

OECD Economics Department Working Papers No. 581

Local Government
Finances: The Link between
Intergovernmental Transfers
and Net Worth

Luiz de Mello

https://dx.doi.org/10.1787/080476332876

ECO/WKP(2007)41

Unclassified

ECO/WKP(2007)41

Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development

24-Sep-2007

English - Or. English

ECONOMICS DEPARTMENT

LOCAL GOVERNMENT FINANCES: THE LINK BETWEEN INTERGOVERNMENTAL TRANSFERS AND NET WORTH

ECONOMICS DEPARTMENT WORKING PAPERS No. 581

By Luiz de Mello

All Economics Department Working Papers are available through OECD's Internet Website at www.oecd.org/eco/working_papers

JT03232587

English - Or. English

ABSTRACT/RÉSUMÉ

Local government finances: The link between intergovernmental transfers and net worth

There is a large literature on how the sharing of revenue between different levels of government and the design of intergovernmental transfer schemes affect sub-national finances. Using a panel of OECD countries during 1980-2005, this paper tests for: *i*) the presence of a stable long-run statistical association between changes in transfer receipts and sub-national net worth and *ii*) the direction of causality between changes in transfer receipts and net worth. The main empirical findings are that, first, there is a stable long-term relationship between transfer receipts and local government net worth for the case of current, but not capital, transfers. An increase in intergovernmental transfer receipts is found to be associated with a modest reduction in the recipient jurisdiction's net worth over the long term, but a fall in net worth is associated with an almost one-to-one subsequent increase in transfer receipts. Second, the direction of causality is sensitive to the technique used to estimate the long-term parameters. One technique suggests that causality runs from transfers to net worth, which lends support to a large literature on the effect of cost-shifting on sub-national budget outcomes. But causality also appears to run from net worth to transfer receipts, suggesting that transfers may be used as a deficit-financing tool.

JEL classification: H77, H11, C33

Keywords: federalism, transfers, net worth, local government, panel co-integration

* * *

Finances des administrations territoriales : la relation entre les transferts inter-administrations et les actifs nets des administrations territoriales

Il existe une importante littérature sur la façon dont les finances des administrations territoriales sont affectées par la répartition des revenus entre les différents niveaux d'administration et par la conception des transferts inter-administrations. En utilisant un panel de pays de l'OCDE sur la période 1980-2005, ce document teste :i) l'existence d'une relation statistique stable de long terme entre les variations des transferts reçus et celles de la valeur nette des administrations territoriales, et ii) la direction de la relation de causalité entre les variations des transferts reçus et celles de la valeur nette. Les principaux résultats empiriques suggèrent, en premier lieu, l'existence d'une relation stable de long terme entre les transferts reçus et la valeur nette des administrations locales s'agissant des transferts courants, mais non de ceux en capital. Une augmentation des transferts inter-administration reçus est associée à une faible réduction de la valeur nette des administrations bénéficiaires sur le long terme, mais une baisse de la valeur nette est elle-même associée à une augmentation quasiment équivalente des transferts reçus. Deuxièmement, la direction de la relation de causalité est sensible à la technique utilisée pour estimer les paramètres de long terme. Selon une technique, la direction va des transferts reçus vers la valeur nette, ce qui corrobore une importante littérature sur les effets du transfert des coûts sur les résultats budgétaires des collectivités locales. Cependant selon une autre technique, la direction de la causalité va de la valeur nette vers les transferts reçus suggérant que les transferts peuvent être utilisés pour financer les déficits budgétaires.

Classification JEL: H77, H11, C33

Mots clés: fédéralisme, transferts, valeur nette, actifs nets, administration locale, cointégration en panel

Copyright © OECD 2007. All rights reserved.

Application for permission to reproduce or translate all, or part of, this material should be made to: Head of Publications Service, OECD, 2 rue André-Pascal, 75775 PARIS CEDEX 16, France

ECO/WKP(2007)41

Table of contents

Local	government finances: The link between intergovernmental transfers and net worth	5
1.	Introduction	5
2.	The literature	6
Tl	he deficit-bias hypothesis: Transfers cause indebtedness	6
	he soft budget-constraint hypothesis: Indebtedness causes transfers	
	istinguishing the competing hypotheses	
	Data and unit root/co-integration tests	
	ata	
	nit root tests.	
	o-integration tests	
	stimating the co-integrating vectors	
	Summary of the main findings and discussion	
	ences	
Tables	S	
1.	Descriptive statistics	11
2.	Panel unit root tests: Cross-sectional independence.	
3.	Panel unit root tests: Cross-sectional dependence	
4.	Panel co-integration tests: Group-ADF statistics	
5.	Co-integration vectors	
Figure		
riguit		
1.	Indebtedness and transfers: Local governments	12

LOCAL GOVERNMENT FINANCES: THE LINK BETWEEN INTERGOVERNMENTAL TRANSFERS AND NET WORTH

by

Luiz de Mello,¹

1. Introduction

There is a large literature on how the sharing of revenue between different levels of government and the design of intergovernmental transfer schemes affect sub-national finances (see de Mello, 2000, for a review of the literature). Depending on how shared funds are raised (from a common pool of revenue, for instance) and transfer arrangements are designed (unconditional or special-purpose, open- or closed-ended, matched or unmatched, discretionary or formula-based, etc.), an increase in transfer receipts may lead to a reduction in sub-national government net worth. The basic idea is that transfers reduce the marginal cost of provision to be borne by local taxpayers, especially when financed by a common pool of resources mobilised elsewhere in the economy. This cost shifting discourages local revenue mobilisation and/or induces fiscal profligacy, leading to a build-up of debt in the recipient jurisdiction. But causality may also run in the opposite direction: a fall in net worth may trigger an increase in transfers from higher levels of government. This is the case when grants are of the *ex post* gap-filling type, as with outright bailouts of sub-national jurisdictions in financial distress by higher levels of government.

Against this background, using a panel of OECD countries during 1980-2005, this paper tests for: *i*) the presence of a stable long-run statistical association between changes in transfer receipts and sub-national net worth and *ii*) the direction of causality between changes in transfer receipts and net worth. If a stable long-run association is found to exist and changes in transfer receipts temporally cause changes in net worth, the empirical findings would lend credence to the cost-shifting hypothesis. If causality is found to run in the opposite direction, the results would favour the *ex post* soft-budget-constraint hypothesis. In particular, panel-based unit roots and co-integration techniques will be used to test for the existence of a stable relationship between transfer receipts and net worth and, should this relationship exist, to estimate the relevant long-term parameter.

The paper's main contribution is twofold. *First*, it fills a gap in the empirical literature by testing for temporal causality in the association between intergovernmental transfers and sub-national net worth, with emphasis on local governments. While there is a large literature on how intergovernmental transfer arrangements affect sub-national finances (reviewed below), the analysis of temporal causality between transfer receipts and sub-national net worth is a novelty. *Second*, attention is shifted away from the use of country-specific budgetary data, which is common in the empirical literature, towards cross-country national accounts data. In doing so, the paper aims at highlighting statistical regularities that go beyond country-specific institutional arrangements, while dealing with the effect that these arrangements can have on sub-national public finances by exploiting heterogeneity in the panel. The main advantage of using national accounts data in the empirical analysis is that they allow for greater cross-country comparability of

^{1.} This paper was prepared for the "Land Policies and Fiscal Decentralisation" conference organised by the Lincoln Institute in Cambridge, Massachusetts, on 4-5 June 2007. I would like to thank Andrew Dean, Ronald C. Fisher, Yu-Hung Hong, Gregory K. Ingram, Peter Jarrett, Val Koromzay, Diego Moccero, Robert Price and the conference participants for comments and discussions, as well as Anne Legendre, Chantal Nicq and Mee-Lan Frank for excellent technical assistance.

public finance indicators than in the case of budgetary data, which tend to differ considerably across countries on the basis of differences in coverage and reporting standards.

The main empirical findings reported below are:

- There is a stable long-term relationship between transfer receipts and local government net worth for the case of current, but not capital, transfers. The estimated parameter shows that an increase in intergovernmental transfer receipts is associated with a modest reduction in the recipient jurisdiction's net worth over the long term. And a fall in net worth is also associated with an almost one-to-one subsequent increase in transfer receipts.
- The direction of causality is sensitive to the technique used to estimate the long-term parameters. One technique suggests that causality runs from transfers to net worth, which lends support to a large literature on the effect of cost-shifting on sub-national budget outcomes. But causality also appears to run from net worth to transfer receipts, suggesting that transfers may be used as a deficit-financing tool, as when sub-national governments are bailed out by higher levels of government.

The paper is organised as follows. Section 2 reviews the literature. Section 3 describes the data set, assesses the unit root and co-integration properties of the data and reports the estimated long-term parameters. Section 4 summarises and discusses the empirical findings.

2. The literature

There are two main strands of literature suggesting that there is a link between intergovernmental transfer receipts and the recipient jurisdiction's indebtedness. One focuses on the association between the design of intergovernmental transfer systems and budget outcomes through cost shifting; it predicts that reliance on transfer receipts to finance sub-national provision leads to a reduction in sub-national indebtedness by weakening incentives for fiscal prudence. Of particular interest in this stand of literature if the "flypaper effect", according to which the "transmission mechanism" between incoming transfers and indebtedness is through expenditure pressures. The other related strand of literature focuses on the effect of soft budget constraints on sub-national finances. Accordingly, higher levels of government may use discretionary grants to bail out lower-level jurisdictions in financial distress. Expectations of financial bailouts reduce the opportunity cost of borrowing, which creates incentives for profligacy. The theoretical underpinning of both strands of literature are therefore that intergovernmental transfers place a wedge between the costs and benefits of local provision, which distorts the incentives faced by local policymakers for fiscal rectitude.

The deficit-bias hypothesis: Transfers cause indebtedness

The basic idea of the deficit-bias literature is that intergovernmental transfer receipts create a wedge between the costs of public provision to be borne by taxpayers in the recipient jurisdiction and the benefits they accrue from public provision, especially when it is financed from a "common pool" of revenue mobilised elsewhere in the economy (von Hagen and Harden, 1995; Hallerberg and Von Hagen, 1999). This allows the recipient jurisdiction to internalise the benefits of expenditure among local residents and to shift provision costs to non-residents. The upshot is that, due to a range of institutional and political-economy factors, dependence on grants and transfers from higher levels of government creates a deficit bias at the sub-national level, because it encourages recipient jurisdictions to underutilise their own tax bases at the expense of sharable bases and/or to spend beyond their means. Incentives to delay fiscal adjustment is another consequence of common-pool financing, since individual jurisdictions have limited incentives to act alone and strong incentives to free ride, if the burden of fiscal

retrenchment can be shared horizontally across jurisdictional borders and vertically across government levels (Alesina and Drazen, 1991; Velasco, 1999, 2000).

The deficit-bias hypothesis is conventionally tested in a reduced-form regression set-up. The sub-national budget balance is regressed on a measure of vertical imbalance, such as the ratio of transfer and grant receipts in revenue, as well as appropriate controls for sub-national fiscal stance, such as demographics, terms-of-trade effects and local income. Despite some variation in the estimating equation, there is plenty of empirical evidence in support of the deficit-bias hypothesis. Cross-country evidence for OECD and non-OECD countries is available from de Mello (1999, 2000) and Rodden (2002), among others. Country-specific evidence is also available: Jones, Sanguinetti, and Tommasi (2000) report evidence of "common pool" incentives for fiscal mismanagement among Argentinean provinces arising not only from intergovernmental revenue-sharing arrangements but also from the political system. Evidence of an association between vertical imbalances and sub-national borrowing costs – due to a rising risk premium associated with a sub-national deficit bias – is reported by Poterba and Rueben (1997) for US states and de Mello (2001) for OECD and non-OECD countries.

A special case: The flypaper effect

Of particular interest when examining the "transmission mechanisms" through which revenue sharing affects budget outcomes is the flypaper-effect literature, surveyed by Hines and Thaler (1995), among others. This strand of literature is motivated by the observation that an increase in grants and transfer receipts from higher-level jurisdictions often leads to a rise in sub-national spending that is higher than that associated with an equivalent hike in local income. This finding is puzzling, because the median-voter model of taxpayer behaviour predicts that, instead, equally-sized changes in unconditional grants and in local income should have an equivalent effect on sub-national spending. In other words, while theory predicts that changes in transfer receipts or local income would create an identical income effect that would put upward pressure on local spending, this prediction is not always validated by empirical observation.

The flypaper hypothesis is conventionally tested by running reduced-form regressions of sub-national spending on receipts of grants and transfers from higher levels of government, local income and appropriate controls for other determinants of sub-national expenditure, such as demographics. The empirical findings available to date suggest that the flypaper effect is stronger for capital than current transfer receipts (Wyckoff, 1988), for matching than unconditional transfers (Gamkhar and Oates, 1996), and for government spending on "luxury" goods (*i.e.* culture and urban amenities) than on normal goods (Deller and Maher, 2005a). Another important finding is that the flypaper effect is asymmetric, in the sense that spending tends to be very responsive to increases in transfer receipts, especially when the level of future transfers is uncertain, and comparatively insensitive to reductions. This finding is confirmed by the empirical evidence reported by Gramlich (1987) for US states, Benton (1992) for US state and local governments, Melo (1996) for Colombian sub-national jurisdictions, Heyndels (2001) for Flemish municipalities, and Deller and Maher (2005b) for Wisconsin local governments, among others.²

Although the presence of a flypaper effect is now broadly accepted as a statistical "anomaly" in the public finance literature, empirical evidence has been challenged on several grounds. In particular, the flypaper effect is purported to be due to failure to appropriately deal with the endogeneity of transfer

^{2.} There are a number of exceptions. For example, Gamkhar and Oates (1996) use US state and local government data for the period 1953-91 and show that sub-national units respond symmetrically to changes in federal grants, regardless of the type of grant (matching or unconditional). Stine (1994) finds a super-flypaper effect using data for Pennsylvania counties during 1978-88 in that a reduction in transfers induces the recipient jurisdiction to cut back not only spending but also locally-raised revenue.

receipts (Knight, 2000). The argument is that the level of grants and transfers is affected by the political power of recipient jurisdictions, which in turn depends on expenditure pressures at the sub-national level. This creates a reverse causality bias in the relationship between transfers and spending; therefore, when transfers are instrumented by variables capturing the political power of receiving jurisdictions (*i.e.* committee representation, proportion of representatives in the majority party, average tenure of representatives, etc.), local income and transfer receipts are found to have similar effects on public spending. Another argument that has been used to challenge the empirical evidence is that the flypaper effect is rather sensitive to the functional form of the estimating equation (Becker, 1996). Although there is no *a priori* reason for sensitivity to functional specifications, empirical evidence is typically stronger for log-linear models than for linear estimating equations.

The soft budget-constraint hypothesis: Indebtedness causes transfers

The basic idea about soft budget constraints and how they affect local public finances is that expectations of a bailout from higher levels of government reduce the opportunity cost of fiscal profligacy. When sub-national jurisdictions are free to borrow, they form expectations about how the central government reacts to their financial stance. Higher-level jurisdictions may be willing to assist local governments financially when the public services they provide benefit the rest of society (Wildasin, 1997). But, because of these externalities, the recipient jurisdiction may face the incentive to spend on items generating benefits that can be internalised among residents, rather than on items with stronger inter-jurisdictional spillovers. Incentives for bailouts may also be stronger in the case of jurisdictions that are "too big to fail".

If the recipient jurisdiction is deficit-prone and has weak incentives to act responsibly, decentralised fiscal management requires incentives for fiscal prudence; otherwise, local fiscal mismanagement may be detrimental to the system as a whole (Qian and Roland, 1998). This macro-financial spillover effect has been at the core of several sub-national financial crises (Tanzi, 1995; Prud'homme, 1995; Ter-Minassian, 1999; de Mello, 1999, 2000, among others). Hard-budget constraints, especially in the form of fiscal rules, can be self-imposed, introduced by the central government and/or complemented by market-based scrutiny. In the absence of these safeguards, sub-national financial disarray leads to a build-up of debt, which is often financed through bail-outs from higher levels of government. Alternatively, Goodspeed (2002) argues that, while soft budget constraints reduce the opportunity cost of borrowing, they also increase the cost of future taxes needed to pay off at least part of the incremental debt. Where expectations of higher taxes in the future mitigate the weak opportunity cost of profligacy, borrowing decisions are efficient, as in the case of hard budget constraints.

There is a growing empirical literature on the association between intergovernmental transfers and indebtedness. While testing for flypaper-type effects, Levaggi and Zanola (2003) show that recipient jurisdictions respond to a decline in grants and transfers through deficit financing, rather than by hiking locally-raised revenue or trimming spending, at least as far as Italian health care system was concerned during 1989-93. Buettner and Wildasin (2006) focus on a sample of US local governments and show that fiscal imbalances are financed essentially by offsetting changes in future expenditures and in grants, especially in the case of large cities. This evidence suggests that intergovernmental transfers act as a fiscal "cushion" for municipalities, which may indicate a softening of budget constraints in the case of large cities. Garcia-Mila *et al.* (2001) use data for Spanish regions and find evidence in favour of the soft budget-constraint hypothesis. Martell and Smith (2004) use US state-level data to test empirically the hypothesis that federal grants affect sub-national debt issuance, and whether or not there are asymmetries in this relationship when grants are raised or cut back. The empirical findings suggest that there is a correlation between grants and indebtedness: full-faith and credit debt issuance is reported to be positively correlated with both matching and non-matching grants, whereas the opposite is true for non-guaranteed

debt. The authors nevertheless do not distinguish capital and current transfers when assessing the relationship between transfers and debt.

Distinguishing the competing hypotheses

The difficulty of distinguishing the deficit-bias from the soft budget-constraint hypotheses is that they are observationally equivalent. A statistically significant coefficient in a reduced-form regression of sub-national indebtedness on a measure of vertical imbalances and appropriate controls does not allow the econometrician to distinguish between these hypotheses in the absence of temporal causality testing. The deficit-bias literature assumes that the direction of causality runs from transfer receipts to indebtedness, whereas the opposite is true in the soft budget-constraint literature. Temporal causality testing has nevertheless not been pursued in the empirical literature.

To shed light on this issue, this paper will first test for the presence of a stable long-term association between transfer receipts and recipient jurisdictions' net worth (discussed below) and then proceed to test for temporal causality. In particular, the competing hypotheses will be tested as follows:

The deficit-bias hypothesis

The deficit-bias hypothesis will be tested by regressing sub-national net worth on intergovernmental transfer receipts:

$$D_{it} = \alpha_i^{DB} + \beta^{DB} T_{it} + v_{it}^{DB}, \tag{1}$$

where D_{it} and T_{it} denote, respectively, net worth and transfer receipts in jurisdiction i at time t; α_i^{DB} are fixed effects, and v_{it}^{DB} is an error term.

Equation (1) may include other deterministic elements, such as a time trend. The unit root properties of net worth and transfer receipts will be assessed using conventional panel-based procedures, and co-integration testing will be carried out on the basis of the estimated residuals of Equation (1). Two procedures will be used to uncover the long-term parameter (β^{DB}). On the basis of temporal causality testing, the deficit-bias hypothesis will not be rejected if the hypothesis that innovations in transfer receipts affect forecasts of net worth cannot be rejected.

The soft budget-constraint hypothesis

The soft budget-constraint hypothesis will be tested by regressing intergovernmental transfer receipts on sub-national net worth:

$$T_{it} = \alpha_i^{SB} + \beta^{SB} D_{it} + \nu_{it}^{SB}, \tag{2}$$

where T_{it} and D_{it} denote, respectively, transfer receipts and net worth in jurisdiction i at time t; α_i^{SB} are fixed effects, and v_{it}^{SB} is an error term.

As in the case of Equation (1), Equation (2) may include other deterministic elements, such as a time trend. Conventional procedures will be used to assess the unit root properties of the data, to test for co-integration between transfer receipts and net worth, and to uncover the long-term parameter. On the basis of temporal causality testing, the soft budget-constraint hypothesis will not be rejected if the hypothesis that innovations in net worth affect forecasts of transfer receipts cannot be rejected.

3. Data and unit root/co-integration tests

Data

Data are available from the summary public finances accounts included in the OECD National Accounts database. Information is available on intergovernmental transfers paid and received, net worth, and total revenue and expenditure for four levels of government (central, middle-tier, local and social security funds). The use of net worth is preferred to gross indebtedness, because it takes into account the accumulation of financial assets by the recipient jurisdiction.³ For example, investment programmes financed by the issuance of government debt would leave net worth unchanged, because an increase in indebtedness would be matched by an accumulation of assets. This is not the case of an increase in current spending commitments financed through higher indebtedness. Information is not available on the composition of financial liabilities by debt instrument (*e.g.* general-purpose or revenue-backed issuances, etc.) or on the composition of transfers by type of instrument (*e.g.* matching or unconditional grants, mandated revenue sharing, discretionary or formula-based transfers, etc.). Transfer receipt data can nevertheless be decomposed between current and capital transfers.

The public finances time series are relatively short for most countries. The central government series are typically longer that those for sub-national jurisdictions. At the sub-national level, data are more readily available for local governments than for middle-tier jurisdictions. Sample selection was therefore guided primarily by data availability. The largest panel that could be obtained from the database includes 13 countries (or less than one-half of the OECD membership) over the period 1995-2004. The main advantage of using national accounts data in the empirical analysis is that it allows for greater cross-country comparability of public finances indicators than in the case of budgetary data, which tend to differ considerably across countries on the basis of differences in coverage and reporting standards.

Based on the theoretical argument developed above, the variables of interest are the shares in revenue of transfers received by local governments and their level of indebtedness, measured by the ratio of local government net worth to GDP. The main descriptive statistics of the variables of interest, reported

^{3.} Net worth is the difference between a jurisdiction's gross financial liabilities, which include debt and other short- and long-term liabilities, defined by ESA95/SNA93, and its financial assets, which include cash, bank deposits, loans to the private sector, participation in private-sector companies, holdings in public corporations and foreign exchange reserves.

in Table 1. For example, current transfers account for 33% of local government revenue on average, whereas indebtedness is low, given that net worth is nearly balanced on average. But there is considerable variation (as gauged by the standard deviation) in the data in the level of indebtedness and in the share of transfers in revenue.

Table 1. Descriptive statistics

	Mean	St. dev.	Median	Max	Min	No. obs.
Net worth-to-GDP ratio Transfers-to-reveue ratio	-0.01	0.03	-0.02	0.11	-0.07	150
Total transfers	0.38	0.16	0.37	0.75	0.09	112
Current transfers	0.33	0.14	0.34	0.65	0.05	122
Capital transfers	0.05	0.06	0.04	0.26	0.00	112

^{1.} The sample spans the period 1995-2004.

Source: OECD national accounts database and author's calculation.

Trends in transfer receipts and local government net worth are depicted in Figure 1 for all countries in the sample. Local government net worth trended upwards over the reference period as a proportion of GDP in a number of countries, including Austria, Canada, France, Netherlands, Spain and Sweden, but fell in Finland, Italy and Portugal. On the other hand, current transfers fell in relation to revenue, albeit often in a gradual manner, in a number of countries, such as Canada, Denmark, Italy, and Spain, while displaying more complex patterns in the remaining countries. The level of capital transfers is typically much lower in relation to revenue in most countries, with the exception of Portugal, and considerably more stable than that of current transfers.

Unit root tests

The tests

The unit root properties of the transfer and net worth indicators will be assessed on the basis of four different tests. Three tests will be considered for the case where the cross-sectional units in the panel are independent (Im-Pesaran-Shin (IPS), Maddala-Wu (MW), and Hadri) and one that allows for cross-sectional dependence (CADF). Cross-sectional dependence implies that the time series in the panel are contemporaneously correlated, a phenomenon that may be due to omitted common factors and/or spatial spillovers. In the case of the variables of interest, the level of sub-national indebtedness may be correlated across countries during periods of fiscal retrenchment. An example of such common factor/spatial spillover is the fiscal adjustment effort of the euro-zone countries prior to the introduction of the common currency. By the same token, it is important to allow for heterogeneity in the panel when testing for unit roots, so that parameter estimates may differ among the different cross-sectional units, because the relationship between transfers and indebtedness depends on country-specific institutional settings.

_

^{4.} There are several methodologies for testing for unit roots in panel data. Typically, they consist of computing panel-analogues of the Dickey-Fuller (DF) or augmented DF tests available for pure time series, but differ on the definition of the null hypotheses (stationarity or non-stationarity), on whether or not the panel is balanced, and on whether or not heterogeneity is permitted among the autoregressive parameters and across the cross-sections (which affects the definition of the alternative hypotheses). Tests also differ as to whether or not the relevant variables are allowed to be correlated contemporaneously across the cross-sectional units. For recent surveys see Baltagi and Kao (2000) and Breitung and Pesaran (2006), among others.

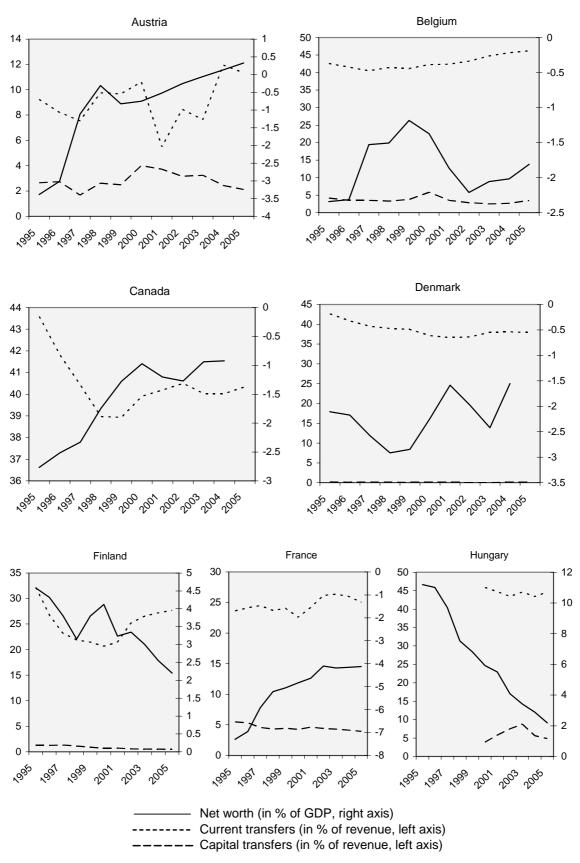


Figure 1. Indebtedness and transfers: Local governments

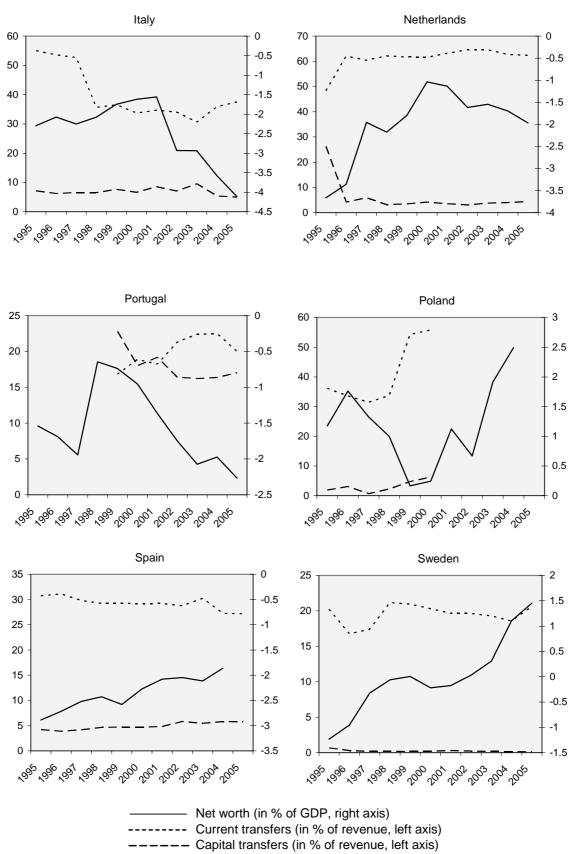


Figure 1 (cont'd). Indebtedness and transfers: Local governments

ECO/WKP(2007)41

The IPS test is a balanced panel-equivalent of the ADF test with the null hypothesis of a unit root in all cross-sectional units. The alternative hypothesis allows for cross-sectional heterogeneity (*i.e.* some of the series in the panel are stationary). In other words, rejection of the null hypothesis implies that the variable of interest follows an autoregressive process that contains unit roots in some of the cross-sectional units. The test statistic is a mean-group Lagrange Multiplier statistic (t-bar statistic), which converges to a standard normal distribution in large samples (so long as the ratio of *N* to *T* tends to a finite non-zero constant as *N* and *T* tend to infinity in the case of autocorrelated residuals).

The MW test, proposed by Maddala and Wu (1999), is based on the *p*-values of individual unit root tests. The null hypothesis is that all series have unit roots, against the alternative that at least one series in the panel is stationary. The MW test differs from the IPS test in the definition of the null hypothesis: it is not based on the assumption that the autoregressive coefficient is the same across countries, thus allowing for cross-sectional heterogeneity under the null. The test performs similarly or slightly better than the IPS statistic.

The Hadri test is a panel-equivalent of the KPSS Lagrange Multiplier test with the null of stationarity (rather than non-stationarity as in the IPS and MW tests) for all individual series. The error terms may be homoscedastic or heteroscedastic across cross-sectional units, and serially correlated, in which case a Newey-West estimator may be used to take account of the long-run variance in the data. The test nevertheless requires independence across the panel's cross-sectional units and performs poorly in small samples when applied to processes with MA(1) errors.

Finally, the cross-section augmented DF (CADF) test proposed by Pesaran (2005) deals with the case where cross-sectional dependence arises from the presence of a single common factor among the cross-sectional units. The test averages the individual CADF *t*-statistics for all cross-sectional units in a heterogeneous panel. This test has better size properties than alternative methodologies, such as that proposed by Moon and Perron (2004).

The results

The results of the unit root tests are reported in Tables 2 and 3. The results of the IPS, MW and Hadri tests suggest the presence of unit roots in net worth (in levels), regardless of whether the disturbances are homoscedastic or not. The results are robust to the inclusion of a time trend in the regressions, where appropriate, given that net worth appears to have a trend in some countries. As for the intergovernmental transfer indicators, the unit root tests yield mixed results. Whereas the transfer-to-revenue ratio appears to have unit roots in levels on the basis of the IPS test (except for capital transfers) and the Hadri test, regardless of whether the disturbances are homoscedastic or not, the MW test suggests that the transfer variables are stationary in levels (except for capital transfers).

On the basis of the results of the CADF test, which allows for contemporaneous correlation among the series in the panel, both the indebtedness and transfer indicators were found to have unit roots in levels. Again, this is important because of the comparatively large number of EU countries in the sample, which creates considerable scope for spatial spillovers and the presence of common factors affecting trends in public finance indicators during the period of analysis.

In sum, the results are unequivocal as to the presence of unit roots in local government net worth, suggesting that the first-differenced data are stationary. Due to the mixed findings for the transfer-to-revenue ratios, and the predominance of evidence pointing to the presence of unit roots in the level variables, the co-integration tests (reported below) will be performed on the premise that the transfer indicators are stationary in first differences. Needless to say, a caveat to consider when interpreting the

Table 2. Panel unit root tests: Cross-sectional independence 12

_	Level		First difference	
	Test		Test	
	statistics	No. obs.	statistics	No. obs
Im-Pesara	n-Shin test (H ₀ :	unit root; t-b	ar statistic)	
Net worth-to-GDP ratio	-1.795	120	-2.341 ***	105
Transfers-to-revenue ratio				
Total transfers ²	-1.584	120	-2.477 ***	90
Current transfers	-1.390	136	-1.996 **	119
Capital transfers	-3.981 ***	120	-2.033 **	10
Net transfers ²	-1.411	112	-2.433 ***	84
Maddala	a-Wu test (H ₀ : u	nit root; Prob	> chi sq)	
Debt-to-GDP ratio	0.520		0.000 ***	
Transfers-to-revenue ratio				
Total transfers ²	0.000 ***		0.000 ***	
Current transfers	0.000 ***		0.000 ***	
Capital transfers	0.106		0.000 ***	
Net transfers ²	0.000 ***	•••	0.000 ***	
rect transfere	0.000		0.000	
Hadri LN	I test (H ₀ : no un	it root; Z(tau)	statistic)	
Net worth-to-GDP ratio				
Homo	7.188 ***	150	-1.141	13
Hetero	5.886 ***	150	-0.107	13
Serial correlation	6.231 ***	150	6.751 ***	13
Transfers-to-revenue ratio				
Total transfers ²				
Homo	6.971 ***	150	-0.432	120
Hetero	5.463 ***	150	-0.772	120
Serial correlation	5.413 ***	150	9.197 ***	120
Current transfers				
Homo	7.056 ***	170	-1.531	15
Hetero	4.287 ***	170	-0.029	153
Serial correlation	6.393 ***	170	7.025 ***	15
Capital transfers				
Homo	3.436 ***	150	0.019	13
Hetero	3.139 ***	150	0.087	13
Serial correlation	6.051 ***	150	6.817 ***	13
Net transfers ²				
Homo	7.686 ***	140	-1.261	12
Hetero	5.338 ***	140	-0.02	12
Serial correlation	5.451 ***	140	5.359 ***	12

^{1.} The sample spans the period 1995-2004. The regressions for the IPS test include a constant term and the variables are lagged once. For the Hadri test, "Homo" and "Hetero" refer, respectively, to the statistics under the hypotheses of homoscedastic and heteroscedastic disturbances across cross-sectional units. The statistics under "Serial correlation" were computed by controlling for autocorrelation in the error terms (lag length is truncated at 2). Statistical significance at the 1, 5 and 10 % levels is denoted by, respectively, (***), (**) and (*).

Source: OECD national accounts database and author's estimations.

^{2.} Twice-differenced.

Table 3. Panel unit root tests: Cross-sectional dependence 12

	Lev	el	First difference		
	Test		Test		
	statistics	No. obs.	statistics	No. obs.	
CADF (H ₀ : unit root; <i>t</i> -bar statistic)					
Net worth-to-GDP ratio ² Transfers-to-revenue ratio	-2.088	120	2.610 ***	90	
Total transfers ²	-1.342	120	2.610 ***	90	
Current transfers	-1.627	136	-1.907	119	
Capital transfers	-1.883	120	-2.434 **	105	
Net transfers ²	-1.423	112	2.610 ***	84	

^{1.} The sample spans the period 1995-2004. The regressions include a constant term. Statistical significance at the 1, 5 and 10 percent levels is denoted by, respectively, (***), (**) and (*).

Source: OECD national accounts database and author's estimations.

results of the unit root tests is that the time span for which information is currently available is relatively short. It is well known that unit root tests have stronger predictive power when data are available for much longer time periods and when the time dimension of the panel is higher than its cross-sectional dimension.

Co-integration tests

The tests

A number of methodologies are now available for testing for panel co-integration.⁵ As in the case of unit root tests, these methodologies are panel counterparts of pure time-series techniques. There are residuals-based approaches akin to that of Engle-Granger, such as the Pedroni (1997, 1999) framework, which allows for unbalanced panels and heterogeneity in the slope coefficients, as well as fixed effects and trends in the data. The idea of residuals-based tests is that, as in the pure time-series case, if the estimated residuals are stationary, there exists a linear combination among the variables included in the regression.⁶

Again, as in the case of the unit root tests reported above, it is important to allow for cross-sectional heterogeneity to account for the different institutional and country-specific settings that may affect the relationship between intergovernmental transfer receipts and local government net worth. However, it will not be possible to deal with the presence of common factors and spatial spillovers when testing for co-integration, as was the case of the unit root test analysis reported above. Although recent developments in panel co-integration testing have focused on techniques that allow for cross-sectional

^{2.} Twice-differenced.

^{5.} See Baltagi and Kao (2000) and Breitung and Pesaran (2006) for recent surveys.

^{6.} When more than one within-group co-integrating relationship may exist, there are rank-based tests akin to that of Johansen-Juselius for pure time series. This is because, as in the pure time-series case, residuals-based tests do not allow for identifying the number of co-integrating relationships that may exist among the integrated variables of interest. Among these tests is the Maximum Likelihood test of co-integrating rank in heterogeneous panels proposed by Larsson *et al.* (2001). Of course, this is not the case at hand, because there can be at most one co-integrating relationship between two variables.

dependence arising from common factors, these methodologies require a much larger time dimension than that of the panel at hand.⁷

The Pedroni methodology consists of testing for the presence of unit roots in the residuals of the co-integrating equation. Seven panel statistics are available: four statistics based on the panel's within dimension (panel-ADF statistics) and three based on the panel's between dimension (group-ADF statistics). The null hypothesis is of no co-integration (*i.e.* unit roots in the residuals) in all cases (Pedroni, 1999, 2001, 2004). The difference between the panel-ADF and group-ADF statistics is related to the specification of the alternative hypothesis: $H_A: \rho_i = \rho < 1$, for all i, for the panel-ADF statistics (where ρ_i is the autoregressive coefficient in a standard ADF equation for the residuals of the co-integrating equation), and $H_A: \rho_i < 1$, for all i, for the group-ADF statistics, so that heterogeneity is allowed under the alternative hypothesis. Although the predictive power of these statistics rises with the panel's time-series dimension, the group-ADF and panel-ADF statistics generally perform well in small samples.

In what follows, co-integration will be tested on the basis of one of Pedroni's residuals-based group-ADF statistic. The test allows for heterogeneity in the panel, which is important, as argued above, on the basis of cross-country differences in institutional settings. It involves the calculation of a *t*-bar statistic (similar to that computed for the IPS unit root test) on the basis of the autoregressive coefficients of standard ADF equations for the residuals of the co-integrating equations estimated for each cross-sectional unit in the panel. The group-ADF statistic is defined as:

$$\Psi_{\bar{t}} = \frac{\sqrt{N} (\bar{t}_{N,T} - E[\bar{t}_{N,T}(p,0)])}{\sqrt{Var(\bar{t}_{N,T})}} \Rightarrow N(0,1),$$

where $\bar{t}_{N,T} = \frac{\sum_{i=1}^N t_i}{N}$, t_i is the t statistic of each ρ_i in standard ADF equations estimated for the residuals of the co-integration equations estimated for all cross-sectional units in the panel, p is the ADF equation's augmentation order, and $E[\bar{t}_{N,T}(p,0)]$ and $Var(\bar{t}_{N,T})$ are the mean and variance of $\bar{t}_{N,T}(p,0)$ under the null hypothesis of no co-integration ($H_0: \rho_i = 0$), which were tabulated by Pedroni (1999). The group-ADF statistic diverges to minus infinity under the alternative hypothesis; therefore, the left tail of the normal distribution is used to assess the critical value for rejecting the null: large negative values imply that the null of no co-integration is rejected.

The results

Because of the need to distinguish between two competing hypotheses (discussed above), and since residuals-based co-integration testing is sensitive to the definition of the co-integrating equation, the group-ADF statistic will be computed for an equation in which net worth is a function of transfer receipts and for another equation in which, conversely, transfer receipts are a function of net worth. The results of the co-integration tests, reported in Table 4, are not sensitive to the definition of the co-integrating equation. The null of no co-integration was rejected in the case of the current transfer-to-revenue ratio,

^{7.} The asymptotic equivalence between estimators based on cross-independence and those based on cross-dependence in non-stationary panel time series has been showed by Groen and Kleibergen (1999), who propose a likelihood-based framework for co-integration in panels with a fixed number of error-correction models.

regardless of the theoretical hypothesis being tested. For the equations including the other transfer indicators, there does not appear to be a common stochastic trend between transfer receipts and local government net worth. On the basis of this test, the long-term coefficients will be estimated for the co-integrating equations defined for local government net worth and current transfer receipts.

Table 4. Pa	nel co-integration	tests: Group-ADF	statistics1
-------------	--------------------	------------------	-------------

				
	Based on res	Based on residuals from:		
	Equation (1)	Equation (2)		
Transfer type				
Total transfers	1.58	1.00		
Current transfers	-3.61 ***	-2.79 ***		
Capital transfers	4.73	-0.51		
Net transfers	2.33	0.93		

The sample spans the period 1995-2004. The regressions include an intercept and a time trend. Statistical significance at the 1, 5 and 10% levels is denoted by, respectively, (***), (**) and (*).

Source: OECD national accounts database and author's estimations.

Estimating the co-integrating vectors

The methodology

Having established that a co-integrating relationship exists between the variables of interest, at least for the case of current transfers, the co-integrating vector needs to be estimated under both competing theoretical hypotheses: soft budget-constraint and deficit bias. Two methodologies will be used in either case: the dynamic OLS (DOLS) and the dynamic fixed-effects (DFE) estimators. Both techniques assume that the co-integrating vectors are identical for all panel units, and neither allows for cross-sectional dependence. The dynamic seemingly unrelated regressions (DSUR) estimator of Mark *et al.* (2005) and Moon and Perron (2004) allow for cross-sectional dependence in the estimation of the co-integration vector. Unlike DOLS, the DSUR estimator exploits the presence of long-run cross-sectional correlation in the equilibrium errors, which makes it more efficient (Westerlund, 2005). However, DSUR is only feasible for panels where the number of cross-sectional units is significantly smaller than the time-series dimension, which is not the case of the panel at hand.

The DOLS estimator

The DOLS estimator, developed by Saikkonen (1991) and Stock and Watson (1993), uses leads and lags of the differenced right hand-side variable to correct for possible serial correlation and weak exogeneity in a co-integrated regression.⁸ Based on Equation (1), under the deficit-bias hypothesis, the DOLS equation is defined as:

$$D_{it} = \alpha_i^{DB} + \beta_{DOLS}^{DB} T_{i,t-1} + \sum_{j=1}^{p_1} \xi_j^{DB} \Delta T_{i,t-j} + \sum_{j=1}^{p_2} \psi_j^{DB} \Delta T_{i,t+j} + u_{it}^{DB}.$$
 (3)

^{8.} The DOLS technique, as well as the fully modified estimator of Phillips and Hansen (1990), produces estimators that are asymptotically normally distributed with zero means (Kao and Chiang, 1999).

Likewise, based on Equation (2), in the case of the soft budget-constraint hypothesis, the DOLS equation is as follows:

$$T_{it} = \alpha_i^{SB} + \beta_{DOLS}^{SB} D_{i,t-1} + \sum_{i=1}^{p_1} \xi_j^{SB} \Delta D_{i,t-j} + \sum_{i=1}^{p_2} \psi_j^{SB} \Delta D_{i,t+j} + u_{it}^{SB}.$$
 (4)

The DFE estimator

The DFE estimator is based on an autoregressive distributed lag (ADRL) model in the case of pure time series (Pesaran and Shin, 1999). Under the deficit-bias hypothesis, the DFE methodology involves the estimation of the following model:

$$\Delta D_{it} = \sigma_i^{DB} d_i' + \lambda^{DB} D_{i,t-1} + \beta_{DFE}^{DB} T_{i,t-1} + \sum_{j=1}^{p_1} \omega_j^{DB} \Delta D_{i,t-j} + \sum_{j=1}^{p_2} \phi_j^{DB} \Delta T_{i,t-j} + u_{it}^{DB},$$
 (5)

where d'_i is a vector of time-invariant regressors.

Likewise, in the case of the soft budget-constraint hypothesis, the DFE equation is as follows:

$$\Delta T_{it} = \sigma_i^{SB} d_i' + \lambda^{SB} T_{i,t-1} + \beta_{DFE}^{SB} D_{i,t-1} + \sum_{i=1}^{p_1} \omega_j^{SB} \Delta T_{i,t-j} + \sum_{i=1}^{p_2} \phi_j^{SB} \Delta D_{i,t-j} + u_{it}^{SB}.$$
 (6)

The estimate of the long-run coefficients are given by $\theta_n^{DFE} = -\hat{\beta}_{DFE}^n/\hat{\lambda}_n^n$, where $\hat{\beta}_{DFE}^n$ and $\hat{\lambda}^n$ are the DFE estimators of β_{DFE}^n and λ^n , for n = (DB, SB) in Equations (5)-(6). As mentioned above, the long-term parameter is identical for all cross-sectional units.

Testing for temporal causality

Both methodologies used to estimate the co-integrating vector lend themselves to temporal causality analysis. This is important because, as argued above, temporal causality allows for distinguishing the deficit-bias and soft budget-constraint hypotheses about an association between intergovernmental transfer arrangements and recipient jurisdiction indebtedness. Temporal causality can be tested using a conventional F test. For example, by Equation (5), if $H_0: \beta_{DFE}^{DB} = \phi_j^{DB} = 0$ is rejected for all j, then T_{it} Granger-causes D_{it} , which is in support of the deficit-bias hypothesis. Likewise, by Equation (6), if $H_0: \beta_{DFE}^{SB} = \phi_j^{SB} = 0$ is rejected for all j, then D_{it} Granger-causes T_{it} , which is in support of the soft budget-constraint hypothesis.

Temporal causality can be tested in the alternative setting proposed by Hurlin and Venet (2001) for panels with fixed coefficients. For instance, in the case of the deficit-bias hypothesis, temporal causality testing would involve the estimation of the following equation:

$$\Delta D_{it} = \alpha_i^{DB} + \sum_{j=1}^{p_1} \lambda_{(j)}^{DB} \Delta D_{i,t-j} + \sum_{j=0}^{p_2} \xi_{i(j)}^{DB} \Delta T_{i,t-j} + u_{it}^{DB}.$$
 (7)

Two hypotheses can be considered for the case with homogeneous autoregressive processes: 9 homogeneous non-causality (HNC) and homogeneous causality (HC). The null hypothesis under HNC is $H_0: \xi_{i(j)}^{DB} = 0$, for all i and j, which is tested against $H_A: \xi_{i(j)}^{DB} \neq 0$, for at least some i and j. Acceptance of the null therefore indicates that transfers do not Granger cause net worth for all cross-sectional units in the panel. Rejection of the null hypothesis indicates instead that for at least one or more units, transfers Granger cause net worth. The HNC statistic is computed by comparing the sum of squared residuals of the unrestricted model in Equation (7) (RSS_u) with the sum of squared residuals of a restricted model where the slope coefficients and lags of $\xi_{i(j)}^{DB} \Delta T_{i,t-j}$ are set to zero, leaving only the fixed effects and the lags of the dependent variable to predict current values of ΔD_{it} (RSS_r^{HNC}). The HNC test statistic is computed as:

$$F_{HNC} = \frac{(RSS_r^{HNC} - RSS_u)/Np}{RSS_u/(NT - N(1+p) - p)},$$
(8)

where N, p, and T are, respectively, the cross-sectional dimension of the panel, the number of lags used in Equation (7), and the time-series dimension of the panel.

Acceptance of the null on the basis of an F test distributed (Np, NT - N(1+p) - p) calls for testing the hypothesis of homogenous causality (HC). The null hypothesis for HC is $H_0: \xi_{i(j)}^{DB} = \xi_j^{DB} \neq 0$, for all i and some j, which is tested against $H_A: \xi_{i(j)}^{DB} \neq \xi_j^{DB}$, for at least some i and some j. Acceptance of the null indicates that all cross-sectional units follow the same causal process. The HC test statistic is calculated using the sum of squared residuals from the unrestricted model described above (RSS_u) and the sum of squared residuals of a restricted model in which the slope terms are constrained to equality for all cross-sectional units (RSS_r^{HC}) . The HC test statistic is computed as:

$$F_{HNC} = \frac{(RSS_r^{HC} - RSS_u)/p(N-1)}{RSS_u/(NT - N(1+p) - p)}.$$
(9)

In the case of the soft budget-constraint hypothesis, the Hurlin-Venet setting involves estimating the following equation:

$$\Delta T_{it} = \alpha_i^{SB} + \sum_{j=1}^{p_1} \lambda_{(j)}^{SB} \Delta T_{i,t-j} + \sum_{j=0}^{p_2} \beta_{i(j)}^{SB} \Delta D_{i,t-j} + u_{it}^{SB}.$$
 (10)

The HNC and HC statistics can therefore be computed using Equations (8)-(9) to test for temporal causality.

The estimated vectors and temporal causality tests

The results of the DOLS and DFE estimations are reported in Table 5. In the case of the deficit-bias hypothesis, the magnitude and sign of the coefficients confirm the hypothesis that an increase in current transfer receipts from higher levels of government is associated with a decrease in the recipient

^{9.} The same statistics can be calculated for each cross-sectional unit so as to allow for heterogeneity arising from different autoregressive processes. But this case will not be considered here.

Table 5. Co-integration vectors¹

	Coefficient	N	No. lags	R ² (within)	F
Deficit-bias hypothesis					
DOLS regression	-0.03 (0.028)	120 [14]	1	0.01	0.58
H ₀ : Transfers do not cause net worth (Prob > F)	0.317				
DFE regression	-0.04 *** (0.018)	106 [14]	2	0.15	2.64 **
Implied LR coefficient	-0.24				
H ₀ : Transfers do not cause net worth (Prob > F)	0.063 **				
Soft budget-constraint hypothesis					
DOLS regression	-1.06 ** (0.509)	95 [14]	2	0.13	2.32 **
H ₀ : Net worth does not cause transfers (Prob > F)	0.311				
DFE regression	-1.12 ***	106 [14]	2	0.51	15.03 ***
	(0.314)				
Implied LR coefficient	-1.60				
H_0 : Net worth does not cause transfers (Prob > F)	0.003 ***				

1. The sample spans the period 1995-2004. The coefficients reported are, respectively, $\hat{\beta}_{DOLS}^n$ and $\hat{\beta}_{DFE}^n$, for n=(DB,SB), estimated in Equations (3)-(6). The LR coefficients are computed as $\theta_n^{DFE}=-\hat{\beta}_{DFE}^n/\hat{j}_n$ λ^n , for

 λ^n estimated in Equations (5)-(6). All models include an intercept and fixed effects (not reported). Standard errors are reported in parentheses. The number of cross-section units is reported in brackets. The number of lags and leads was selected on the basis of the Akaike Information Criterion (AIC). Statistical significance at the 1, 5 and 10 percent levels is denoted by respectively (***), (**) and (*).

Source: OECD national accounts database and author's estimations.

jurisdiction's net worth over the long term. But the estimated coefficient is small in size and only significant at classical levels in the DFE regression. In the case of the soft budget-constraint hypothesis, the co-integrating vector implies that a fall in local government net worth would be associated with an almost one-to-one increase in current transfer receipts. Evaluated at the sample means, the coefficients estimated by both DOLS and DFE imply that a fall in the ratio of local government net worth from the current level of near balance to about 5% of GDP would be associated with an increase in transfer receipts from the current level of 33% of local government revenue to about 37%.

• The results of the temporal causality tests are also reported in Table 5, for both the DOLS and DFE equations. On the basis of these tests, it appears that transfer receipts do cause net worth in the temporal causality sense in the DFE equation, when the long-term coefficients are estimated by DFE, which supports the deficit-bias hypothesis. Nevertheless, it also appears that net worth causes transfer receipts on the base of the DFE regression, which is in accordance with the soft budget-constraint hypothesis. The results of the Hurlin-Venet temporal causality tests are reported in Table 6. On the basis of these tests, there appears to be support for the deficit-bias hypothesis, because the null hypothesis that transfers do not Granger-cause net worth is rejected comfortably for all cross-sectional units in the panel.

There is nevertheless heterogeneity in the panel on the basis of the HC test, because the null that all cross-sectional units follow the same causal process is also comfortably rejected.

Table 6. Temporal causality tests: Hurlin-Venet methodology¹

	Нурс	Hypotheses			
	Transfers do not Net worth does not				
	cause net worth	cause transfers			
F _{HNC}	1.74 ***	1.12			
F_{HC}	1.58 ***	0.78			

 The sample spans the period 1995-2004. The test statistics are described in Equations (8)-(9). HNC and HC refer, respectively, to "homogeneous non-causality" and "homogeneous causality". All models include an intercept and fixed effects (not reported). The number of lags and leads was selected on the basis of the Akaike Information Criterion (AIC). Statistical significance at the 1, 5 and 10 percent levels is denoted by respectively (***), (**) and (*).

Source: OECD national accounts database and author's estimations.

4. Summary of the main findings and discussion

This paper used OECD national accounts data to shed additional light on the empirical association between intergovernmental transfer arrangements and sub-national public finances. In particular, temporal causality analysis was used to distinguish between the deficit-bias and the soft budget-constraint hypotheses that underscore the empirical association between intergovernmental transfer receipts and recipient jurisdictions' indebtedness (controlling for the accumulation of financial assets). As noted above, the predictions of the deficit-bias and soft budget-constraint literatures are otherwise observationally equivalent, as a statistical association between transfer receipts and net worth is a necessary condition for both predictions. While the estimation of the long-term parameters by DFE appears to support the deficit-bias hypothesis, there is equally compelling evidence in favour of the soft-budget-constraint hypothesis in the sample of countries under examination. In this latter case, transfer arrangements may act as an alternative financing mechanism for reducing sub-national net indebtedness.

The magnitude of the estimated parameters nevertheless suggests that, while an increase in the share of current transfer receipts in local government revenue leads to a modest deterioration in net worth over the long term, a deterioration in local government net worth is associated with a sizeable increment in their current transfer receipts (in per cent of revenue). To the extent that this finding is indicative that budget constraints are less hard than possibly desirable, at least as far the OECD countries in the sample are concerned, there is scope for strengthening sub-national budget constraints further. Options for doing so include the introduction of fiscal rules. These include administrative controls, such as the need for central government approval of sub-national borrowing, as in Ireland, Japan, Korea, and the United Kingdom. In some countries, local governments are banned from borrowing abroad, as in Mexico.

More comprehensive fiscal rules include ceilings on public debt or debt service, expenditure, or budget balances. Golden rules (*i.e.* budgeted deficits must not exceed investment spending) are in place in some cases (Germany, Switzerland, and the United Kingdom), while other countries impose ceilings on the public debt and/or debt service outlays (Hungary, Poland, and Portugal). Outside the OECD area, the

^{10.} See OECD (2002, Chapter IV; 2003, Chapter V) for more information on OECD countries and de Mello (2007) for the case of Brazil.

experience of Brazil with fiscal rules is instructive, because the successful implementation of comprehensive fiscal responsibility legislation has been instrumental in the country's process of fiscal adjustment since mid-1990s. It is also important to note that markets appear to be a poor substitute for fiscal rules, particularly at the sub-national level of government, but have complemented fiscal rules in many cases, such as in Canada and the United States. Finally, international experience suggests that, where in place, attention is needed to avoid fiscal gimmickry as a means of bypassing legal restrictions on borrowing. Common mechanisms include the channelling of expenditure through the tax system, the creation of off-budgetary funds, and the commitment of government resources through public-private partnerships and loan guarantees, among others.

It is also important to acknowledge that a negative association between transfer receipts and net worth may be unrelated to the cost-shifting incentives and their impact on sub-national fiscal performance through soft budget constraints. Such an association may be due instead to different financing mechanisms that are available for sub-national governments, such as, for example, the securitisation of future revenue from intergovernmental grants. This operation may be an alternative to pay-as-you-go financing in the case of investment projects, for example. In the United States, municipal bonds can be of two types: general obligation (GO), which are backed by general taxation, and revenue bonds, which are financed by receipts of future taxes, fees, lease payments, federal grants, lottery earnings, or tobacco settlement payments. Whereas issuance of GO bonds is often subject to constitutional limits, this is not the case of revenue bonds. An example outside the OECD area is that of the Brazilian states, which resorted to a "revenue anticipation" instrument extensively, including as a deficit-financing tool, until its use was curtailed as a means of reining in sub-national indebtedness. ¹¹

_

^{11.} See Afonso and de Mello (2002) for more information.

References

- Afonso, J.R. and L. de Mello (2002), "Brazil: An Evolving Federation", in A. Ehtisham and V. Tanzi (eds.), *Managing Fiscal Decentralization*, Routledge, London.
- Alesina, A. and A. Drazen (1991), "Why Are Stabilizations Delayed?", *American Economic Review*, Vol. 81, pp. 1170-88.
- Baltagi, B.H. and C. Kao (2000), "Nonstationary Panels, Cointegration in Panels, and Dynamic Panels: A Survey", *Advances in Econometrics*, Vol. 15, pp. 7-52.
- Becker, E. (1996), "Illusion of Fiscal Illusion: Unsticking the Flypaper Effect", *Public Choice*, Vol. 86, pp. 85-102.
- Benton, J.E. (1992), "The Effects of Changes in Federal Aid on State and Local Government Spending", *Publius*, Vol. 22, pp. 71-82.
- Breitung, J. and M.H. Pesaran (2006), "Unit Roots and Cointegration in Panels", in L. Matyas and P. Sevestre (eds.), *The Econometrics of Panel Data*, Kluwer Academic Publishers.
- Buettner, T. and D.E. Wildasin (2006), "The Dynamics of Municipal Fiscal Adjustment", *Journal of Public Economics*, Vol. 90, pp. 1115-32.
- Deller, S.C. and C.S. Maher (2005a), "Categorical Municipal Expenditure with a Focus on the Flypaper Effect", *Public Budgeting and Finance*, Vol. 25, pp. 73-90.
- Deller, S.C. and C.S. Maher (2005b), "A Model of Asymmetries in the Flypaper Effect", *Publius*, Vol. 36, pp. 213-29.
- de Mello, L. (1999), "Intergovernmental Fiscal Relations: Co-ordination Failures and Fiscal Outcomes", *Public Budgeting and Finance*, Vol. 19, pp. 3-25.
- de Mello, L. (2000), "Fiscal Decentralization and Intergovernmental Fiscal Relations: A Cross-Country Analysis", *World Development*, Vol. 28, pp. 365-80.
- de Mello, L. (2001), "Fiscal Decentralization and Borrowing Costs: The Case of Local Governments", *Public Finance Review*, Vol. 29, pp. 108-38.
- de Mello, L. (2007), "Fiscal Responsibility Legislation and Fiscal Adjustment: The Case of Brazilian Local Governments", in G.E. Peterson and P.C. Annez (eds.), Financing Cities: Fiscal Responsibility and Urban Infrastructure in Brazil, China, India, Poland and South Africa, World Bank-Sage.
- Gamkhar, S. and W. Oates (1996), "Asymmetries in the Response to Increases and Decreases in Intergovernmental Grants: Some Empirical Findings," *National Tax Journal*, Vol. 49, pp. 501-12.

- Garcia-Mila, T., T.J. Goodspeed and T.J. McGuire (2001), "Fiscal Decentralisation Policies and Sub-National Government Debt in Evolving Federations", unpublished manuscript.
- Goodspeed, T.J (2002), "Bailouts in a Federation", *International Tax and Public Finance*, Vol. 9, pp. 409-21.
- Gramlich, E.M. (1987), "Federalism and Federal Deficit Reduction", *National Tax Journal*, Vol. 40, pp. 299-313.
- Groen, J.J.J. and F. Kleibergen (1999), "Likelihood-Based Cointegration Analysis in Panels of Vector Error Correction Models", *Discussion Paper*, No. 99-055/4, Tinbergen Institute, Rotterdam.
- Hallerberg, M. and J. von Hagen (1999), "Electoral Institutions, Cabinet Negotiations, and Budget Deficits in the European Union", in J. Poterba and J. von Hagen (eds.), *Fiscal Institutions and Fiscal Performance*, University of Chicago Press, Chicago.
- Heyndels, B. (2001), "Asymmetries in the Flypaper Effect: Empirical Evidence for the Flemish Municipalities", *Applied Economics*, Vol. 33, pp. 1329-34.
- Hines, J.R. and R.H. Thaler (1995), "The Flypaper Effect", *Journal of Economic Perspectives*, Vol. 9, pp. 217-26.
- Hurlin, C. and B. Venet (2001, "Granger Causality Tests in Panel Data Models with Fixed Coefficients", Unpublished manuscript, University of Paris IX, Paris.
- Jones, M.P., P. Sanguinetti and M. Tommasi (2000), "Politics, Institutions, and Public Sector Spending in the Argentine Provinces", *Journal of Development Economics*, Vol. 61, pp. 305-33.
- Kao, C. and M.H. Chiang (1999), "On the Estimation and Inference of a Cointegrated Regression in Panel Data", *Working Paper*, Centre for Policy Research, Syracuse University, Syracuse, N.Y.
- Knight, B. (2000), "The Flypaper Effect Unstuck: Evidence on Endogenous Grants from the Federal Highway Aid Program", Board of Governors of the Federal Reserve System, Washington, D.C.
- Larsson, R., J. Lyhagen and M. Lothgren (2001), "Likelihood-Based Cointegration Tests in Heterogenous Panels", *Econometrics Journal*, Vol. 4, pp. 109-42.
- Levaggi, R. and R. Zanola (2003), "Flypaper Effect and Sluggishness: Evidence from Regional Health Expenditure in Italy", *International Tax and Public Finance*, Vol. 10, pp. 535-47.
- Maddala, G.S. and S. Wu (1999), "A Comparative Study of Unit Root Tests for Panel Data and a New Simple Test", *Oxford Bulletin of Economics and Statistics*, Vol. 61, pp. 631-52.
- Mark, N.C., M. Ogaki and D. Sul (2005). "Dynamic Seemingly Unrelated Cointegrating Regression", *Review of Economic Studies*, Vol. 72, pp. 797-820.
- Martell, C.R. and B.M. Smith (2004), "Grant Level and Debt Issuance: Is There a Relationship? Is There Symmetry?", *Public Budgeting and Finance*, Vol. 24, pp. 65-81.
- Melo, L. (1996), "The Flypaper Effect under Different Institutional Contexts: The Colombian Case", *Public Choice*, Vol. 111, pp. 317-45.

- Moon, R. and B. Perron (2004), "Testing for Unit Root in Panels with Dynamic Factors", *Journal of Econometrics*, Vol. 122, pp. 81-126.
- Moon, H.R. and B. Perron (2004). "Efficient Estimation of the SUR Cointegration Regression Model and Testing for Purchasing Power Parity", *Econometric Reviews*, Vol. 23, pp. 293 323.
- OECD (2002), Economic Outlook, No. 72, OECD, Paris.
- OECD (2003), Economic Outlook, No. 74, OECD, Paris.
- Pedroni, P. (1997), "Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series with an Application to the PPP Hypothesis: New Results", *Working Paper*, Indiana University.
- Pedroni, P. (1999), "Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors", *Oxford Bulletin of Economics and Statistics*, Vol. 61, Special Issue, pp. 653-70.
- Pedroni, P. (2001), "Purchasing Power Parity Tests in Cointegrated Panels", *Review of Economics and Statistics*, Vol. 83, pp. 727-31.
- Pedroni, P. (2004), "Panel Cointegration. Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis", *Econometric Theory*, Vol. 20, pp. 597-625.
- Pesaran, M.H. (2005), "A Simple Panel Unit Root Test in the Presence of Cross Section Dependence", *Cambridge Working Papers in Economics*, No. 0346, University of Cambridge, Cambridge.
- Pesaran, M.H. and Y. Shin (1999), "An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis", in S. Strom (ed.), *Econometrics and Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium*, Cambridge University Press, Cambridge.
- Phillips, P.C.B. and B.E. Hansen (1990), "Statistical Inference in an Instrumental Variables Regression with I(1) Processes", *Review of Economic Studies*, Vol. 57, pp. 99-125.
- Poterba, J.M. and K.S. Rueben (1997), "State Fiscal Institutions and the US Municipal Bond Market", *NBER Working Paper*, No. 6237, National Bureau of Economic Research, Cambridge, MA.
- Prud'homme, R. (1995), "On the Dangers of Decentralization", *World Bank Research Observer*, August, pp. 201-10, World Bank, Washington, D.C.
- Qian, Y. and G. Roland (1998), "Federalism and the Soft Budget Constraint", *American Economic Review*, Vol. 88, pp. 1143-62.
- Rodden, J. (2002), "The Dilemma of Fiscal Federalism: Grants and Fiscal Performance around the World", *American Journal of Political Science*, Vol. 46, pp. 670-87.
- Saikkonen, P. (1991), "Asymptotically Efficient Estimation of Cointegrating Regressions", *Econometric Theory*, Vol. 58, pp. 1-21.
- Stine, W.F. (1994), "Is Local Government Revenue Response to Federal Aid Asymmetrical? Evidence from Pennsylvania County Governments in an Era of Retrenchment", *National Tax Journal*, Vol. 57, pp. 799-816.

- Stock, J.H. and M.W. Watson (1993), "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems", *Econometrica*, Vol. 61, pp. 783-820.
- Tanzi, V. (1995), "Fiscal Federalism and Decentralisation: A Review of Some Efficiency and Macroeconomic Aspects", Annual Bank Conference on Development Economics, World Bank, Washington, DC.
- Ter-Minassian, T. (1999), "Decentralization and Macroeconomic Management", in K. Fukasaku and L. de Mello (eds.), *Fiscal Decentralization, Intergovernmental Fiscal Relations and Macroeconomic Governance*, OECD Development Centre, Paris.
- Velasco, A. (1999), "A Model of Endogenous Fiscal Deficits and Delayed Fiscal Reforms", in J. Poterba and J. von Hagen (eds.), *Fiscal Institutions and Fiscal Performance*, University of Chicago Press, Chicago.
- Velasco, A. (2000), "Debts and Deficits with Fragmented Fiscal Policymaking", *Journal of Public Economics*, Vol. 76, pp. 105-25.
- von Hagen, J. and I. Harden (1995), "Budget Processes and Commitment to Fiscal Discipline", *European Economic Review*, Vol. 39, pp. 771-79.
- Westerlund, J. (2005), "Data Dependent Endogeneity Correction in Cointegrated Panels", Oxford Bulletin of Economics and Statistics, Vol. 67, pp. 691-705.
- Wildasin, D.E. (1997), "Externalities and Bailouts: Hard and Soft Budget Constraints in Intergovernmental Fiscal Relations", *Policy Research Working Paper*, No. 1843, World Bank, Washington, D.C.
- Wyckoff, P.G. (1988), "A Bureaucratic Theory of Flypaper Effects", *Journal of Urban Economics*, Vol. 23, pp. 115-29.

WORKING PAPERS

The full series of Economics Department Working Papers can be consulted at www.oecd.org/eco/Working_Papers/

- 580. *Boosting Austria's Innovation Performance* (September 2007) Willi Leibfritz and Jürgen Janger
- 579. *Improving Employment Prospects in the Slovak Republic: Building on Past Reforms* (September 2007) Andres Fuentes
- 578. *Improving education outcomes in the Slovak Republic* (September 2007) David Carey
- 577. Regulatory reforms in Sweden have boosted productivity (September 2007) Espen Erlandsen and Jens Lundsgaard
- 576. The policy determinants of investment in tertiary education
 (September 2007) Joaquim Oliveira Martins, Romina Boarini, Hubert Strauss, Christine de la
 Maisonneuve and Clarice Saadi
- 575. Product market competition in the OECD countries: taking stock and moving forward (September 2007) Jens Hoj and Guiseppe Nicoletti
- 574. Too little destruction too little creation: A Schumpeterian diagnosis of barriers to sustained growth in Ukraine
 (September 2007) Christian Gianella and William Tompson
- 573. How do the OECD Growth Projections for the G7 Economies Perform? A post-mortem. (September 2007) Lukas Vogel
- 572. Austria's deepening economic integration with Central and Eastern Europe (August 2007) Rina Bhattacharya
- 571. Meeting the challenges of decentralization in France (July 2007) Stéphanie Jamet
 Faire face aux défis de la décentralisation en France (juillet 2007) Stéphanie Jamet
- 570. Enhancing incentives to improve performance in the education system in France (July 2007) Paul O'Brien

 Renforcer les incitations à une meilleure performance du système éducatif en France (juillet 2007) Paul O'Brien
- 569. Combating poverty and social exclusion in France (July 2007) Stéphanie Jamet

 Lutter contre la pauvreté et l'exclusion social en France (juillet 2007) Stéphanie Jamet
- 568 The competition law and policy indicator (July 2007) Jens Hoj

- 567. Structural policies and economic resilience to shocks (July 2007) Romain Duval, Jørgen Elmeskov and Lukas Vogel
- 566. Family policy in Hungary: how to improve the reconciliation between work and family? (July 2007) Philip Hemmings
- 565. Encouraging sub-national government efficiency in Hungary (July 2007) Alessandro Goglio
- 564. *Integration of immigrants in OECD countries: do policies matter?* (July 2007) Orsetta Causa and Sébastien Jean
- 563. The unemployment impact of immigration in OECD countries (July 2007) Sébastien Jean and Miguel Jiménez
- 562. Migration in OECD countries: labour market impact and integration issues (July 2007) Sébastien Jean, Orsetta Causa, Miguel Jiminez and Isabelle Wanner
- 561. The internationalisation of production, international outsourcing and employment in the OECD (June 2007) Margit Molnar, Nigel Pain and Daria Taglioni
- 560. Why has Swedish inflation been persistently low? (June 2007) Felix Hüefner
- 559. The Swedish housing market better allocation via less regulation (June 2007) Felix Hüefner and Jens Lundsgaard
- Linkages between performance and institutions in the primary and secondary education sector (June 2007) Douglas Sutherland and Robert Price
- 557. Toward a more efficient taxation system in New Zealand (June 2007) Annabelle Mourougane
- 556. *Income inequality, poverty and social spending in Japan* (June 2007) Randall Jones
- 555. *Improving the efficiency of health care spending: selected evidence on hospital performance* (May 2007) Espen Erlandsen
- 554. Cross-country analysis of efficiency in OECD health care sectors: options for research (May 2007) Unto Häkkinen and Isabelle Joumard
- 553. What promotes fiscal consolidation: OECD country experience (May 2007) Stéphanie Guichard, Mike Kennedy, Echkard Wurzel and Christophe André
- 552. Globalisation and the macroeconomic policy environment (April 2007) Karine Hervé, Isabell Koske, Nigel Pain, Franck Sédillot
- 551. Why has core inflation remained so muted in the face of the oil shock? (April 2007) Paul van den Noord and Christophe André