 0.00 1.1 1.1 1.1 1.1 1.1 1.1 1.1
School 4 1.1 1.1 1.1 0.00 1.1 1.1 1.1 1.1 1.1 1.1

School 5 1.1 1.1 1.1 1.1 0.00 1.1 1.11 1.11 1.1 1.1

School 6 1.1 1.1 1.1 1.1 1.1 0.00 1.1 1.1 1.1 1.1
School 7 1.1 1.1 1.11 1.1 1.1 1.1 0.00 1.1 1.1 1.1
School 8 1.1 1.1 1.1 1.1 1.1 1.1 1.1 0.00 1.1 1.1

School 9 1.1 1.1 1.1 1.1 1.1 1.1 1.11 1.1 0.00 1.1

School 10 1.1 1.1 1.1 111 1.1 1.1 1.11 1.1 1.1 0.00
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The statistic of interest is computed for the whole sample, and then again for each replicate. The replicate
estimates are then compared to the whole sample estimate to obtain the sampling variance, as follows:

, (G-1)E

@) G =
=

o (ém_é)z
This formula is identical to the one used for a simple random sample, except that instead of using n

replicates, n being the number of units in the sample, this formula uses G replicates, with G being the
number of PSUs.

The Jackknife for stratified two-stage sample designs

As mentioned at the beginning of Chapter 3, two major principles underlie all sample designs. The first is
the need to avoid bias in the selection procedure, the second to achieve maximum precision in view of the
available financial resources.

To reduce the uncertainty, or to minimise the sampling variance without modifying the sample size, international
and national education surveys usually implement the following procedures in the sampling design:

= PSUs are selected proportionally to their size and according to a systematic procedure. This procedure
leads to an efficient student sampling procedure. Equal-sized samples of students can be selected from
each school. At the same time, the overall selection probabilities (combining the school and student
sampling components) do not vary much.

= PISA national centres are encouraged to identify stratification variables that are statistically associated
with student performance. Characteristics, such as rural versus urban, academic versus vocational,
private versus public, could be associated with student performance. The sampling variance reduction
will be proportional to the explanatory power of these stratification variables on student performance.

The Jackknife for stratified two-stage samples allows the reduction of the sampling variance by taking both
of these aspects into consideration. Failing to do so, would lead to a systematic overestimation of sampling

variances.
Table 4.11
The Jackknife replicates for stratified two-stage sample designs
Pseudo-stratum School R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
1 1 2 1 1 1 1 1 1 1 1 1
1 2 0 1 1 1 1 1 1 1 1 1
2 3 1 0 1 1 1 1 1 1 1 1
2 4 1 2 1 1 1 1 1 1 1 1
3 5 1 1 2 1 1 1 1 1 1 1
3 6 1 1 0 1 1 1 1 1 1 1
4 7 1 1 1 0 1 1 1 1 1 1
4 8 1 1 1 2 1 1 1 1 1 1
5 9 1 1 1 1 2 1 1 1 1 1
5 10 1 1 1 1 0 1 1 1 1 1
6 11 1 1 1 1 1 2 1 1 1 1
6 12 1 1 1 1 1 0 1 1 1 1
7 13 1 1 1 1 1 1 0 1 1 1
7 14 1 1 1 1 1 1 2 1 1 1
8 15 1 1 1 1 1 1 1 0 1 1
8 16 1 1 1 1 1 1 1 2 1 1
9 17 1 1 1 1 1 1 1 1 0 1
9] 18 1 1 1 1 1 1 1 1 2 1
10 19 1 1 1 1 1 1 1 1 1 2
10 20 1 1 1 1 1 1 1 1 1 0
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Suppose that the list of schools in the population is divided into two parts called strata: rural schools and
urban schools. Further, within these two strata, schools are sorted by size. Within each stratum, ten schools
are selected systematically and proportionally to their size.

The Jackknife method for stratified two-stage sample designs consists of systematically pairing sampled
schools within each stratum in the order in which they were selected. Therefore, schools will be paired with
other similar schools.

Table 4.11 shows how replicates are generated for this method. Schools 1 to 10 are in the stratum of “rural”,
and schools 11 to 20 are in the stratum of “urban”. Within each stratum, there are therefore five school
pairs, or pseudo-strata (also called variance strata).

The Jackknife for stratified two-stage samples will generate as many replicates as there are pairs or pseudo
strata. In this example, ten replicates will therefore be generated. For each replicate sample, one school
is randomly removed within a particular pseudo-stratum and the weight of the remaining school in the
pseudo-stratum is doubled. For replicate 1, denoted R1, school 2 is removed and the weight of school 1 is
doubled in the pseudo-stratum 1. For replicate 2, school 3 is removed and the weight of school 4 is doubled
in the pseudo-stratum 2, and so on.

As previously mentioned, the statistic of interest is computed based on the whole sample and then again
based on each replicate sample. The replicate estimates are then compared to the whole sample estimate to

obtain the sampling variance, as follows:
G

A A2
05,= 2.6, 6)

i=

This replication method is now generally used in IEA studies.

The Balanced Repeated Replication method

While the Jackknife method consists of removing only one school for each replicate sample, the Balanced
Repeated Replication (BRR) method proceeds by selecting at random one school within each pseudo-
stratum to have its weight set to 0, and by doubling the weights of the remaining schools as shown in
Table 4.12.

Table 4.12
Replicates with the Balanced Repeated Replication method
Pseudo-stratum School R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R 11 R12
1 1 2 0 0 2 0 0 0 2 2 2 0 2
1 2 0 2 2 0 2 2 2 0 0 0 2 0
2 3 2 2 0 0 2 0 0 0 2 2 2 0
2 4 0 0 2 2 0 2 2 2 0 0 0 2
3 5 2 0 2 0 0 2 0 0 0 2 2 2
3 6 0 2 0 2 2 0 2 2 2 0 0 0
4 7 2 2 0 2 0 0 2 0 0 0 2 2
4 8 0 0 2 0 2 2 0 2 2 2 0 0
5 9 2 2 2 0 2 0 0 2 0 0 0 2
5 10 0 0 0 2 0 2 2 0 2 2 2 0
6 11 2 2 2 2 0 2 0 0 2 0 0 0
6 12 0 0 0 0 2 0 2 2 0 2 2 2
7 13 2 0 2 2 2 0 2 0 0 2 0 0
7 14 0 2 0 0 0 2 0 2 2 0 2 2
8 15 2 0 0 2 2 2 0 2 0 0 2 0
8 16 0 2 2 0 0 0 2 0 2 2 0 2
9 17 2 0 0 0 2 2 2 0 2 0 0 2
9 18 0 2 2 2 0 0 0 2 0 2 2 0
10 19 2 2 0 0 0 2 2 2 0 2 0 0
10 20 0 0 2 2 2 0 0 0 2 0 2 2
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As this method results in a large set of possible replicates, a balanced set of replicate samples is generated
according to Hadamard matrices in order to avoid lengthy computations. The number of replicates is the
smallest multiple of four, greater than or equal to the number of pseudo-strata. In this example, as there are
10 pseudo-strata, 12 replicates will be generated.

The statistic of interest is again computed based on the whole sample, and then again for each replicate. The
replicate estimates are then compared with the whole sample estimate to estimate the sampling variance,

as follows:
2 _ 1G4 2
G(é)—EZ‘(G“)—O)

With this replication method, each replicate sample only uses half of the available observations. This
large reduction in sample might therefore become problematic for the estimation of a statistic on a rare
subpopulation. Indeed, the number of remaining observations might be so small, even equal to 0, that the
estimation of the population parameter for a particular replicate sample is impossible. To overcome this
disadvantage, Fay developed a variant to the BRR method. Instead of multiplying the school weights by a
factor of 0 or 2, Fay suggested multiplying the weights by a deflating factor k between 0 and 1, with the
second inflating factor being equal to 2 minus k. For instance, if the deflating weight factor, denoted k, is
equal to 0.6, then the inflating weight factor will be equal to 2—k, i.e. 1-0.6 =1.4 (Judkins, 1990).

PISA uses the Fay method with a factor of 0.5. Table 4.13 describes how the replicate samples and weights
are generated for this method.

Table 4.13
The Fay replicates
Pseudo-stratum School R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12
1 1 15 0.5 0.5 15 0.5 0.5 0.5 15 15 15 0.5 15
1 2 0.5 1.5 1.5 0.5 1.5 1.5 1.5 0.5 0.5 0.5 1.5 0.5
2 3 1.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5 1.5 1.5 1.5 0.5
2 4 0.5 0.5 15 15 0.5 15 15 15 0.5 0.5 0.5 15
3 5 1.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5 1.5 1.5 1.5
3 6 0.5 1.5 0.5 1.5 1.5 0.5 1.5 1.5 1.5 0.5 0.5 0.5
4 7 15 15 0.5 15 0.5 0.5 15 0.5 0.5 0.5 15 15
4 8 0.5 0.5 1.5 0.5 1.5 1.5 0.5 1.5 1.5 1.5 0.5 0.5
5 9 1.5 1.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5 1.5
5 10 0.5 05 05 15 05 1.5 15 0.5 15 1.5 15 0.5
6 11 1.5 1.5 1.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5 0.5
6 12 0.5 0.5 0.5 0.5 1.5 0.5 1.5 1.5 0.5 1.5 1.5 1.5
7 13 1.5 0.5 1.5 1.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5 0.5
7 14 05 15 0.5 0.5 05 15 0.5 15 15 0.5 15 15
8 15 1.5 0.5 0.5 1.5 1.5 1.5 0.5 1.5 0.5 0.5 1.5 0.5
8 16 0.5 1.5 1.5 0.5 0.5 0.5 1.5 0.5 1.5 1.5 0.5 1.5
9 17 15 0.5 05 0.5 15 15 15 0.5 15 0.5 0.5 15
9 18 0.5 1.5 1.5 1.5 0.5 0.5 0.5 1.5 0.5 1.5 1.5 0.5
10 19 1.5 1.5 0.5 0.5 0.5 1.5 1.5 1.5 0.5 1.5 0.5 0.5
10 20 0.5 0.5 1.5 1.5 1.5 0.5 0.5 0.5 1.5 0.5 1.5 1.5

As with all replication methods, the statistic of interest is computed based on the whole sample, and then
again on each replicate. The replicate estimates are then compared to the whole sample estimate to get the

sampling variance, as follows:
2 _ 1 - 0 9 2
O-(é)_ G(] _k)z = ( (i~ )
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In PISA, it was decided to generate 80 replicate samples and therefore 80 replicate weights. Therefore, the
formula becomes:

1 G . 1 80 . . .
o=——N6,-0=——N,-0=—Y (6,6
@ G(1—k)2§‘ 0 80(1—0.5)2; 0 2047

OTHER PROCEDURES FOR ACCOUNTING FOR CLUSTERED SAMPLES

For the past two decades, multi-level models and software packages have been introduced in the education
research field. There is no doubt that these models led to a breakthrough in the unravelling of education
phenomena. Indeed, multi-level regression models offer the possibility of taking into account the fact that
students are nested within classes and schools: each contributing factor can be evaluated when establishing
the outcome measure.

Multi-level regression software packages, such as MLWin® or HLM®, just like any professional statistical
package, provide an estimate of the standard error for each of the estimated population parameters. While
SAS® and SPSS® consider the sample as a simple random sample of population elements, MLWin® and
HLM® recognise the hierarchical structure of the data, but consider that the school sample is a simple
random one. They therefore do not take into account the complementary sample design information used in
PISA to reduce the sampling variance. Consequently, in PISA, the sampling variances estimated with multi-
level models will always be greater than the sampling variances estimated with Fay replicate samples.

As these multi-level model packages do not incorporate the additional sample design information, their
standard error estimates are similar to the Jackknife method for unstratified samples. For instance, the
PISA 2003 data in Germany were analysed using the multi-level model proposed by SAS® and called PROC
MIXED. The standard errors of the mean of the five plausible values? for the combined mathematical literacy
scale were respectively 5.4565, 5.3900, 5.3911, 5.4692, and 5.3461. The average of these five standard
errors is 5.41. Recall that the use of the formula assuming PSUs are selected as simple random sampling
discussed above produces an estimate of the sampling variance equal to 5.45.

With multi-level software packages, using replicates cannot be avoided if unbiased estimates of the standard
errors for the estimates need to be obtained.

CONCLUSION

Since international education surveys use a two-stage sample design most of the time, it would be
inappropriate to apply the sampling distribution formulas developed for simple random sampling. Doing so
would lead to an underestimation of the sampling variances.

Sampling designs in education surveys can be very intricate. As a result, sampling distributions might not be
available or too complex even for simple estimators, such as means. Since the 1990 IEA Reading Literacy
Study, sampling variances have been estimated through replication methods. These methods function by
generating several subsamples, or replicate samples, from the whole sample. The statistic of interest is then
estimated for each of these replicate samples and then compared to the whole sample estimate to provide
an estimate of the sampling variance.

A replicate sample is formed simply through a transformation of the full sample weights according to an
algorithm specific to the replication method. These methods therefore can be applied to any estimators® — means,
medians, percentiles, correlations, regression coefficients, etc. — which can be easily computed thanks to
advanced computing resources. Further, using these replicate weights does not require an extensive knowledge
in statistics, since these procedures can be applied regardless of the statistic of interest.
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Notes

1. See the reasons for this decision in the PISA 2000 Technical Report (OECD, 2002c¢).
2. See Chapter 6 for a description of plausible values.

3. Several empirical or theoretical studies have compared the different resampling methods for complex sampling design. As Rust
and Krawchuk noted: “A benefit of both BRR and modified BRR over the Jackknife is that they have a sound theoretical basis
for use with nonsmooth statistics, such as quantiles like the median. It has long been known that the Jackknife is inconsistent
for estimating the variances of quantiles. That is, as the sample size increases for a given sample design, the estimation of the
variances of quantiles does not necessarily become more precise when using the Jackknife.” (Rust and Krawchuk, 2002).
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User's Guide

Preparation of data files

All data files (in text format) and the SPSS® control files are available on the PISA website
(www.pisa.oecd.org).

SPSS® users

By running the SPSS® control files, the PISA data files are created in the SPSS® format. Before starting
analysis in the following chapters, save the PISA 2000 data files in the folder of “c:\pisa2000\data\”, the
PISA 2003 data files in “c:\pisa2003\data\”, and the PISA 2006 data files in “c:\pisa2006\data\”.

SPSS® syntax and macros

All syntaxes and macros in this manual can be copied from the PISA website (www.pisa.oecd.org).
These macros were developed for SPSS 17.0. The 19 SPSS® macros presented in Chapter 17 need
to be saved under “c:\pisa\macro\”, before staring analysis. Each chapter of the manual contains a
complete set of syntaxes, which must be done sequentially, for all of them to run correctly, within
the chapter.

Rounding of figures

In the tables and formulas, figures were rounded to a convenient number of decimal places, although
calculations were always made with the full number of decimal places.

Country abbreviations used in this manual

AUS | Australia FRA | France MEX | Mexico

AUT | Austria GBR | United Kingdom NLD | Netherlands
BEL Belgium GRC | Greece NOR | Norway

CAN | Canada HUN | Hungary NZL | New Zealand
CHE | Switzerland IRL Ireland POL | Poland

CZE | Czech Republic ISL Iceland PRT | Portugal

DEU | Germany ITA Italy SVK | Slovak Republic
DNK | Denmark JPN Japan SWE | Sweden

ESP Spain KOR | Korea TUR | Turkey

FIN Finland LUX | Luxembourg USA | United States

PISA DATA ANALYSIS MANUAL: SPSS® SECOND EDITION — ISBN 978-92-64-05626-8 — © OECD 2009

17



From:
PISA Data

ey PISA Data Analysis Manual: SPSS, Second Edition

Access the complete publication at:
https://doi.org/10.1787/9789264056275-en

Please cite this chapter as:

OECD (2009), “Replicate Weights”, in PISA Data Analysis Manual: SPSS, Second Edition, OECD
Publishing, Paris.

DOI: https://doi.org/10.1787/9789264056275-5-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments
employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the
delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications,
databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided
that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and
translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for
public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the
Centre frangais d’exploitation du droit de copie (CFC) at contact@cfcopies.com.

&) OECD


https://doi.org/10.1787/9789264056275-en
https://doi.org/10.1787/9789264056275-5-en



