

OECD Economics Department Working Papers No. 89

A Survey of Studies of the Costs of Reducing Greenhouse Gas Emissions

Peter Hoeller, Andrew Dean, Jon Nicolaisen

https://dx.doi.org/10.1787/266327840518

OECD DEPARTMENT OF ECONOMICS AND STATISTICS

WORKING PAPERS

No.89 A SURVEY OF STUDIES OF THE COSTS OF REDUCING GREENHOUSE GAS EMISSIONS

by

Peter Hoeller, Andrew Dean and Jon Nicolaisen

General Economics Division

December 1990

ECONOMICS AND STATISTICS DEPARTMENT

WORKING PAPERS

This series of Working Papers is designed to make available, to a wider readership, selected studies which the Department has prepared for use within OECD. Authorship is generally collective, but main individual authors are named. The Papers are generally available in their original language, English or French, with a summary in the other.

Comment on the Papers is invited, and may be sent to OECD, Department of Economics and Statistics, 2 rue André Pascal, 75775 Paris Cedex 16, France. Additional copies of the Papers on a limited basis can be forwarded on request.

ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT

Copyright OECD 1990

This paper surveys various estimates of the macroeconomic implications of reducing greenhouse gas emissions. Most available studies focus on policies to reduce ${\rm CO}_2$ emissions and are limited to the costs of such policies. The survey first examines the key factors shaping baseline emission scenarios. It then looks at the aggregate cost of emission reductions, as shown by both global and country-specific models, and discusses the key determinants of the model outcomes. The paper also briefly reviews other options for reducing greenhouse gas emissions and draws some more general lessons for the policy response to the threat of climate change.

.

Ce document étudie plusieurs estimations des implications macroéconomiques d'une réduction des émissions de gaz à effet de serre. La plupart des études disponibles s'intéressent essentiellement aux politiques visant à réduire les émissions de CO2 et se limitent aux coûts de ces politiques. Ce document examine dans un premier temps les facteurs clés qui influencent les scénarios de référence se rapportant à ces émissions. Il étudie ensuite le coût d'ensemble des réductions d'émission tel que le font apparaître les modèles globaux ou par pays et discute les principaux éléments agissant sur les résultats du modèle. Ce papier passe aussi brièvement en revue les autres options permettant de réduire les émissions de gaz à effet de serre et tire quelques conclusions d'ordre plus général concernant les politiques envisageables face à la menace d'un changement climatique.

No.89 A SURVEY OF STUDIES OF THE COSTS OF REDUCING GREENHOUSE GAS EMISSIONS

by

Peter Hoeller, Andrew Dean and Jon Nicolaisen*

General Economics Division

December 1990

Jon Nicolaisen participated in this project while on secondment to the OECD during 1989-90 but has now returned to the Norwegian Ministry of Finance.

The authors would like to thank numerous colleagues in the Economics and Statistics Department, the Environment Directorate and the International Energy Agency at OECD for helpful comments and suggestions at various stages of this work, in particular Jean-Marc Burniaux, Jorgen Elmeskov, Bob Ford and John Martin., They are also grateful for comments on an earlier version from many of the modellers cited in the survey but take full responsibility for remaining errors and omissions. Special thanks are due to Jackie Gardel for technical assistance.

CONTENTS

		Page
I.	INTRODUCTION AND CONCLUSIONS	5
	A. The scope of the survey	5
	B. Summary of the main findings	6
	C. Some lessons for policy	7
II.	THE MODELS COVERED IN THIS SURVEY	10
III.	BASELINE SCENARIOS	13
	A. Key determinants of baseline CO ₂ emissions	13
	B. The range of growth rates for $C\overline{O}_2$ emissions	14
	C. Other greenhouse gases	16
IV.	EMISSION REDUCTION SCENARIOS	1 6
	A. Reducing CO ₂ emissions related to fossil-fuel combustion	16
	B. Key determinants of aggregate costs	18
	C. Forestry options	23
	D. The cost of reducing CFC emissions	25
Notes		27
Refere	nces	29
	TABLES	
Summary	y table: Main features of the models in the survey	11
1.	Summary of major greenhouse gases affected by human activities	33
2.	Global warming potential	34
3.	The relative cumulative climate effect of 1990 man-made emissions	35
4.	Baseline projections of key variables	36
5.	Fossil-fuel carbon emission factors and fuel prices	37
6.	Growth effects of CO ₂ emission reductions: global models	38
7.	Growth effects of CO ₂ emission reductions: country-specific	39
0	results	39 40
8. 9.	Emission reductions and carbon taxes Impact of fossil-fuel taxes on carbon-dioxide emissions	41
10.	Regional welfare changes under different policies	42
10.	Regional Wellare Changes under different policies	
	CHARTS	
Α.	Decoupling between TPE consumption and GDP growth, 1990-2100	43
В.	Impact of fossil-fuel taxes on the fuel mix	44

A SURVEY OF STUDIES OF THE COSTS OF REDUCING GREENHOUSE GAS EMISSIONS

I. INTRODUCTION AND CONCLUSIONS

A. The scope of the survey

The main focus of this survey is on the <u>costs</u> of slowing or preventing climate change by reducing the emissions and hence concentrations of greenhouse gases (GHG) (1). It is important, however, to see such costs in a broader framework which encompasses other responses to climate change. There are two polar responses to such changes; a do-nothing approach, which accepts the damage and adaptation costs that arise, and a preventive approach which attempts to avoid such damage. Between the two polar cases, all sorts of different combinations of prevention and adaptation are possible.

Even if GHG emissions were curtailed drastically today, warming is likely to occur in the coming decades, so that some adaptation to a warmer climate will have to take place in any case. The damage and adaptation costs that would occur in the more distant future are likely to be higher, the lower the level of preventive action. But preventive action itself may well involve rising marginal costs. There is thus an important trade-off which will depend critically on the discounting involved. An optimal policy mix is achieved at the point where the marginal cost of emission reductions is equal to the marginal benefit, as represented by the damage avoided (Nordhaus, 1990a). However, most studies do not attempt to estimate both costs and benefits and hence are unable to identify such an optimal point. The major difficulty lies in quantifying the benefits from cutting emissions. The majority of studies instead focus on the cost side and this survey is limited to such studies

The scope of the survey is further limited to one important aspect of the economics of climate change: the macroeconomic implications of policies to reduce GHG emissions. Thus, the survey does not cover sectoral analysis and the analysis is biased towards the quantifiable, in particular the costs of reducing the most important greenhouse gas, carbon dioxide (CO_2) .

B. Summary of the main findings

Current levels of GHG emissions are likely to lead to levels of concentration that imply a global warming (see Box at end of this section for more information on the scientific debate). Hence, policies to slow or to halt such warming imply a reduction of emissions from current levels. Reference scenarios which project trends in the absence of control policies, however, point to a growth in CO₂ emissions in the range of 1/2 to 1 1/2 per cent per annum in the long run, with increases being somewhat faster in the period up to 2025 and rather slower in later years (as population and growth slow). Major differences in emission scenarios stem from uncertainties in projecting population growth, technological progress (including the prices of back stop technologies), energy efficiency gains, energy prices and resource availability.

With emissions continuing to increase, any reduction from <u>current</u> levels implies very large decreases from the levels projected to occur in the long run. Achieving such large reductions of energy-related CO₂ emissions is estimated to lead to a reduction of global GDP <u>growth rates</u> in the range of 0.1 to 0.3 percentage points. Small differences in GDP growth rates in the long run would still imply large differences in long-run GDP <u>levels</u>.

The size of the reduction in long-run economic growth depends crucially both on the degree of substitutability between the various energy sources and other inputs and on the availability and price of low-carbon, back-stop technologies. The greater the degree of substitutability, the lower the cost will be in terms of growth for any given reduction in energy use. In the same vein, the availability of low-cost, low-carbon, back-stop technologies would allow countries to deal with the run-down of scarce fossil fuels such as oil and natural gas without having to resort to coal, which is in plentiful supply but is the most carbon-intensive of all fossil fuels. On the other hand, if sectoral policies are not optimal at the outset, then changes in transport or energy policies might provide a relatively cheap means of achieving the initial reductions in CO₂ emissions.

The <u>time profile</u> of emission reductions is also an important factor. Sharp reductions of CO_2 emissions are likely to be more costly in the short run as cheap low-carbon technologies are not yet available and part of existing capital may become unprofitable. The policy instruments used to achieve emissions reductions will also influence the size of the costs. A "command-and-control" approach towards limiting CO_2 emissions is likely to increase the macroeconomic cost significantly compared with an approach that operates through economic incentives.

The cost of limiting CO_2 emissions is likely to be much higher in developing countries due to their faster underlying growth rate. Even if they were allowed to double or triple their emissions over the next hundred years, they might still face higher costs than developed countries under much more stringent targets. On the other hand, large reductions in man-made CO_2 emissions are possible on a global scale only if the developing countries take part in an eventual international agreement.

As regards other greenhouse gases, international agreement has been reached on cutting CFC emissions sharply. As close substitutes for CFCs are available at low cost, a near phase out can be achieved relatively cheaply. Stopping further deforestation of tropical areas may also be achieved at low cost. But other forestry options, like reforestation, may be much more costly. A phase out of CFCs and an end to deforestation would nevertheless decrease annual GHG emissions considerably. However, a sharp cut in fossil-fuel combustion would still seem to be necessary to achieve the really significant reductions in emissions that would be required to stabilise GHG concentration levels.

C. Some lessons for policy

The survey focuses on the presentation and analysis of differences among emission reduction scenarios; these have been summarised in the main findings above. This section is more speculative and goes further by drawing out the general lessons which might be taken into account in the setting of policy in this area.

A cost-effective strategy needs to be based on a comprehensive review of policy options including, most importantly, an analysis of both the costs and benefits of policies to limit climate change. This survey has focused on costs. But it is important that the benefits of avoiding climate change, still a poorly researched area, are also taken into account. The narrow focus of the paper nevertheless provides some messages about the relative merits of the range of policies for reducing emissions that might be considered.

First, a cost-effective strategy should look at potential reductions in <u>all</u> greenhouse gases, taking into account their relative contribution to climate change.

Second, as noted in the summary, the recently agreed phase-out of major CFCs and halting deforestation would both significantly reduce radiative forcing attributable to GHG emissions and could be achieved at relatively low cost.

Third, "no-regrets" policies may provide a cheap lunch for considerable reductions in ${\rm CO}_2$ emissions since existing transport, energy, forestry and other sectoral policies may not be optimal for other reasons.

Fourth, carbon-tax scenarios show that the energy system can be transformed radically away from fossil-fuel combustion in the long run as new technologies are developed and become viable. The scenarios point to the fact that the costs of CO₂ reductions are likely to increase at the margin and to be much higher in developing than in developed countries. They also show that the cost of a sharp reduction in the short run is likely to be much higher than with a long-run phase-in of a carbon tax, mainly because low-cost, low-carbon technologies are not yet available.

Fifth, regulatory approaches and policies which tax energy inputs but do not focus on the carbon content of fossil fuels are likely to significantly increase the cost of control strategies.

Finally, the climate change issue is a <u>global</u> problem and requires a policy response which is itself global. In order to minimise free-rider problems, this requires an international agreement which ensures the maximum number of participating countries.

THE GREENHOUSE EFFECT

The Earth's climate is determined by a complex array of factors. One key factor is the so-called "greenhouse effect" which is due to the presence of heat-trapping gases in the lower atmosphere. The expression itself stems from the fact that "greenhouse gases" (GHGs) act as a jacket that keeps warmth (infrared rays) from escaping the Earth's atmosphere, in much the same way as glass traps heat in a greenhouse. The fact that the Earth is already as warm as it is, is due to the effect of naturally occurring GHGs. Even at relatively low atmospheric concentrations -- the atmosphere consists of less than 0.05 per cent GHGs -- the amount of heat that escapes the atmosphere decreases significantly and surface temperatures tend to rise (Schneider, 1989). Although intensely studied over the last few years, there are still many scientific uncertainties so that the exact extent and impact of "greenhouse warming" that seems to be due to increases in man-made GHGs is still undetermined.

The main GHG is carbon dioxide (CO₂). Other important GHGs are chlorofluorocarbons (CFCs), methane (CH₄) and nitrous oxide (N₂O). The main source of man-made GHG emissions is fossil-fuel combustion, which is estimated to be responsible for about 55-80 per cent of net "man-made" CO₂ emissions to the atmosphere (the rest stemming largely from deforestation); it is also a major source of N₂O and possibly methane emissions (IEA, 1989). Among GHGs, only CFCs are entirely independent of fossil-fuel use.

CO₂ emissions arising from tossil-fuel combustion are small compared to the natural cycle of carbon through and between natural sinks: the oceans, the biosphere and the atmosphere. Globally, the amount of carbon released annually through fossil-fuel burning is approximately 6 billion tons, which compares with gross emissions of 200 billion tons and a total atmospheric stock of carbon of about 700 billion tons. The fraction of "man-made" carbon emissions that remains in the atmosphere, rather than being absorbed in sinks, is believed to be around 60 per cent (Darmstadter and Edmonds, 1989).

For other GHGs, the relationship between emissions and greenhouse gas concentration levels is even more complex and relatively little is known about it. In the case of chemically unstable GHGs like CFCs, N₂O, ozone and water vapour, an essential feature of these relationships is the time period involved in disintegration of the gas into a non-GHG. CFC concentrations, for instance, are likely to increase only as long as the net emissions of CFCs exceed the net chemical transformation of airborne CFCs to non-GHGs. Table 1 summarises the current concentration level of different GHGs as compared to the pre-industrial level. CO₂ concentration levels, for instance, have increased by 26 per cent since the late 18th century. As the lifetime and radiative power of GHG emissions differs, a greenhouse warming potential index can be constructed, which takes into account the different characteristics of GHGs. Table 2 shows these characteristics in relation to a 1 kilogram emission of carbon dioxide over several time periods and Table 3 shows the relative cumulated climate effect of 1990 man-made emissions. While the relative radiative power of CO₂ is much lower than that of the other gases, the quantities emitted are much larger, so that its relative contribution to greenhouse warming is close to 60 per cent.

The IPCC (1990) argues that average global temperatures could rise from current levels by 1°C by 2025, in the absence of control policies, and continue to increase by an additional 2°C before the end of the next century -- although it stresses that there is a great deal of uncertainty around these estimates. The range of potential warming from pre-industrial levels is usually estimated at 1.5°C to 4.5°C by the end of the next century. The wide range reflects uncertainties concerning future emissions and feedback effects from oceans, clouds and other ecosystems. The dates in the future at which GHG concentrations are likely to double vary in the studies examined in this survey, ranging from 2030 (Mintzer, 1°87) to around 2060 (IPCC, 1990) to beyond 2075 (Edmonds and Reilly, 1987). To put estimated temperature increases in perspective, average global temperatures have fluctuated by as much as 10°C over the last 160 000 years and have increased by 0.3°C to 0.7°C over the last century. While this latter increase cannot be definitively attributed to the greenhouse effect, it is consistent with model simulations of climate changes caused by GHGs, given the uncertain delay arising from ocean absorption of GHGs and heat intake and from the uncertain effect of changes in the cloud cover (Houghton and Woodwell, 1989; EPA, 1989; Solow, 1990; and IPCC, 1990).

II. THE MODELS COVERED IN THIS SURVEY

The limited scope of the survey has already been mentioned above. The studies examined are those which focus on the cost side of emission reductions and which examine the macroeconomic implications in quantitative terms (2). This focus reduces the large number of papers concerned with modelling and analysis of the economics of climate change to a more manageable set. The paper surveys just over a dozen models. However, some of these models have been used by more than one author and some authors have used several generations of their model in successive papers. The main features of the models are given in the Summary Table overleaf, beginning with the few global models and then covering the more numerous single-country models.

The most complete global model in terms of modelling the energy-sector and its feedback to aggregate output is that of Manne and Richels (1990) However, their regional models have not been linked so far, so that the income flows and energy supply reactions between regions are not modelled consistently and no account is taken of feedbacks through international trade, though the latest version of their global 2100 model allows for trade in permits (3). Furthermore, the model does not distinguish among different industrial sectors. Models with a sophisticated treatment of the energy sector, but less developed macroeconomic linkages, include those of Edmonds and Reilly (1983), Nordhaus (1990) and the IEA (1990). The model of Whalley and Wigle (1990), though lacking dynamics (it is a comparative-static applied general equilibrium model), does have global consistency and some sectoral disaggregation; it is thus able to give insights into the effects of different types of international agreement to tackle global warming.

There are still relatively few global models, despite the fact that climate change is self-evidently a global problem. There are many more single-country models, in part because data and computational problems are easier to handle. There is a trade-off between the regional and sectoral scope of the models, as evidenced by the large difference in industry detail between the global and single-country models. A wider regional scope is important for the analysis of the international trade and welfare consequences of different types of international agreements, while sectoral scope is necessary, for instance, in pin-pointing the consequences of policies on the industrial structure. In

Main features of the models in the survey Summary Table

			Numbe	Number of:	
	Type of model	Time horizon (a)	energy sources (b)	industries	Regional scope (c)
	A. Globa	A. Global models			
Manne/Richels (1990)	Dynamic optimising	2100	6	•	5 regions
Whalley/Wigle (1990)	Static general equilibrium	2030 (d)	2	S	6 regions
Edmonds/Reilly (1983) (e)	Dynamic optimising	2100	9	:	9 regions
IEA (1990)	Econometric energy model	2005	2	6	
Nordhaus (1990)	Dynamic optimising	2100	7	:	No regional detail
CBO (1990)	B. Single-co	Single-country models			
DRI	Multi-sector macro	2000			United States
DGEM	Dynamic general equilibrium	2000	7	6	United States
Jorgenson/Wilcoxen (1990)		2060	٣	35	
Blitzer et al. (1990)	Dynamic general equilibrium	2002	m	10	Egypt
Glomsrød et al. (1990)	Dynamic general equilibrium	2010	ന	31	Norway
SIMEN (1989)	Multi-sector macro	2000			Norway
NEPP (1989)	Multi-sector macro	2010			Netherlands
Bergman (1989)	Dynamic general equilibrium	2000	2	Ŋ	Sweden
Dixon et al. (1989)	Dynamic general equilibrium	2002		113	Australia

Refers to the end-point of the simulations.

Includes electricity.

Refers to the regional coverage of the respective studies. e G C Q B

Calibrated on 1990-2030 average values.
This model is used by Cline (1989), Mintzer (1987) and Edmonds and Barns (1990).

addition, a certain disaggregation of primary energy sources is important, as the aggregate outcome is dependent on the assumed degree of substitutability between energy sources with different carbon contents.

Given the likelihood of an increase in future GHG emissions (examined in the following section) and the long lifetime of some GHGs, it is appropriate to use an extended time-horizon to the year 2050 and beyond for GHG projections and reduction scenarios. However, many country models focus on the short and medium term, perhaps because unilateral reductions in the long run would change concentration levels little and would be extremely costly relative to the benefit for the country.

Different types of model answer different questions The short-run macro-models are able to quantify possible short-run frictions such as problems of adjustment in the labour market or the effects of alternative macroeconomic policy responses to tax-induced price increases. In the short run, it is of little consequence that they are poor in modelling substitution possibilities as short-run substitution elasticities are typically low. In the long run, however, it is important to model substitution possibilities and reallocation of resources in a realistic way, and short-run frictions are likely to play only a minor role in shaping long-run growth trajectories. In addition, modelling of capital formation and assessing the deadweight loss of taxation are important considerations for the analysis. Applied general equilibrium and dynamic optimising models are the best vehicles to address these long-run issues.

Greenhouse gas (GHG) emissions and their effects need to be analysed over an extended time horizon due to the long lags involved in the transition from GHG emissions to, firstly, concentration levels and then to the ultimate effects on climate. It is for these reasons that, as indicated in the Summary Table, many projections of global GHG emissions run until the end of the 21st century. Some authors have suggested that even this time horizon is too short, since the major impacts of climate change would not be felt until the centuries beyond. Most of the studies focus on fossil-fuel related $\rm CO_2$ emissions only as they are responsible for a large part of GHG emissions and are the easiest to link to economic behaviour. Only two of the studies shown in Table 4 cover more than fossil-fuel $\rm CO_2$ emissions (Mintzer, 1987 and Nordhaus, 1990) (4).

III. BASELINE SCENARIOS

A. Key determinants of baseline CO2 emissions

In order to try to understand the differences between different baseline ${\rm CO}_2$ emissions, it is useful to focus on the key determinants of the growth of emissions (as shown in Table 4).

Output growth Most of the long-term, global studies assume an annual GDP growth of around 2 per cent over the next century, usually with stronger growth in the next few decades. The subsequent slowdown mainly reflects a deceleration of population growth in developing countries. A common feature is also the assumption of much faster average growth in developing than in developed countries. None of the baseline projections of future growth includes an estimate of the potential cost and benefits of climate change, however, the baselines being run off models which do not include climatic feedback (positive or negative).

Energy efficiency. This is a key exogenous parameter in the models. Estimates of the baseline growth in energy efficiency range from 0 to 2 per cent per annum for different regions in Manne and Richels (1990). The average for the world as a whole in Manne and Richels is close to the assumptions of Mintzer (1987) and Reilly et al. (1987), who assume long-term average growth rates of energy efficiency of 0.8 and 1 per cent, respectively.

Energy prices. Most studies incorporate a rise in relative energy prices throughout the next century, reflecting depletion and increasing exploration and mining costs, with an especially sharp rise in fossil-fuel prices (5). Most baseline scenarios suggest that the use of fossil fuels will be subject to supply-side constraints even in the absence of specific policies to limit GHG emissions (6).

Rising energy prices and energy efficiency gains lead to slower growth of aggregate energy demand than output growth. For instance, Nordhaus and Yohe (1983) estimate a growth rate in total final energy demand and fossil fuel

demand of only around 1 4 and 0 9 per cent a year, respectively, in spite of output growing at over 2 per cent per year.

The decomposition of the differences between output and energy demand growth into its energy efficiency and energy substitution components for the baseline scenario of Manne and Richels (1990a) is shown in Chart A. Slower growth in energy inputs than in output growth is due more to energy efficiency gains than to substitution except for the developing countries, excluding China where energy efficiency gains are the largest. The substitution elasticity of total energy requirements with respect to the bundle of labour and capital inputs is usually set at close to 0.5.

Back-stop technologies. Most analyses include an exogenous reduction in back-stop energy prices due to technical progress. For instance. Reilly et al. (1987) estimate that the supply prices of solar energy and safe nuclear energy will fall at annual rates of 2.5 and 0.6 per cent. respectively In addition, if other fuel prices rise, back-stop technologies gain in competitiveness relative to traditional (mainly fossil) fuels. Manne and Richels (1990) specify upper bounds on growth rates of investment in back-stop energies and also assume a set of specific introduction dates at which back-stop technologies become competitive. For example, the cost of producing electricity from solar energy is estimated to range between 5 1 and 11.1 cents per kwh in 2010. Torrens (1989) and Hubbard (1989) estimate solar energy back-stop prices at or below 10 cents per kwh by 2000, roughly in line with the Manne and Richels estimates, and the estimates of Dixon et al. (1989) are somewhat below 10 cents at the turn of the century for Australia (7).

B. The range of growth rates for CO2 emissions

Despite large uncertainties, there is agreement among the different studies that CO_2 emissions are likely to grow substantially over the next century. The annual growth rate of fossil-fuel CO_2 emissions is generally estimated to be in the range of 1/2 to 1 1/2 per cent for the world as a whole for the period to 2075. All scenarios point to faster growth of emissions over the next decades and a considerable slowdown thereafter. The IEA, for instance, projects that emissions could grow by more than 2 per cent annually

over the next 20 years. Even the low central projection of Reilly et al. (1987) implies that CO₂ emissions will be more than 50 per cent higher than today by 2075 (8). The projections in other studies imply that CO₂ emissions will more than double by 2075, with the IPCC's business-as-usual case pointing to the possibility of a quadrupling of emissions by the end of the next century (IPCC, 1990). By comparison, global CO₂ emissions increased from an estimated 1.5 billion tons per year in 1950 to more than 6 billion tons per year in 1990. The average annual per cent increase more than halved between 1950-1970 (4 8 per cent) and 1970-1988 (2.0 per cent) (Edmonds and Barns, 1990), reflecting slower output growth as well as the important impact of energy price changes in the latter period.

Differences in the various projections of man-made ${\rm CO}_2$ emissions shown in Table 4 reflect primarily:

- -- Different estimates of output growth and energy efficiency gains; the higher the growth in energy efficiency, the lower is the growth in final fuel demand relative to output growth;
- -- Different estimates of growth in real energy prices and the dates when suitable carbon-free back-stop technologies come on-stream and their costs. In the study by the IEA (1990), for instance, energy prices rise rapidly, but there is assumed to be only very limited scope for substitution to non-fossil fuels in the next decade, while final energy demand grows by more than 2 per cent a year. Taking a long-term view. Manne and Richels (1990a) explicitly introduce back-stop technologies that bring down the demand for fossil fuels.

Most long-term models suggest that a key issue is when and at what cost substitutes for existing fuels are going to be introduced on a large scale. It is likely that oil and especially natural gas reserves will diminish quickly over the next century, while coal reserves are much more abundant. But coal is the fossil fuel with the highest carbon content. Price increases for fossil fuels currently used are likely to lead to the introduction of fossil-fuel back-stop technologies as well as improvement of non-fossil-fuel technologies.

C. Other greenhouse gases

Most countries have agreed to reduce the use of CFCs drastically by the end of this century. Increases in other greenhouse gas emissions are difficult to model as the sources of methane and nitrous oxide, for instance, are diverse and emission rates uncertain. As noted previously, nearly all of the models surveyed focus only on man-made CO₂ emissions although the following section considers some options for reducing other greenhouse gases.

IV. EMISSION REDUCTION SCENARIOS (9)

A. Reducing CO2 emissions related to fossil-fuel combustion

Reduction targets. Since the pioneering work of Nordhaus (1977), several attempts have been made to estimate the macroeconomic implications of CO_2 reductions on a national or global basis. CO_2 reduction targets in the studies reviewed here are often specified with respect to the base-year. In the study of Manne and Richels (1990a), for instance, the target is to lower emissions by 20 per cent from the base-year level by 2020 and to keep emissions at this lower level until the year 2100. Similarly, Dixon et al. simulate the implications of the Toronto goal of reducing CO_2 emissions by 20 per cent below the 1988 level by 2005. This implies a reduction of CO_2 emissions in the year 2005 of nearly 50 per cent below the then baseline level. The study by the IPCC (1990) suggests that a drastic cut in CO_2 emissions of more than 60 per cent from the levels in 1990 is needed in order to stabilise atmospheric concentration levels by the middle of the next century.

The mechanisms for reducing emissions. The main policy instruments considered are taxes differentiated by the carbon content of the different types of fossil fuels. Taxes are differentiated because carbon emissions are lower for the use of oil than for coal, while they are lower still for natural gas (Table 5). On the other hand, coal is the fossil fuel in greatest supply and exhaustion of natural gas and oil reserves is likely to increase both coal use and demand for synthetic fuel which have twice the emission factor of oil.

The <u>effects on growth</u> of CO₂ emission reductions are summarised in Tables 6 and 7 for the models under review. Column 2 in Tables 6 and 7 gives the difference in average growth rates in percentage points between the baseline and reduction scenarios. Column 3 shows the simulated change to end year GDP as a per cent of baseline GDP (which obviously depends on the length of the simulation period). With the exception of the Egyptian study by Blitzer <u>et al.</u>, which shows much larger effects on average growth rates, and of one NEPP scenario, which shows an output increase, most simulation results indicate long-run reductions in growth rates of between close to zero and 0.3 per cent corresponding to large emission reductions. This would imply a simulated global long-term average growth rate of about 1.8 per cent per year, as compared to about 2 per cent in the baseline scenarios. As noted above, comparisons of GDP growth trajectories hinge on the assumption that climate change does not affect the baseline growth rates.

The size of tax changes. The marginal tax rate per unit of carbon shows the marginal cost of emission reductions. If the tax rate is large, there is a large gain from relaxing the CO2 constraint. If the tax rate is small, so is The last columns in Tables 6 the marginal cost of a more ambitious policy and 7 show carbon taxes -- defined in \$ per ton of carbon -- for the peak and end-years of the emissions reduction scenarios. Table 8 shows tax rates to different amounts of emission reductions. relation significant variation in tax rates for the same amount of emission reduction among models, two messages are clear: small amounts of emission reductions might cost little, while large reductions can be achieved only at high tax rates, i.e. at high marginal costs. Hence, marginal reduction costs rise with the amount of emission reductions. Tax rates of about \$250 per ton of carbon for large reductions (Manne and Richels, 1990 and Nordhaus, 1990) imply a more than five-fold increase in the price of coal, a more than doubling in gasoline prices and a large increase in natural gas prices (10). Manne and Richels (1990) point out that a tax of \$250 per ton of carbon would imply a financial transfer to developing countries of \$25 billion per 100 million tons of carbon in the case of an emissions trading scheme.

Timing of tax increases. A sharp reduction in emissions in the short run may be much more costly because of high short-run adjustment costs and the

absence of back-stop technologies. In the simulations by Manne and Richels (1990), for instance, the carbon tax in Eastern Europe and the Soviet Union rises to more than \$600 per ton until 2020, but falls back thereafter to the back-stop price of low carbon energy technologies, which are assumed to become available after this date. The effect on annual growth rates, which would be about 0.3 percentage points in the period up to 2020, would diminish thereafter. A simulation by Nordhaus (1990b) suggests that a rapid phase-in of emission reductions would be much more costly in terms of output growth as a large part of the existing capital stock would need to be scrapped prematurely Single-country simulations, which usually do not go beyond 2020, also show higher growth effects than the long-run global models. However, part of these output losses are due to losses in competitiveness (11).

B. Key determinants of aggregate costs

Inter-fuel substitution. The effect of a tax differentiated by the carbon content of different fuels would depend primarily on the share of fossil fuels in aggregate output, long-run price elasticities and substitution possibilities for primary energy sources. Substitution can take several forms there is first the possibility to substitute from high-carbon (e.g. coal) to low-carbon (e.g. gas) fossil fuels. Then, there is the possibility to substitute non-fossil (nuclear power, solar energy) for fossil fuels. Such substitution is limited at present because the major non-fossil fuels are either in limited supply (as with hydropower) or pose environmental risks (as with nuclear energy).

However, a large increase in fossil-fuel prices could make the use of non-carbon based energy substitutes, such as solar energy, attractive and provide an incentive to search more actively for alternative clean fuels. If available abundantly, the price of back-stop technologies would put a cap on the cost of $\rm CO_2$ emission reductions. An increase of fossil-fuel prices beyond the price of non-fossil, back-stop technology would reduce fossil-fuel use substantially in the long run. On the other hand, if substitution possibilities are limited and a cheap back-stop technology is unavailable, reductions of $\rm CO_2$ emissions will mainly occur via the costly route of policy induced reductions in energy use.

The model of Blitzer et al. (1990) is restricted to two fossil fuels. gas and oil, so that emission reductions are primarily achieved by income reductions. This partly explains the large effects on Egyptian growth estimated in their study. The other models are richer in their treatment of the energy sector and allow more extensive substitution, so that large reductions in carbon emissions can be achieved at lower cost. In the long run, the availability of an abundant low-cost, low-carbon energy technology substantially reduces carbon emissions per unit of energy. Chart B and Table 9 show changes in the fuel mix and aggregate energy inputs from the studies of Manne and Richels (1990a) and Cline (1989), respectively.

The aggregate energy/output link. The link between aggregate energy input and aggregate output is not fixed. An increase in the relative price of the aggregate energy bundle will induce substitution between energy and other inputs, such as capital, labour and other materials. However, it is fairly likely that other inputs, capital in particular, would be less profitable due to limited substitution possibilities. Many studies point to the possibility that energy and capital are complements in production, at least in some sectors. In that case, an energy price increase will reduce the rate of return on capital and saving so that capital accumulation and growth will be lower in the long run. Most models under review work with long-run substitution elasticities of about 0 5 between energy and the bundle of other inputs (12).

Another route taken by some modellers is to assume an "energy-feedback" effect on aggregate output growth from energy price increases, which is negative for net energy importers and positive for energy-exporting countries. Reilly et al. (1987) and the IEA (1990), for instance, assume that a 10 per cent increase in the relative price of energy reduces GDP in OECD countries by about 1.5 percentage points below baseline in the long run.

For sharp increases in fossil fuel prices, adjustment costs are likely to be higher in the short run as capital is largely sector-specific and retrofitting of installed capital is costly. Studies which model capital accumulation explicitly assume either putty-clay production functions or sector-specificity of capital in the short run (Nordhaus, 1990b).

What also matters for the energy-output link are improvements in energy efficiency. The energy efficiency parameter is exogenous in almost all models One could, however, argue that energy efficiency gains are partly endogenous, i.e. reacting to changes in relative prices. Mintzer (1987), for instance, assumes that energy-related technical progress will be greater the higher relative fossil fuel prices (raising the assumed growth in energy efficiency from 0.8 to 1.5 per cent per year).

Moreover, the dynamics of the overall adjustment depend on the formation of expectations. Assuming optimising behaviour by producers and consumers under perfect foresight about future energy end-use prices will lead to lower aggregate long-run costs as compared with a model assuming myopia, a conomic agents plan purchases taking into account announced future policy. Also the simulated path of private consumption will depend on the specific path of emission reductions in models which assume optimising behaviour under perfect foresight (Blitzer et al., 1990).

Terms-of-trade effects could importantly influence aggregate income flows. Unilateral action to reduce emissions in energy-importing countries would lead to a deterioration in their balance of payments with any attempt to move towards balance implying a real resource transfer to other countries. Global action, on the other hand, is likely to induce a large redistribution of income between regions, especially as fossil-fuel resources are unevenly distributed across the globe and rates of usage and exhaustion of different fuels will be affected. Fossil-fuel producer prices, for instance, could fall substantially and permanently below baseline in the case of global action, thereby improving the terms of trade in fossil-fuel importing countries.

The simulations of Whalley and Wigle (1990) highlight the importance of the terms-of-trade effects and changes in trade patterns which may occur under different policies: they simulate the effects of equi-proportionate cuts in emissions, reduction of emissions to equal per-capita amounts and carbon taxes either levied on fuel consumption or production. Global welfare losses as well as regional losses would differ by large amounts. In the case of a tax levied by fossil-fuel producers, oil-exporting countries would gain a large amount, while developing countries would be significant losers (Table 10). If the tax

was levied in consuming countries, oil-exporting countries would lose most while the EC and Japan could even gain. In the case where emission rights are tradeable, with redistribution of the tax revenues by an international agency under a formula that favoured low-income countries, welfare losses of oil-exporting countries and the United States would be steep, while there would be some loss in other high-income countries and some gain in low-income countries. Finally, in the case of a per-capita emission ceiling, there could be a small welfare loss for low-income countries, a sizeable loss in high-income countries and again a steep fall in welfare for oil exporters. The loss for North America could be fifteen times larger than in the case of the national consumption tax and the global welfare loss four times larger.

Regional aspects While Manne and Richels (1990) do not present a fully consistent global solution, their model gives rich insights into the growth problems which developing countries could face in the wake of sharp emission reductions. Assuming fast growth in output and emissions in developing countries, it would be virtually impossible to put an absolute ceiling on annual emissions. Even a doubling of emissions above baseline for China and other developing countries by 2100 could lead to a much larger loss in output than in the developed countries, where a 20 per cent reduction of emissions from the base-year is assumed to apply. The output loss for China would be sizeable (6 per cent of GDP in 2100) even if its emissions were allowed to quintuple. Large output losses for another developing country (Egypt) are also shown in the study by Blitzer et al. (1990).

The study by Edmonds and Barns (1990) highlights the fact that it would be impossible for OECD countries alone to reduce global $\rm CO_2$ emissions by 20 per cent below 1988 levels by 2005 (the Toronto target) and 50 per cent by 2025. Even eliminating all fossil-fuel use in the OECD countries would not be sufficient to outweigh the increases in other countries above the specified $\rm CO_2$ emission targets.

<u>Differences in model outcomes</u>. The CBO (1990) study uses two different models to highlight the effects of a \$100 per ton carbon charge on the US economy: a multi-sector macro-model (DRI) and a dynamic general equilibrium model (DGEM). The DRI model, with only limited possibilities of substitution

in production processes, shows larger macroeconomic effects. Substitution is due mainly to a shift in final demand away from energy intensive goods. The DGEM model, on the other hand, assumes much greater flexibility in adjusting to higher energy prices, ignores some of the costs during the transition period and arrives at much larger emission reductions for the same tax.

Carbon taxes versus other policy instruments. The scenarios included in the official Dutch environmental plan (NEPP, 1989), which comprise a variety of non-tax policies, seem to be an outlier: despite rather sharp unilateral CO2 reductions up to 2010, the negative growth-rate effect is only 0.2 percentage If similar action were to be taken in competitor countries, the situation would be very different and the NEPP study argues that there could even be a positive impact on growth. In this case emission reductions are not achieved by a carbon tax, but by a package of measures, including regulation concerning energy conservation in homes and businesses, expanding the share of cogeneration, maximum use of renewable energy sources, reductions in coal and oil use, a sweeping change from private car use to public transport and bicycles and measures like reductions in subsidies to commuters and road It is obviously difficult to model the effects of regulations on pricing. aggregate output and, in the absence of sensitivity analysis, it is difficult to judge the reliability of such estimates. There may still be an important emission reductions could initially be achieved at little cost if lesson: existing sectoral policies are not optimal. Changes in transport and energy policies could provide a "cheap lunch" for a first set of cuts in CO2 emissions.

Other studies show that use of regulations instead of carbon taxes could be an expensive route towards achieving a cut in emissions. For example, Nordhaus (1990b) suggests that the use of inefficient regulatory mechanisms could reduce output growth by an additional 1/4 percentage point for a 60 per cent reduction in emissions. Blitzer et al. (1990) present simulation results where emission targets do not apply to the economy as a whole, but are applied on a sector-by-sector basis. The loss in flexibility leads to a significant increase in economic costs as compared to an economy-wide emissions target.

Jorgenson and Wilcoxen (1990) also simulate reduction scenarios using taxes other than carbon taxes. A tax on the energy content (BTU tax) would increase the aggregate cost of achieving a given target slightly, while an advalorem tax on primary fuels would increase it considerably (double it in the case of a 20 per cent emission reduction). The aggregate costs are higher because such taxes are less well focused on the carbon content of the different fuels; hence the taxes needed to achieve a given target are higher than in the case of a carbon tax.

Other policy considerations. The aggregate cost in terms of reduced output may depend crucially on the way the increased tax revenue is redistributed within countries. This issue is only addressed in the Norwegian SIMEN study (Bye et al., 1989), which considers the question of a rechannelling of tax receipts. A fiscally-neutral policy is achieved by a cut in taxes on labour and capital. As no data or sensitivity analysis are provided, the labour and capital supply effects are unknown.

Glomsrød et al. (1990) also provide estimates of the benefits of reduced fossil-fuel use stemming from reductions in other pollutants, such as sulphur dioxide, nitrogen oxides, carbon monoxide and particulates. These emissions would fall roughly in line with emissions of ${\rm CO}_2$. While unilateral action on ${\rm CO}_2$ would have virtually no benefit in terms of reduced warming globally, reductions in other pollutants would reduce local environmental damage. Calculations in this study indicate that the benefits from reducing other pollutants, as well as cutting the number of traffic accidents and level of traffic noise, would offset roughly two-thirds of the GDP loss due to the ${\rm CO}_2$ emission ceiling.

C. Forestry options

Deforestation of tropical forests, especially of the Amazon rain forest, is contributing significantly to ${\rm CO_2}$ emissions: estimates of carbon released range from 0.5 to 3 billion tons of carbon per year (Nordhaus, 1990a) relative to the 6 billion tons associated with current fossil-fuel use. Many observers argue that forest clearing is to a large extent uneconomic and mainly due to the absence of property rights for rain forests. If so, a significant

reduction of emissions might therefore be achieved at low economic cost through a cessation of forest clearing.

Nordhaus (1990 and 1990a) argues that <u>reforestation</u> -- as opposed to merely arresting <u>deforestation</u> -- is likely to be expensive. He presents estimates for three different schemes:

- a) A subsidy to lumbering and forestry operations, which would reduce the input price of wood and expand its use. The subsidy could be as much as \$100 per ton of carbon and would absorb up to 0.28 billion tons of carbon per year.
- b) Reforestation of open areas, an option which could absorb 0.20 billion tons per year. The cost would range from \$40 for low-cost tropical land to \$115 per ton of carbon for marginal land in the United States.
- c) A "tree set-aside programme", which would consist of the purchase and storage of trees. This is the most unattractive of the three schemes as it could cost \$500 per ton of carbon for low levels of absorption.

Blok et al. (1989) estimate that the cost of reforestation would be only \$0.7 per ton of carbon, much less than Nordhaus's estimate. Differences arise because Nordhaus's estimate also includes land and management costs. In addition, the carbon removal rate per hectare and year is set at only 1.6 tons per year in Nordhaus's estimate but is four times higher in the estimate of Blok et al.

Dutch utilities recently announced a scheme to reforest 10 000 hectares of tropical land in South America per year. They estimate the annual cost at Gld 40 million and reckon that a similar programme in the Netherlands would cost eight times as much (Het Financiele Dagblad, 1990). Applying the low removal rate of Nordhaus, the cost estimate of the Dutch utilities would just coincide with his estimate of about \$40 per ton of carbon for low-cost tropical land. Dixon et al. (1990) estimate a cost of \$4-8 per ton of carbon, based on a planting cost of \$1 600 and an absorption rate of 20-40 tons per hectare per year.

Sedjo (1990) argues that, at an absorption rate of about 6 tons of carbon per hectare, the estimated current 3 billion tons of net "man-made" $\rm CO_2$ emissions would require replanting an area of 465 million hectares. At current land and plantation costs, plantation of such an area would be \$186 billion in the tropics and \$372 billion in the United States.

The range of estimates concerning the reforestation option is very wide. The estimates are also all partial in nature and do not take into account the effects of large reforestation programmes on land and timber prices.

D. The cost of reducing CFC emissions

Curbing emissions of CFC's is of particular importance because they are the most powerful greenhouse gas and also affect the ozone layer. CFC production has increased rapidly in recent decades. In the absence of policy action it would most likely have continued to do so in the future (Mintzer. 1987).

In a follow-up to the Montreal agreement, about a hundred countries. including the Soviet Union. India and China, signed a commitment to reduce emissions of ozone-depleting chemicals in the London agreement, which came into force in July 1990. The London agreement establishes a schedule for the phase-out of the most damaging CFCs by 2000. Some countries have announced an earlier phase-out by 1997.

Reductions in CFC emissions can be achieved by the use of substitutes that have less or no radiative power. As these substitutes are relatively cheap, a sharp reduction can be achieved at relatively low cost. The official economic assessment following the Montreal agreement was of a partial nature, but indicated that available substitutes are cheap for most applications (UNEP. 1989). Nordhaus (1990) estimates that at a modest tax rate of \$5 per ton of CO₂ equivalent, the greenhouse warming effect from CFC emissions would fall by more than two-thirds. Beyond that, the tax rate would rise rapidly. Recently, Smith and Vodden (1989) estimated the cost of fulfilling the Montreal agreement for Canada. Based on cost-curve estimates made by the US Environmental Protection Agency, they calculated a present discounted value for the social

cost of Canadian \$0 2 billion for the period 1989 to 2075. Bailey (1982) calculated earlier that the discounted present value (over the period 1979 to 2100) of cutting CFC emissions in the United States by 50 per cent would be in the order of \$0.2 to \$2 2 billion (1978 \$). The central estimate is \$0.6 billion, a trivial amount as a per cent of GDP. But Bailey also showed a rapid increase in cost beyond a cut-back of more than two-thirds. The cost of reducing CFC emissions is nevertheless of a different order of magnitude from the cost of reducing CO₂ emissions so that, even in the absence of the effects of CFCs on the ozone layer, action on CFCs would be a prime candidate in any policy to reduce greenhouse gas emissions.

NOTES

- 1. All studies use the term "cost" in characterising GDP or consumption losses from the reference scenarios due to preventive action. However, none of the baseline scenarios includes estimates of the costs and benefits of climate change or other externalities due to increased fossil-fuel consumption. The term "cost" is inappropriate, if such externalities exist or widen in the future and up to a certain point preventive action is welfare improving. The economic dimension of environmental externalities is discussed in a broad context in Nicolaisen and Hoeller (1990).
- 2. For partial equilibrium analyses see, for instance, Chandler (1990), who surveys energy policy responses for eight countries, a similar study by Capros et al. (1990), a Report for the European Commission (1990) or Ingham and Ulph (1990), who concentrate on the UK manufacturing sector.
- 3. The OECD Secretariat is just finalising a dynamic applied general equilibrium model, the so-called GREEN project. Having sufficient regional and sectoral detail, it can address most issues discussed below and aims specifically at the clarification of issues concerning cost-effective international agreements.
- 4. The number of fossil-fuel related CO₂ emission scenarios has become large (for an early survey, see Nordhaus and Yohe, 1983). The scenarios reviewed here are those for which reduction scenarios are also available and studies by Reilly et al. (1987) and Nordhaus and Yohe (1983) as they focus on the probability distribution of emission scenarios.
- 5. Some modellers also present "green" baselines, which assume a continuing tightening of environmental standards for reasons other than the greenhouse effect (Bergman, 1990). As policy measures in such scenarios aim mainly at a reduced use of coal and less traffic density or higher energy prices more generally. CO₂ emissions are lower.
- 6. Depletion of oil and gas reserves may, however, lead to development of other fossil-fuel sources with a high carbon content.
- 7. Barbier et al: (1990) survey available back-stop technologies and prices.
- 8. The estimate of an increase of only 50 per cent by 2075 by Reilly et al. (1987) is particularly interesting, as it is a result of weighting different parameter values from various studies in a pooled regression, using the median parameter estimates (with associated correlation coefficients between key variables) for their central projection (Monte Carlo analysis). Their approach also enables Reilly et al. to quantify the probability distribution of CO₂ emissions throughout the next century.

- 9. One response to the threat of climate change, which will not be discussed here, is climate engineering. Several ingenious schemes have been suggested, for instance to float latex in the oceans, paint roofs white or increase nutrients for algae in the ocean, which is likely to speed up the uptake of carbon in the oceans. So far, the feasibility and effectiveness of these options is in doubt and cost estimates are shaky. The option of CO₂ scrubbing is technically feasible, but may be expensive. Blok et al. (1989) estimate that removal and disposal of CO₂ from stack gases would cost Gld 30-62 per ton of carbon dioxide. Disposal costs are likely to rise significantly after low-cost CO₂ storage facilities have been used up.
- 10. Sweden, Finland and the Netherlands have recently adopted carbon taxes at rates per ton of carbon of \$11, \$6.5 and \$1.5, respectively.
- 11. The cuts in CO₂ emissions shown in single-country results may be deceptive as it is likely that energy-intensive products will be imported.
- 12. Changes in aggregate energy intensity (i.e. total or fossil-fuel requirements per unit of GDP) are a rough gauge of the assumptions of different models about the adaptability of the aggregate energy/GDP relationship. Bergman (1988) provides sensitivity analysis of the link for aggregate energy price shocks, but not for carbon taxes.

REFERENCES

- Barbier, E.B., J.C. Burgess and D.W. Pearce (1990), "Slowing global warming: options for greenhouse gas substitution", London Environmental Economics Centre, mimeo.
- Bergman, L. (1989), <u>Tillväxt och miljö en studie av malkonflikter</u>, Bilaga 9 till Langtidsutredningen 1990, Finansdepartementet Stockholm.
- Bergman, L. (1988), "Energy policy modeling: A survey of general equilibrium approaches", <u>Journal of Policy Modeling</u>, 10(3), pp. 377-399.
- Blitzer, C., R.S. Eckaus, S. Lahiri and A. Meeraus (1990), "A general equilibrium analysis of the effects of carbon emission restrictions on economic growth in a developing country", (January), mimeo.
- Blok, K., C.A. Hendriks and W.C. Turkenberg (1989), "The role of carbon dioxide removal in the reduction of the greenhouse effect", in: IEA, <u>Energy Technologies for Reducing Emissions of Greenhouse Gases</u>, Proceedings of an Experts' Seminar, Volume 2, Paris.
- Bodlund, B., E. Miller, T. Karlsson and T.B. Johansson (1989), "The challenge of choice: technology options for the Swedish electricity sector", in: T.B. Johansson, B. Bodlund and R.H. Williams (eds.), <u>Electricity End-use and New Generation Technologies</u>, and their Planning Implications, Lund, pp. 883-947.
- Bye, T., B. Bye and L. Lorentsen (1989), "Studies of industry, environment and energy towards 2000", Discussion Paper, Central Bureau of Statistics, Oslo.
- Capros, P., P. Karadeloglou and G. Mentras (1990), "The MIDAS energy model and the MIDAS-HERMES linked system", paper presented at the Workshop on Economic/Energy/Environmental Modeling for Climate Change Policy Analysis, Washington, (October).
- Chandler, W.U. (ed.) (1990). <u>Carbon Emission Control Strategies</u>. <u>Case Studies in International Cooperation</u>, Washington.
- Cline, W.R. (1990), "Greenhouse warming abatement: lower benefits and higher cost?", (February), mimeo.
- Cline, W.R. (1990a), "Economics of the greenhouse effect: knowns and unknowns", (April), mimeo.
- Cline, W.R. (1989), "Political economy of the greenhouse effect", (August), mimeo.
- Cline, W.R. (1989a), "Global warming: policy decisions under uncertainty", (November), mimeo.
- Congress of the United States, Congressional Budget Office (CBO) (1990),
 "Carbon charges as a response to global warming: the effect of taxing
 fossil fuels", Washington, (August).

- Daly, T.A., N. Goto, R.F. Kosobud and W.D. Nordhaus (1984), "CO₂ forecasting and control: a mathematical programming approach", in: J Weyant and D. Sheffield (eds.), <u>The Energy Industries in Transition</u>, 1985-2000, International Organisation of Energy Economists, Westfield Press.
- Darmstadter, J. and J. Edmonds (1989), "Human development and carbon dioxide emissions: the current picture and long-term prospects." in N.J. Rosenberg et al. (eds.), <u>Greenhouse Warming: Abatement and Adaptation</u>, (Washington: Resources for the Future), pp. 31-51.
- Dixon, P.B., D.T. Johnson, R.E. Marks, P. McLennan, R. Schodde and P.L. Swan (1989), "The feasibility and implication for Australia of the adoption of the Toronto proposal for carbon dioxide emissions", Report to CRA, Sydney, (September).
- Edmonds, J.A. and D.W. Barns (1990), "Estimating the marginal cost of reducing global fossil fuel CO₂ emissions", mimeo., (August).
- Edmonds, J.A. and J.M. Reilly (1983), "Global energy and CO₂ to the year 2000", The Energy Journal, Vol. 4, pp. 21-47.
- EPA (U.S. Environmental Protection Agency) (1989), "Policy options for stabilizing global climate", Draft Report to Congress, (March).
- Glomsrød, S., T. Johnsen and H. Vennemo (1990), "Stabilisation of emissions of CO₂: a computable general equilibrium assesssment", Discussion Paper No. 48, Central Bureau of Statistics, Oslo, (April).
- Het Financiele Dagblad, 21/5/1990
- Houghton, R.A. and G.M. Woodwell (1989), "Global climate change", <u>Scientific</u>
 <u>American</u>, No. 4.
- Hubbard, H.M. (1989), "Prospects for increasing the potential of renewable technologies to alleviate global concerns", in: IEA, <u>Energy</u>

 <u>Technologies for Reducing Emissions of Greenhouse Gases</u>. Proceedings of an Experts' Seminar, Volume 2, Paris.
- IEA (1990), Follow-up to Noordwijk Ministerial Conference on Atmospheric Pollution and Climate Change, (IEA/SLT(90)2), Paris.
- IEA (1989), Energy and the Environment: Policy Overview, Paris.
- Intergovernmental Panel on Climate Change (IPCC) (1990), "Policy makers summary of the scentific assessment of climate change", WMO and UNEP, New York, (June).
- Jorgenson, D.W. and P.J. Wilcoxen (1990), "Environmental regulation and U.S. economic growth", <u>The RAND Journal of Economics</u>. Vol. 21, No. 2, (Summer), pp. 314-336.

- Kane, S., J. Reilly and R. Bucklin (1989), "Implications of the greenhouse effect for world agricultural commodity markets", U.S. Department of Agriculture, Washington, (June), mimeo.
- Kram, T. and P.A. Okken (1989), "Two 'low CO₂' energy scenarios for the Netherlands", in: IEA, <u>Energy Technologies for Reducing Emissions of Greenhouse Gases</u>, Proceedings of an Experts' Seminar, Volume 2, Paris.
- Mahar, D.J. (1989). <u>Government Policies and Deforestation in Brazil's Amazon Region</u>. A World Bank Publication, Washington.
- Manne, A.S. (1990), "Global 2100: an almost consistent model of CO₂ emission limits", paper presented at the Applied Equilibrium Modeling Conference, Bern. (March), mimeo.
- Manne, A.S. and R.G. Richels (1990), "Global CO₂ emission reductions -- the impacts of rising energy costs", revised version of a paper presented to the International Association of Energy Economics, New Delhi; the International Institute for Applied Systems Analysis, Laxenburg; and InterAction Council, Amsterdam, (June), forthcoming in The Energy Journal.
- Manne, A.S. and R.G. Richels (1990a), "CO₂ emission reductions: an economic cost analysis for the USA", (April), <u>The Energy Journal</u>, Vol. 11.
- Mintzer, I.M. (1987), A Matter of Degrees: the Potential for Controlling the Greenhouse Effect, World Resources Institute Research Report 5, Washington.
- NEPP (National Environmental Policy Plan) (1989), <u>To Choose or to Lose</u>, Second Chamber of the States General, s'Gravenhage.
- Nicolaisen, J. and P. Hoeller (1990), "Economics and the environment: a survey of issues and policy options", <u>OECD Economics and Statistics Department Working Paper</u> No. 82, (July).
- Nordhaus, W.D. (1990), "A survey of estimates of the cost of reduction of greenhouse gas emissions", mimeo.
- Nordhaus, W.D. (1990a), "To slow or not to slow: the economics of the greenhouse effect", revision of a paper presented to the 1989 meetings of the International Energy Workshop and the MIT Symposium on Environment and Energy.
- Nordhaus, W.D. (1990b), "Greenhouse economics. Count before you leap", The Economist, 7th-13th July 1990.
- Nordhaus, W.D. (1979), <u>The Efficient Use of Energy Resources</u>, Cowles Foundation Monograph 26, Yale University Press.
- Nordhaus, W.D. (1977), "Economic growth and climate: the carbon dioxide problem", <u>American Economic Review</u>, Papers and Proceedings, (February), pp. 341-346.

- Nordhaus, W.D. and G.W. Yohe (1983), "Future carbon dioxide emissions from fossil fuels", in: National Academy of Science, <u>Changing Climate</u>. Washington.
- Pearce, D. (1990), "Economics and the global environmental challenge", The Henry Sidgwick Memorial Lecture at Newnham College, Cambridge, (February), mimeo.
- Reilly, J.M., J.A. Edmonds, R.H. Gardner and A.L. Brenker (1987), "Uncertainty analysis of the IEA/ORAU CO₂ emissions model", <u>The Energy Journal</u>, Vol. 8, No. 3, pp. 1-29.
- Report for the Commission of the European Communities (1990),

 "Cost-effectiveness analysis of CO₂ reduction options", prepared by the
 Center of Energy Policy Research (MIT) and Global Environmental Study
 Laboratory (University of Tokyo). Paper presented at a Workshop on
 Economic/Energy/Environmental Modeling for Climate Policy Analysis,
 Washington, (October).
- Report by the Energy Systems Program Group of the International Institute for Applied Systems Analysis (1981), <u>Energy in a Finite World</u>. <u>Paths to a Sustainable Future</u>, Vol I and Vol. II, Cambridge, Massachusetts
- Schneider, S.H. (1989). Global Warming. Are We Entering the Greenhouse Century?, San Francisco.
- Sedjo, R.A. (1990), "Forests to offset the greenhouse effect", <u>Journal of Forestry</u>, (July), pp. 12-15.
- Smith, D.A. and K. Vodden (1989), "Global environmental policy: the case of ozone depletion", <u>Canadian Public Policy</u>, XV:4, pp. 413-423.
- Solow, A. (1990), "Is there a global warming problem?", Woods Hole Oceanographic Institution, Woods Hole, (September), mimeo.
- Torrens, I.M. (1989), "Global greenhouse warming: role of power generation sector and mitigation strategies", in: IEA, <u>Energy Technologies for Reducing Emissions of Greenhouse Gases</u>, Proceedings of an Experts' Seminar, Volume 2, Paris.
- United Nations Environment Programme (UNEP) (1989). "Economic Panel Report.

 Montreal Protocol on substances that deplete the ozone layer", New York,

 (July).
- Whalley, J. and R. Wigle (1989), "Cutting ${\rm CO_2}$ emissions: the effects of alternative policy approaches", paper presented to the Annual Meeting of the Canadian Economics Association.
- Whalley, J. and R. Wigle (1990), "The international incidence of carbon taxes", paper prepared for a conference on "Economic policy responses to global warming", Torino, (September).
- Zachariah, K.C. and M.T. Vu (1988), <u>World Population Projections</u>, 1987-1988 edition, World Bank, Johns Hopkins University Press, Baltimore.

Table 1
Summary of major greenhouse gases affected by human activities

enad distributed to the control of t	Carbon Dioxide	Methane	CFC-11	CFC-12	Nitrous Oxide
Atmospheric concentration	ppmv	ppmv	pptv	pptv	ppbv
Pre-industrial (1750-1800)	280	0.8	0	0	288
Present day (1990)	353	1.72	280	484	310
Current rate of change per year	1.8 (0.5%)	0.015	9.5 (4%)	17 (4%)	0.8 (0.25%)
Atmospheric lifetime (years)	50 200 (a)	10	65	130	150

ppmv = parts per million by volume;
ppbv = parts per billion by volume;
pptv = parts per trillion by volume.

Source: IPCC (1990).

a) The way in which ${\rm CO}_2$ is absorbed by the oceans and biosphere is not simple and a single value cannot be given.

Table 2

Global warming potential (a)

	Time horizon		Source of emission		
	20 yr.	100 yr.			
Carbon dioxide	1	1	Largely from combustion of fossil fuels. Deforestation.		
Methane (incl. indirect)	63	21	From fossil fuel combustion and a wide variety of biological and agricultural activities.		
Nitrous oxide	270	290	From fertilisers and energy use		
CFC-11	4500	3500			
CFC-12	7100	7300	Wholly industrial, from both aerosols and non-aerosols.		
HCFC-22	4100	1500			

a) The warming effect of an emission of 1 kg. of each gas relative to that of ${\rm CO}_2$. These figures are best estimates calculated on the basis of the present-day atmospheric composition.

Source: IPCC (1990).

Table 3

The relative cumulative climate effect of 1990 man-made emissions

	Greenhouse warming potential (100 yr. horizon)	1990 emissions (Tg)	Relative contribution over 100 yr.
Carbon dioxide	1	26 000 (a)	61%
Methane (b)	21	300	15%
Nitrous oxide	290	6	4%
CFCs	Various	0.9	11%
HCFC-22	1500	0.1	0.5%
Others (b)	Various		8.5%

a) 26 000 Tg (teragrams) of carbon dioxide = 7 000 Tg (= 7 Gigatons) of carbon.

Source: IPCC (1990).

b) These values include the indirect effect of these emissions on other greenhouse gases via chemical reactions in the atmosphere. Such estimates are highly model-dependent and should be considered preliminary and subject to change. The estimated effect of ozone is included under "others".

Table 4
Baseline projections of key variables

Energy 0.5 0.3 2.0 0.5 0.5 1.0					Annu	Annual growth rates	ates			Absolute levels, end-year	, end-year
### Page 100 1.6 0.5 ### Page 100 1.0 ### Page 100 ###	Proje Pe	ection riod	ê	Energy	Final ene	Final energy demand	Energy	Energy prices	CO ₂	GRG concentration	Warming
rope 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.5 1.6 0.3 3.5 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1				efficiency	Total	Fossil	Total	Fossil	emissions	•	(O.)
1990-2100 1.6 0.5 1.6 0.5 1.6 0.3 3.0 1987-2005 1975-2075 1975-2075 1975-2075 1975-2075 1975-2075 1976-2007 1.1 1988-2025 3.0 1.0 1.988-2025 3.0 1.5 0) 2000-2010 2.7									;		
rope ng USSR) rld 1.6 0.3 3.5 2.0 3.0 0.0 1987-2005 1975-2075 1975-2075 1975-2075 1975-2075 1.0 1975-2075 2.0 0.8 1980-2100 1.1 1.1 1988-2025 3.0 1.5 Norway) 1988-2000 1.5 (1990) 2000-2010 2.7 (1990) 1985-2000 2.0 3.5		-2100	9 9	0.0 8.0	ø. o. o				∀ नत् ननन		
1987-2005 1975-2075 1975-2075 1975-2075 2.0 0.8 1983) 1975-2100 1.1 1980-2100 (1990) 1988-2025 3.0 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1	rope ng ussr) rld	·	4 E E	0 4 0 6 0 0	0 7 7 6 9 6			,	0.7 1.0		
(1983) 1975-2075 2.0 0.8 (1983) 1975-2075 2.0 0.8 (1983) 1975-2100 1.1 (1990) 1988-2025 3.0 1.0 (1990) 2000-2010 2.7 (1990) 1987-2002 2.0 (1990) 1985-2000 2.0		1-2005		•	4.0 .0	ø. 6.		a.1	6.00 6.80		1.5-4.2 (b)
1980-2100 1988-2025 3.0 1.0 1988-2000 1.5 2000-2010 2.7 1987-2002 3.5 1985-2000 2.7	(1987)	5-2075 5-2075 5-2100	2.0	9 89 0 10	H H	6.0	0.2	1.0	. r. c.	430=590 825 780	
1968-2000 1.5 1. 2000-2010 2.7 1987-2002 3.5)-2100 }-2025	3.0	1.0	1.4				 	009	(a) F
1988-2000 1.5 1. 2000-2010 2.7 1987-2002 3.5	***										
2000-2010 2.7 1987-2002 3.5	. 5	3-2000	1.5		1.1				1.6		
1987-2002 3.5 1985-2000 2.0	_	0-2010	2.7	•				1.0	3.9		
		7-2002 5-2000	8.5 0.5		0 7				5.2 5.3		
Dixon et al. (1989) 1989-2005 3.4 2.6 (Australia) 1988-2000 CBO (1990) (USA) 1988-2000	6	9-2005 8-2000	ж •		2.6 (c)	1.1			2.7 (c)		

In ppm-CO₂ equivalents.

Effect of CO₂ doubling.

For electricity and road transport. ទី ជិ ប៊

Table 5

Fossil-fuel carbon emission factors and fuel prices

	Carbon emission coefficient, tons of carbon per million BTU of crude oil equivalent (a)	Unit fuel cost 1988 \$ per million BTU of crude oil equivalent
Coal direct uses	0.0251	2.00
Oil	0.0203	2.50 - 6.00
Natural gas	0.0145	1.50 - 5.00 (b)
Synthetic fuels	0.0408	10.00
Nonelectric backstop	0.0000	20.00

a) Source of carbon emission coefficients: Edmonds and Reilly (1985).

Source: Manne and Richels (1990).

b) To allow for burner-tip equivalence, an additional \$1.25 per million BTU is added to allow for gas distribution costs.

Table 6

Growth effect of CO; emission reductions: global models

	(1) Emission reduction from	(2) Change in the growth rate	(3) End-year GDP as a per cent of	Carb	(4) on tax (\$ of carbon)
	baseline (%) (end-year)	of GDP	baseline	Peak	End-year
Manne/Richels (1990)				· · · · · · · · · · · · · · · · · · ·	
ASU		-0.0	-2 .5	400]
Other OECD		-0.0	-1.8	<250	
Bastern Europe	} -75	-0.0	-2.5	~700	} ~250
China	(2100)	-0.1	-10.5	<250	
Rest of world	J	-0.0	-4.0	<250	}
Thalley/Wigle (1990) (a)					
National producer taxes	-50		-4.4 (b)		462.8
National consumer taxes	~50		-2.1 (b)		463.1
Global tax	~50	• •	-4.2 (b)		459.7
Ceiling on per capita					
emissions	~50	• •	-8.5 (b)	• •	
:line (1989)	-65.5	-0.1	-7.4		
	(2075)				
lintzer (1987)	-88	-0.0	-3.0		
	(2100)				
EA (1990) (c)					
Carbon tax scenario	-12 (2005)	[-0.2]		• •	72
70% nuclear plus carbon tax scenario	-25 (2005)	[-0.2]	• •	• •	72
tax scenario	(2003)				
ordhaus (1990 and 1990b)					
LOW	-30	-0.0	• •	• •	48.5 (d)
Middle	-50	-0.0	• •	• •	119.0 (d)
High	-80	-0.1	••		• •
ordhaus (1990b)					
Rapid phase-in scenario	-60	~0.3 (•)	• •		• •
Rapid phase-in using					
regulation	-60	~0.5 (•)	• •	• •	• •
dmonds/Barns (1990)	-75	-0.2	-8.0		436.5
admonds/ Barns (1990)	(2025)	V. 2	***		

a) Target and results apply to average values over 1990 to 2030.

b) Welfare effect measured by Hicksian equivalent variation.

c) Policy and results apply only to the OECD countries.

d) Includes sharp reduction in CFCs. The carbon tax per CO₂ equivalent without a reduction of CFCs would be about \$90 and \$200 for the two scenarios.

e) For the industrialised countries.

Table 7

Growth effect of CO₂ emission reductions: country-specific results

	(1) Emission reduction	(2) Change in the	(3) End-year GDP as	Carbo	(4) on tax (\$ of carbon)
	from baseline (%) (end-year)	growth rate of GDP	a per cent of baseline	Peak	End-year
Manne/Richels (1989, USA) a) technology pessimistic	-88	-0.1	-4.0	~600	~250
Case	(2100)			(2020)	(2100)
b) technology intermediate	-77	-0.0	-2.5	• •	• •
case c) technology optimistic	(2100) -50	-0.0	-0.8		
case	(2100)	-0.0	-0.0	••	••
CBO (1990, USA)					
DRI model	-16 (2000)	-0.2	-2.0	100	100
DGEM	-36 (2000)	-0.1	-0.6	100	100
Jorgenson/Wilcoxen (1990, USA)		-0.0	-0.5	∂17 (2020)	15 (2060)
	(2060) -36 (2060)	-0.0	-1.1	46 (2020)	42 (2060)
Blitzer <u>et al.</u> (1990, Egypt)					
Scenario 1	-15 (a) (2002)	-0.1	-2.7	• •	••
Scenario 3	-35 (a) (2002)	-1.0 -1.5	-15.0 -19.0	• •	• •
ocunario 5	-40 (a) (2002)	-1.5	-19.0	• •	• •
Glomar#d <u>et al.</u> (b) (1990, Norway)	-26 (2010)	-0.4	-2.7	••	
SIMEN (b) (1989, Norway)	-16 (2000)	-0.1 to -0.2	-1 to -2		••
NEPP (1989, Netherlands) (b) National policy scenario	-25	-0.2	-4.2		
macronal policy scenario	(2010)	-0.2	-4.2	• •	•
Global policy scenario	-25 (2010)	0.0	0.6	••	••
Bergman (1990, Sweden)	-51 (2000)	-0.4	-5.6	••	••
Dixon <u>et al.</u> (1989, Australia)	-47 (c) (2005)	-0.1	-2.4		••

a) End-year for emission targets is 2012, at which date reductions are -30%, -35% and 55%, respectively.

b) Includes reductions in other pollutants.

c) Reductions apply to the electricity and road transport sector.

Table 8 Emission reductions and carbon taxes (Percentage reduction in CO₂ from baseline path for different levels of CO₂ tax or cost)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	N-7	Revised N-Y	Williams et al.	Nether- lands	Edmonds Reilly	Manne- Richels	Nordhaus model	Argonne model
Tax (a)	· · · · · · · · · · · · · · · · · · ·		Percentage	reduction	of CO ₂ fro	m baseline	path	
0	0.0	0.0	0.0	0.0		0.0	0.0	0.0
10		3.5					5.0	
20	5.9	6.7					9.3	
30		9.8			40.0		16.8	
40		12.7		27.9				20.0
50		15.4						
60								
70								
80							•	
90							42 8	
100		27.0						
150		36.0					59.9	
160			63.2					
170								
180								
190							92 3	
200		43.2						
210								
220	38.5							
230								
240							78 1	
250			73.9					
260						82.2		
270							94.0	
300		53.9						
350								
430							97.5	

Notes:

- Nordhaus and Yohe (1983) . (1)
- Simplified version of the Nordhaus-Yohe model. (2)
- Drawn from estimate of cost of reducing CO₂ emissions for Swedish economy from Williams et al. (1989). Converted to marginal cost by W. Nordhaus. Kram and Okken (1989). Converted to marginal cost by W. Nordhaus. (3)
- (4)
- Edmonds and Reilly (1983). A communication from J. Edmonds indicates that more (5) recent runs have higher costs.
- Manne and Richels (1989). Short-run estimate omitted as these are long-run (6) marginal cost.
- Nordhaus (1977) and (1979). This model calculates the shadow prices of carbon for different constraints on total atmospheric concentrations. The observations (7) are for different years and different constraints.
- (8) Daly et al. (1985) .

All prices are converted into 1989 prices from earlier prices using the U.S. GNP deflator.

\$89 per ton of carbon. a)

Source: Nordhaus (1990).

Table 9

Impact of fossil-fuel taxes on carbon dioxide emissions (a)

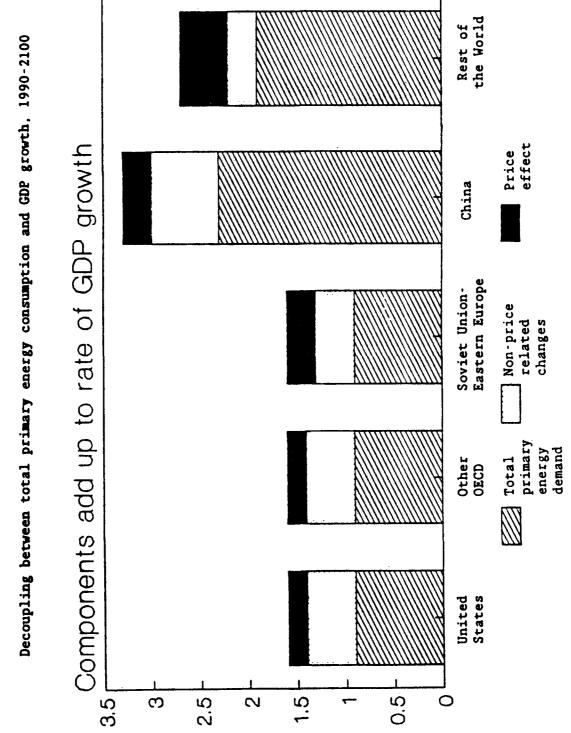
•	1	Primary e	nergy supp	1y (10**1	8 joules	per year	-)
	Oil	Gas	Solids	Nuclear	Solar	Hydro	Total
Base case	-						
2000	141.5	49.2	147.3	15.3	0.1	57.2	410.6
2025	147.7	95.1	179.3	32.4	13.0	93.0	560.5
2050	169.8	126.1	248.8	49.7	25.8	120.3	740.4
2075	178.2	120.1	352.2	92.4	35.1	121.4	899.4
High tax case							
2000	77.1	35.7	70.7	26.9	0.1	57.5	268.0
2025	56 .5	66.5	69.9	48.7	19.5	92.8	353.8
2050	70.4	84.0	82.8	67.1	35.0	103.9	443.2
2075	75.6	90.7	110.7	117.0	45.0	122.9	561.9
	Carbon	dioxide	emissions	(10**6 t	ons of c	arbon per	year)
	Conv.	Shale oil	Synoil	Coal	Syngas	Gas	Total
Base case							
2000	2544.1	0.0	14.4	3081.0	0.1	668.2	6307.9
2025	2663.8	5.5	218.9	3394.5	2.2	1284.3	7569.1
2050	3003.1	21.3	568.6	4301.5	37.8	1702.6	9634.8
2075	3023.5	40.7	1057.4	5786.6	211.1	1622.7	11741.9
High tax case				,			
2000	1394.6	0.0	25.2	1301.1	0.1	485.6	3206 .6
2025	994.3	0.0	220.9	830.3	0.4	897.8	2943.7
2050	1263.2	0.0	241.7	805.2	4.1	1134.1	3448.2
			365.2	1089.2	10.8	1225.5	4056.6

a) Consumer tax of 50 per cent on gas. 100 per cent on oil and 150 per cent on coal, imposed in year 2000.

Source Cline (1989).

Table 10

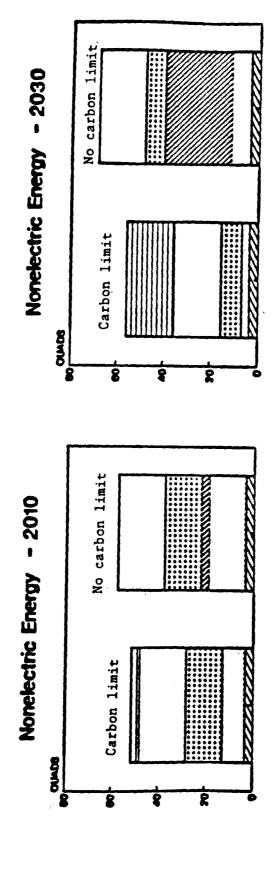
Regional welfare changes under different policies
(Global emission reduction by 50 per cent on average over 1990-2030)


		Change in welfare (a) (%)	Revenue generated over 1990-2030 (\$ trillion, 1990 prices
1)	National production taxes		
	EC	-4.0	3.3
	North America	-4.3	11.0
	Japan	-3.7	0 1
	Oil exporters	4.5	9.4
	Developing countries	-7.1	21.7
	World	-4.4	46.6
2)	National consumption taxes		
	EC	1.4	6.7
	North America	-1.2	12.4
	Japan	3.0	2.0
	Oil exporters	-16.7	2.5
	Developing countries	-4.5	21.9
	World	- 2 . 1	46.7
3)	Global production tax: redistribution proportional to each region's population		
	EC	-3.8	-3.2 (b)
	North America	-9.8	-9.1 (b)
	Japan	-0.9	-0.6 (b)
	Oil exporters	-13.0	-1.5 (b)
	Developing countries	1.8	12.0 (b)
	World	-4.2	(Ъ)
4)	Per capita emission ceiling		
	EC	-6.4	
	North America	-18.6	:.
	Japan	-2.5	
	Oil exporters	-15.1	
	Developing countries	-1.2	
	World	-8.5	

a) Hicksian equivalent variation over the period 1990-2030 in 1990 prices as a per cent of GDP in present value terms.

Source: Whalley and Wigle (1990).

b) Net transfer between regions; the total tax revenues raised amount to \$46.3 trillion.


Chart A

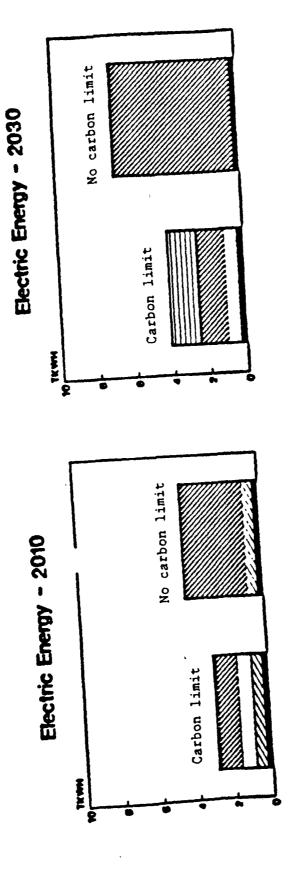
Source: Manne and Richels (1990).

Chart B

Impact of fossil-fuel taxes on the fuel mix

Ca Coal .. direct uses

3 0 Synthetic fuels


E Oil - domestic

Oil ·· imported

Mon-electric backstock technology

Source: Manne and Richels (1990a).

Chart B (continued)

Hydro H

2 Light water reactor

;; []

Coal

Advanced high cost non-carbon technology

SQUICE: Manne and Richels (1990a).

ECONOMIC AND STATISTICS DEPARTMENT

WORKING PAPERS

In April 1983, the Economics and Statistics Department initiated a new series of economic studies entitled ESD Working Papers.

The following titles have been circulated:

1. Use of Demand Elasticities in Estimating Energy Demand (out of print) Utilisation des élasticités de la demande dans l'estimation de la demande de l'énergie

Axel Mittelstädt

2. Capital, Energy and Labour Substitution: The Supply Block in OECD Medium-Term Models Substitution du capital, de l'énergie et du travail : le bloc de l'offre dans les modèles à moyen terme de l'OCDE (épuisé)

Patrick Artus

3. Wage Formation in France: Sectoral Aspects (out of print)
Formation des salaires en France: aspects sectoriels (épuisé)

Patrick Artus

4. Service Lives of Fixed Assets (out of print)
Durée de vie utile des actifs fixes (épuisé)

Derek Blades

5. Resource Prices and Macroeconomic Policies: Lessons from Two Oil Price Shocks
Prix des ressources naturelles et politique macro-économique les enseignements de deux chocs pétroliers (épuisé)

John Llewellyn

6. Output Responsiveness and Inflation: An Aggregate Study Souplesse de la production et inflation : étude globale

David T. Coe and Gerald Holtham

7. The Determinants of Exchange Rate Movements (out of print)
Les déterminants des mouvements des taux de change (épuisé)

Graham Hacche

8. Simulated Macroeconomic Effects of a Large Fall in Oil Prices (out of print)
Simulation des effets macro-économiques d'une forte baisse des prix pétroliers

Flemming Larsen and John Llewellyn

9. Medium-Term Financial Strategy: The Co-ordination of Fiscal Monetary Policy (out of print)
Stratégie financière à moyen terme : la coordination des politiques monétaire et budgétaire (épuisé)

Jean-Claude Chouragui and Robert Price

10. Price Dynamics and Industrial Structure: A Theoretical and Econometric Analysis (out of print)

Dynamique des prix et structure industrielle: une analyse théorique économétrique (épuisé)

David Encaoua (with collaboration from Paul Geroski and Riel Miller)

11. Evidence on Income Distribution by Governments (out of print) L'Action exercée par l'Etat sur la redistribution du revenu

Peter Saunders

12. Labour Force Participation: An Analysis with Projections
Taux d'activité: analyse et projections

James H. Chan Lee

The Demand for Money and Velocity in Major OECD Countries (out of print)

La demande de monnaie et la vitesse de circulation dans les grands pays

de l'OCDE

A. Blundell-Wignall, M. Rondoni and H. Ziegelschmidt

14. The Conduct of Monetary Policy in the Current Recovery
La conduite de la politique monétaire dans la phase actuelle de reprise
économique

Paul Atkinson and Jean-Claude Chouraqui

15. Structural Budget Deficits and Fiscal Stance (out of print)
Déficits budgétaires structurels et orientation de la politique budgétaire (épuisé)

Patrice Muller and Robert W.R. Price

16. Monetary Policy in the OECD INTERLINK Model
La politique monétaire dans le modèle INTERLINK

A. Blundell-Wignall, M. Rondoni, H. Ziegelschmidt and J. Morgan

17. Real Gross Product in OECD Countries and Associated Purchasing Power Parities (out of print)
Produit brut réel et parités de pouvoir d'achat dans les pays de l'OCDE (épuisé)

Peter Hill

18. The OECD Compatible Trade and Production Data Base (out of print)
Base de données compatibles sur le commerce et la production de l'OCDE

Derek Blades and Wendy Simpson

19. Nominal Wage Determination in Ten OECD Economies

Détermination des salaires nominaux dans dix économies de l'OCDE

David T. Coe and Francesco Gagliardi

20. Profits and Rates of Return in OECD Countries
Profits et taux de rendement dans les pays Membres de l'OCDE

James H. Chan-Lee and Helen Sutch

21. Real Interest Rates and the Prospects for Durable Growth Taux d'intérêt réels et perspectives de croissance durable

Paul Atkinson and Jean-Claude Chouraqui

22. Energy Prices: Trends and Prospects
Les prix de l'energie : évolution et perspectives

Axel Mittelstädt

23. Changes in the Composition of Output and Employment Changements dans la composition de la production et de l'emploi

Axel Mittelstädt and Francoise Correia

24. Labour Market Flexibility and External Price Shocks Flexibilité du marché du travail et chocs extérieurs sur les prix

F. Klau and A. Mittelstädt

25. Discrepancies Between Imports and Exports in OECD Foreign Trade Statistics (out of print)

Ecart entre les importations et les exportations dans les statistiques du commerce extérieur de l'OCDE

Derek Blades and Marina Ivanov

26. Aggregate Supply in INTERLINK: Model Specification and Empirical Results

John Helliwell, Peter Sturm, Peter Jarrett and Gérard Salou

27. Commodity Prices in INTERLINK

Gerry Holtham, Tapio Saavalainen, Paul Saunders and Helen Sutch

28. Exchange Rates and Real Long-Term Interest Rate Differentials: Evidence for Eighteen OECD Countries

David T. Coe and Stephen S. Golub

29. Method of Calculating Effective Exchange Rates and Indicators of Competitiveness (out of print)

Martine Durand

30. Public Debt in a Medium-Term Context and its Implications for Fiscal Policy

Jean-Claude Chouraqui, Brian Jones and Robert Bruce Montador

31. The OECD Compatible Trade and Production Data Base 1970-1983

Anders Brodin and Derek Blades

32. The Formulation of Monetary Policy: A Reassessment in the Light of Recent Experience

Paul Atkinson and Jean-Claude Chouragui

33. Mécanismes de transmission et effets macro-économiques de la politique monétaire en France : les principaux enseignements econométriques

Marc-Olivier Strauss-Kahn

34. Pure Profit Rates and Tobin's q in Nine OECD Countries

James H. Chan-Lee

35. Wealth and Inflation Effects in the Aggregate Consumption Function

G.H. Holtham and H. Kato

36. The Government Household Transfer Data Base

Rita Varley

37. Internationalisation of Financial Markets: Some Implications for Macroeconomic Policy and for the Allocation of Capital

Mitsuhiro Fukao and Masaharu Hanazaki

38. Tracking the US External Deficit, 1980-1985: Experience with the OECD INTERLINK Model

Pete Richardson

39. Monetary Policy in the Second Half of the 1980s: How Much Room For Manoeuvre?

Kevin Clinton and Jean-Claude Chouraqui

- 40. Tax Reform in OECD Countries: Economic Rationale and Consequences

 Bob Hagemann, Brian Jones and Bruce Montador
- 41. A Revised Supply Block for the Major Seven Countries in INTERLINK

 Peter Jarrett and Raymond Torres
- 42. OECD Economic Activity and Non-Oil Commodity Prices: Reduced-Form Equations for INTERLINK

Gerald Holtham and Martine Durand

Richard Herd

43. Import and Export Price Equations for Manufactures

44. Price Determination in the Major Seven Country Models in INTERLINK
Ulrich Stiehler

45. International Investment-Income Determination in INTERLINK: Models for 23 OECD Countries and Six Non-OECD Regions

David T. Coe, Richard Herd and Marie-Christine Bonnefous

46. Recent Developments in OECD's International Macroeconomic Model

Pete Richardson

47. A Review of the Simulation Properties of OECD's INTERLINK Model

Pete Richardson

48. The Medium-Term Macroeconomic Strategy Revisited

Jean-Claude Chouragui, Keyin Clinton and Robert Bruce Montador

49. Are Commodity Prices Leading Indicators of OECD Prices?

Martine Durand. Sveinbjörn Blöndal

50. Private Consumption, Inflation and the "Debt Neutrality Hypothesis". The case of Eight OECD Countries

Giuseppe Nicoletti

51. The Effects of Monetary Policy on the Real Sector: An overview of Empirical Evidence for Selected OECD Economies

Jean-Claude Chouraqui, Michael Driscoll and Marc Olivier Strauss-Kahn

52. The So-Called "Non-Economic" Objectives of Agricultural Policy

L. Alan Winters

Alternative Solution Methods in Applied General Equilibrium Analysis

Richard G. Harris

54. Tests of Total Factor Productivity Measurement

A. Steven Englander

55. Quantifying the Economy-Wide Effects of Agricultural Policies: A General Equilibrium Approach

<u>Jean-Marc</u> Burniaux, François Delorme, Ian Lienert, John P. Martin and Peter Hoeller

56. On Aggregation Methods of Purchasing Power Parities

J.R. and M. Cuthbert

57. An International Sectoral Data Base for Thirteen OECD Countries

F.J.M. Meyer-zu-Schlochtern

58. Empirical Research on Trade Liberalisation with Imperfect Competition: A Survey

J. David Richardson

59. Eliminating the US Federal Budget Deficit by 1993: the Interaction of Monetary and Fiscal Policy

R. Herd and B. Ballis

60. Compatible Trade and Production Data Base: 1970-1985

Claude Berthet-Bondet, Derek Blades and Annie Pin

61. Ageing Populations: Implications for Public Finances

Robert P. Hagemann, Giuseppe Nicoletti

62. The Economic Dynamics of an Ageing Population: the Case of Four OECD Economies

Alan J. Auerbach. Laurence J. Kotlikoff. Robert P. Hagemann. Giuseppe Nicoletti 63. Modelling Housing Investment for Seven Major OECD Countries

Thomas Egebo and Ian Lienert

64. Revised Groupings for non-OECD Countries in OECD's macroeconomic model INTERLINK

Paul O'Brien, Laure Meuro, Arthur Camilleri

65. A Post Mortem on OECD Short-Term Projections from 1982 to 1987

Byron Ballis

66. Potential Output in the Seven Major OECD Countries

Raymond Torres and John P. Martin

67. Saving Trends and Behaviour in OECD Countries

Andrew Dean. Martine Durand. John Fallon and Peter Hoeller

68. The Impact of Increased Government Saving on the Economy
Richard Herd

69. The Information Content of the Terms Structure of Interest Rates: Theory and Practice

Frank Browne and Paolo Manasse

70. On the Sequencing of Structural Reforms

Sebastian Edwards

71. Modelling Business Sector Supply for the Smaller OECD Countries

Raymond Torres. Peter Jarrett and Wim Suyker

- 72. The Role of Indicators in Structural Surveillance
- 73. The Saving Behaviour of Japanese Households

Kenichi Kawasaki

74. Industrial Subsidies in the OECD Economies

Robert Ford and Wim Suvker

75. Measuring Industrial Subsidies: Some Conceptual Issues

Professor Neil Bruce

76. The Dollar Position of the Non-U.S. Private Sector, Portfolio Effects, and the Exchange Rate of the Dollar

Bixio Barenco

- 77. Monetary Policy in the Wake of Financial Liberalisation

 Adrian Blundell-Wignall, Frank Browne and Paolo Manasse
- 78. Indicators of Fiscal Policy A Re-examination

 Jean-Claude Chouragui, Robert P. Hagemann, Nicola Sartor
- 79. Suggestions for a New Set of Fiscal Indicators

 Professor Olivier Blanchard (MIT and NBER)
- 80. Fiscal Indicators
 - Professor Edward Gramlich, University of Michigan
- 81. Financial Liberalisation and Consumption Smoothing

 Adrian Blundell-Wignall, Frank Browne, Stefano Cavaglia
- 82. Economics in the Environment: a Survey of Issues and Policy Options

 Jon Nicolaisen. Peter Hoeller
- 83. Exchange Rate Policy in Advanced Commodity-exporting Countries: The case of Australia and New Zealand

 Adrian Blundell-Wignall Robert G. Gregory Australian National
- 84. WALRAS -- a Multi-sector, Multi-country Applied General Equilibrium Model for Quantifying the Economy-wide Effects of Agricultural Policies: a Technical Manual
 - Jean-Marc Burniaux, François Delorme, Ian Lienert and John P. Martin
- 85. Simulating the OECD INTERLINK Model under Alternative Monetary Policy Rules
 - Pete Richardson

University

- 86. Modelling Wages and Prices for the Smaller OECD Countries

 Kenichi Kawasaki, Peter Hoeller and Pierre Poret
- 87. The "Puzzle" of Wage Moderation in the 1980s
 - Pierre Poret
- 88. Business Investment in the OECD Economies: Recent Performance and Some Implications for Policy
 - R. Ford and P. Poret