ANNEX A

Supplementary Figures and Tables

1. Supplementary tables and figures associated with Chapters 2 and 3

	Name of the survey	Organisation undertaking the survey	Type of survey	Years used in the analyses
Australia	National Health Survey	Australian Bureau of Statistics	Health interview survey	1989, 1995, 2001, 2004/05
Austria	Mikrozensus + Health Interview Survey	Statistics Austria	Health interview survey	1983, 1991, 1999, 2006/07
Canada	National Population Health Survey + Canadian Community Health Survey	Statistics Canada	Health interview survey	1994/95, 2000/01, 2003, 2005
England	Health Survey for England (HSE)	Office for Population Censuses and Surveys (1991-93), then the Joint Survey Unit of the National Centre of Social Research and the Department of Epidemiology and Public Health at University College London (since 1994)	Health examination survey	1991 to 2007
France	Enquête Santé et Protection Sociale	Institute for Research and Information in Health Economics	Health interview survey	1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2000, 2002, 2004, 2006
Hungary	National Health Interview survey	Johan Béla National Center of Epidemiology	Health interview survey	2000, 2003
Italy	Condizione di Salute	Istituto Nazionale di Statistica	Health interview survey	1994/95, 2000, 2005
Korea	Korean National Health and Nutrition Examination Survey (KNHANES)	Jointly carried out by the Korea Institute for Health and Social Affairs and the Korea Health Industry Development Institute	Health examination survey	1998, 2001, 2005
Spain	Encuesta Nacional de Salud de Espana	Ministry of Health and Consumers in collaboration with the Centre of Sociological Investigations	Health interview survey	1993, 1995, 1997, 2001, 2003, 2006
Sweden	Swedish Level of Living Survey (LNU)	Statistics Sweden	Health interview survey	1991, 2000
United States- NHANES	National Health and Nutrition Examination Survey (NHANES)	National Center for Health Statistics	Health examination survey	NHANES I, NHANES II, NHANES III (1988-94), 1999/2000, 2001/02, 2003/04, 2005/06, 2007/08
United States- NHIS	National Health Interview Survey (NHIS)	National Center for Health Statistics	Health interview survey	1997 to 2005

Table A.1. Description of the national health survey data used in the analysesreported in Chapters 2 and 3

Figures A.1 and A.2 present odds ratios of obesity and overweight, respectively, by socio-economic condition, and the associated confidence intervals. Mixed patterns emerge in men with a risk of obesity increasing in lower socio-economic groups in Austria and France and decreasing in countries such as Canada and Korea (Figure A.1, Panel A), and a risk of being overweight increasing in Austria and decreasing in Australia, Canada, Korea and the Unites States (Figure A.2, Panel A). Social gradients are found more consistently in women (Panel B in both figures).

Note: SES is based on household income in Australia, Canada, Korea and the United States, and on occupation-based social class in other countries.

Source: OECD analysis of national health survey data. StatLink as http://dx.doi.org/10.1787/888932316210

StatLink ans http://dx.doi.org/10.1787/888932316229

Figures A.3 and A.4 present odds ratios of obesity and overweight, respectively, by education level, and the associated confidence intervals. The risks of obesity and overweight increase at lower levels of education in both men and women, except in men in Korea and in the United States (overweight only). Gradients are generally larger in women (Panel B in both figures) than in men (Panel A, both figures).

Figure A.3. Obesity by education level, selected OECD countries

Note: The bar of the upper confidence interval is truncated for Korea. Its value is 8.4. Source: OECD analysis of national health survey data.

StatLink ans http://dx.doi.org/10.1787/888932316248

Figure A.4. Overweight by education level, selected OECD countries

2. Supplementary tables and figures associated with Chapter 6

Table A.2 provides a list of the main input parameters used in the model-based analyses presented in Chapter 6, along with references to the respective sources. References are listed at the bottom of the table.

Table A.2. Main input parameters used in CDP model-based analyses and relevant sources

Decometoro	References							
Parameters –	All other countries	Japan						
RRa of incidence of IHD relative to high blood pressure		lim <i>et al</i> (2007)						
RRa of incidence of IHD relative to high cholesterol								
RRa of incidence of IHD relative to diabetes	ven Beel	t cl (2000)	Healthy Japan 21					
RRa of incidence of IHD relative to obesity	van Baai e	van Baal <i>et al.</i> (2008)						
RRa of fatality of IHD relative to high blood pressure	Hu	et al. (2005b); Stevens et al. (2004); Hart et al. (1999)					
RRa of fatality of IHD relative to high cholesterol		Hart et al. (1999); Boshuizen et al. (2007)						
RRa of fatality of IHD relative to diabetes	Hu <i>et al.</i> (2005a); Hu <i>et al.</i> (2006); Hu <i>et al.</i> (2005b); Hart <i>et al.</i>	(1999)					
RRa of fatality of IHD relative to obesity		Batty et al. (2006); Pardo Silva et al. (2006)						
RRa of incidence of stroke relative to high blood pressure								
RRa of incidence of stroke relative to high cholesterol		Lim <i>et al.</i> (2007)						
RRa of incidence of stroke relative to diabetes								
RRa of incidence of stroke relative to obesity	van Baal <i>e</i>	Healthy Japan 21						
RRa of fatality of stroke relative to high blood pressure	Stevens	2003)						
RRa of fatality of stroke relative to high cholesterol	Boshuizen et al. (2007); Menotti et al. (2003)							
RRa of fatality of stroke relative to diabetes	Hu et al. (2005a); Wannamethee et al. (2004)							
RRa of fatality of stroke relative to obesity	Batty et al. (2006): Pardo Silva et al. (2006)							
RRa of incidence of cancer relative to fibre consumption		Lock et al. (2005)						
RRa of incidence of cancer relative to obesity		van Baal <i>et al.</i> (2008)						
RRa of fatality of cancer relative to fibre consumption	Skulado	ottir <i>et al.</i> (2006); Pierce <i>et al.</i> (2007); Jansen <i>et al.</i> (1	999)					
RRa of fatality of cancer relative to obesity		Calle et al. (2003)						
RR of high cholesterol relative to obesity		DECD calculculations on Health Survey for England						
RR of high systolic blood pressure relative to obesity		DECD calculculations on Health Survey for England						
RR of diabetes relative to obesity		van Baal <i>et al.</i> (2008)						
RR of obesity relative to fat diet			NIPH calculations on National Health and Nutilion Survey in Japan					
RR of obesity relative to physical activity	OECD calculations on US National Health and Nutrition Examination Survey	PHAC calculations on Canadian Community Health Survey	NIPH calculations on National Health and Nutilion Survey in Japan					
RR of obesity relative to fibre consumption			NIPH calculations on National Health and Nutilion Survey in Japan					
Factors for disability-adjusted life years		Lopez et al. (2006)						

Table A.2. Main input parameters used in CDP model-based analyses and relevant sources (cont.)

Parametera	References							
Parameters	Canada	England	Italy					
Starting population distribution	Statistics Canada	Office of National statistics	ISTAT					
Total mortality	Statistics Canada	Office of National statistics	ISTAT					
Incidence of IHD	Lopez <i>et al.</i> (2006)	OECD calculations using Dismod II	Gruppo di Ricerca del Progetto Registro per gli Eventi Coronarici e Cerebrovascolari, 2005					
Prevalence of IHD	PHAC calculations using DISMOD II	MoH calculations on Health survey for England	OECD calculations using Dismod II					
Mortality of IHD	Statistics Canada, Vital Statistics 2005	Office of National statistics	OECD calculations on database ISTAT Cause di Morte					
Incidence of stroke	Lopez et al. (2006)	OECD calculations using Dismod II	Palmieri <i>et al.</i> , 2009					
Prevalence of stroke	PHAC calculations using DISMOD II	MoH calculations on Health survey for England	OECD calculations using Dismod II					
Mortality of stroke	tality of stroke Statistics Canada, Vital Statistics 2005		OECD calculations on database ISTAT Cause di Morte					
Incidence of cancer	Statistics Canada 2006	Office of National statistics	IARC					
Prevalence of cancer	PHAC calculations using DISMOD II	OECD calculations using Dismod II	OECD calculations using Dismod II					
Mortality of cancer	Statistics Canada, Vital Statistics 2005	Office of National statistics	WHO cancer mortality database					
Prevalence of low physical activity	PHAC calculations on Canadian Community Health Survey, 2007/08 share file	OECD calculations on Eurol	parometer 183-6/wave 58.2					
Prevalence of low fibre consumption	PHAC calculations on Canadian Community Health Survey, 2004 share file, wave 2	MoH calculations on Health survey for England	OECD calculations on Leclercq et al. (2009)					
Prevalence of fat consumption	PHAC calculations on Canadian Community Health Survey, 2004 share file, wave 2	MoH calculations on Health survey for England	OECD calculations on FAOStat					
Incidence of obesity	PHAC calculations using DISMOD II	OECD calculations using Dismod II	OECD calculations using Dismod II					
Prevalence of obesity	PHAC calculations on Canadian Community Health Survey 2007/08 share file	MoH calculations on Health survey for England	OECD calculations on Indagine Multiscopo					
Incidence of diabetes	PHAC calculations using DISMOD II	OECD calculations using Dismod II	OECD calculations using Dismod II					
Prevalence of diabetes	PHAC calculations on National Diabetes Surveillance System	MoH calculations on Health survey for England	OECD calculations on Health for All – Italy					
Incidence of high systolic pressure	PHAC calculations using DISMOD II	OECD calculations using Dismod II	OECD calculations using Dismod II					
Prevalence of high systolic pressure	Lawes et al. (2004a)	MoH calculations on Health survey for England	OECD calculations on Indagine Multiscopo					
Incidence of high cholesterol	PHAC calculations using DISMOD II	OECD calculations using Dismod II	OECD calculations using Dismod II					
Prevalence of high cholesterol	Lawes et al. (2004b)	British heart foundation	OECD calculations on Progetto Cuore					

ANNEX A

Table A.2. Main input parameters used in CDP model-based analyses and relevant sources (cont.)

Devenenteve	References						
Parameters	Japan	Mexico					
Starting population distribution	NIPH calculations on Vital Statistics in Japan	CONAPO					
Total mortality	NIPH calculations on Vital Statistics in Japan	SS-DGIS 2007					
Incidence of IHD	Yoshida <i>et al.</i> (2005)	MoH'S calculations on SS-DGIS-SAEH 2004-08; IMSS 2004-05					
Prevalence of IHD	NIPH calculations on Patient Survey in Japan	OECD calculations using Dismod II					
Mortality of IHD	OECD calculations employing Dismod II	SS-DGIS-SEED 2004-08					
Incidence of stroke	Nagura <i>et al.</i> (2005)	WHO (2008)					
Prevalence of stroke	NIPH calculations on Patient Survey in Japan	OECD calculations using Dismod II					
Mortality of stroke	OECD calculations employing Dismod II	SS-DGIS-SEED 2004-08					
Incidence of cancer	NIPH calculations on Cancer Statistics in Japan	MoH'S calculations on SS-DGIS-SAEH 2004-08; IMSS 2004-05					
Prevalence of cancer	NIPH calculations on Cancer Statistics in Japan	OECD calculations using Dismod II					
Mortality of cancer	OECD calculations employing Dismod II	SS-DGIS-SEED 2004-08					
Prevalence of low physical activity	NIPH calculations on National Health and Nutilion Survey in Japan	MoH's calculations based on National Health and Nutrition Survey in Mexico 2006					
Prevalence of low fibre consumption	NIPH calculations on National Health and Nutilion Survey in Japan	MoH's calculations based on National Health and Nutrition Survey in Mexico 2006					
Prevalence of fat consumption	NIPH calculations on National Health and Nutilion Survey in Japan	MoH's calculations based on Mundo-Rosas <i>et al.</i> (2009); Rodriguez-Ramirez <i>et al.</i> (2009); Barquera <i>et al.</i> (2009)					
Incidence of obesity	OECD calculations using Dismod II	OECD calculations using Dismod II					
Prevalence of obesity	NIPH calculations on National Health and Nutilion Survey in Japan	Olaiz-Fernández et al. (2006); Shamah-Levy et al. (2007)					
Incidence of diabetes	OECD calculations employing Dismod II	Olaiz et al. (2003); Villalpando et al. (2010)					
Prevalence of diabetes	NIPH calculations on National Health and Nutilion Survey in Japan	Villalpando <i>et al.</i> (2010)					
Incidence of high systolic pressure	OECD calculations employing Dismod II	OECD calculations using Dismod II					
Prevalence of high systolic pressure	NIPH calculations on National Health and Nutilion Survey in Japan	Barquera et al. (2010)					
Incidence of high cholesterol	OECD calculations employing Dismod II	OECD calculations using Dismod II					
Prevalence of high cholesterol	NIPH calculations on National Health and Nutilion Survey in Japan	Aguilar-Salinas et al. (2010)					

References:

Aguilar-Salinas, C.A., FJ. Gómez-Pérez, J. Rull, S. Villalpando, S. Barquera and R. Rojas (2010), "Prevalence of Dyslipidemias in the Mexican National Health and Nutrition Survey 2006", Salud Pública Mex 2010, Vol. 52, pp. 44-53.

Barquera, S., L. Hernández-Barrera, I. Campos-Nonato, J. Espinosa, M. Flores, J.A. Barriguete and J. Rivera (2009), "Energy and Nutrient Consumption in Adults: Analysis of the Mexican National Health and Nutrition Survey 2006", Salud Publica Mex 2009, Vol. 51-4.

Barquera, S., I. Campos-Nonato, L. Hernández-Barrera, S. Villalpando, C. Rodríguez-Gilabert, R. Durazo-Arvizú and C.A. Aguilar-Salinas (2010), "Hypertension in Mexican Adults: Results from the Mexican Health and Nutrition Survey 2006", Salud Pública Mex 2010, Vol. 52, pp. 63-71.

Batty, G.D., M.J. Shipley, R.J. Jarrett, E. Breeze, M.G. Marmot and G. Davey Smith (2006), "Obesity and Overweight in Relation to Disease-Specific Mortality in Men With and Without Existing Coronary Heart Disease in London: The Original Whitehall Study", Heart, Vol. 92, No. 7, pp. 886-892, July.

Boshuizen, H.C., M. Lanti, A. Menotti, J. Moschandreas, H. Tolonen, A. Nissinen, S. Nedeljkovic, A. Kafatos and D. Kromhout (2007), "Effects of Past and Recent Blood Pressure and Cholesterol Level on Coronary Heart Disease and Stroke Mortality, Accounting for Measurement Error", American Journal of Epidemiology, Vol. 165, No. 4, pp. 398-409, 15 Feb. British Heart Foundation website, www.heartstats.org, accessed on 2 March 2010.

Calle, E.E., C. Rodriguez, K. Walker-Thurmond and M.J. Thun (2003), "Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of US Adults", New England Journal of Medicine, Vol. 348, No. 17, pp. 1625-1638, 24 Apr.

CONAPO - Consejo Nacional de Población, "Proyecciones de la población de México 2005-2050", website, www.conapo.gob.mx, accessed on 19 April 2010.

FAOStat food supply database, website, http://faostat.fao.org/site/609/default.aspx#ancor, accessed on 18 June 2010.

Gruppo di Ricerca del Progetto Registro per gli Eventi Coronarici e Cerebrovascolari (2005), "Registro nazionale Italiano degli evento coronarici maggiori: tassi di attacco e letalità nelle diverse aree del paese", Giornale Italiano di Cardiologia, Vol. 6, pp. 667-673.

Hu, G., P. Jousilahti, Q. Qiao, S. Katoh and J. Tuomilehto (2005a), "Sex Differences in Cardiovascular and Total Mortality Among Diabetic and Non-Diabetic Individuals With or Without History of Myocardial Infarction", Diabetologia, Vol. 48, No. 5, pp. 856-861, May.

Hu, G., C. Sarti, P. Jousilahti, M. Peltonen, Q. Qiao, R. Antikainen and J. Tuomilehto (2005b), "The Impact of History of Hypertension and Type 2 Diabetes at Baseline on the Incidence of Stroke and Stroke Mortality", Stroke, Vol. 36, No. 12, pp. 2538-2543, Dec.

Hu, G., P. Jousilahti, C. Sarti, R. Antikainen and J. Tuomilehto (2006), "The Effect of Diabetes and Stroke at Baseline and During Follow-Up on Stroke Mortality", Diabetologia, Vol. 49, No. 10, pp. 2309-2316, Oct.

Hart, C.L., D.J. Hole and G.D. Smith (1999), "Risk Factors and 20-Year Stroke Mortality in Men and Women in the Renfrew/Paisley Study in Scotland", Stroke, Vol. 30, No. 10, pp. 1999-2007, Oct.

IARC - Cancer Incidence in Five Continents - Vol. IX, website www-dep.iarc.fr/CI5_IX_frame.htm, accessed on 2 March 2010.

IMSS - Instituto Mexicano del Seguro Social, "Egresos Hospitalarios 2004-2005", Dirección de Finanzas, México.

ISTAT website, www.istat.it, accessed on 18 June 2010.

ISTAT, "Cause di morte website", www.istat.it/dati/dataset/20080111_00/, accessed on 18 June 2010.

Jansen, M.C., H.B. Bueno-de-Mesquita, R. Buzina, F. Fidanza, A. Menotti, H. Blackburn, A.M. Nissinen, F.J. Kok and D. Kromhout (1999), "Dietary Fiber and Plant Foods in Relation to Colorectal Cancer Mortality: The Seven Countries Study", International Journal of Cancer, Vol. 81, No. 2, pp. 174-179, 12 Apr.

Lawes, C.M.M., S. Vander Horn, M.R. Law and A. Rodgers (2004b), "High Cholesterol", in M. Ezzati, A.D. Lopez, A. Rodgers and C.J.L. Murray (2004b), Comparative Quantification of Health Risks. Global and Regional Burden of Diseases Attributable to Selected Major Risk Factors, World Health Organisation, Geneva.

Lawes, C.M.M., S. Vander Horn, M.R. Law, P. Elliot, S. Mac Mahon and A. Rodgers (2004a), "High Blood Pressure", in M. Ezzati, A.D. Lopez, A. Rodgers and C.J.L. Murray (2004a), Comparative Quantification of Health Risks. Global and Regional Burden of Diseases Attributable to Selected Major Risk Factors, World Health Organisation, Geneva.

Leclercq, C., D. Arcella, R. Piccinelli, S. Sette, C. Le Donne and A. Turrini (2009), "The Italian National Food Consumption Survey INRAN-SCAI 2005-06: Main Results in Terms of Food Consumption", Public Health Nutrition, Vol. 12, No. 12, pp. 2504-2532.

Lim, S.S., T.A. Gaziano, E. Gakidou, K.S. Reddy, F. Farzadfar, R. Lozano and A. Rodgers (2007), "Prevention of Cardiovascular Disease in High-Risk Individuals in Low-Income and Middle-Income Countries: Health Effects and Costs", The Lancet, Vol. 370, No. 9604, pp. 2054-2062, 15 Dec.

Table A.2. Main input parameters used in CDP model-based analyses and relevant sources (cont.)

- Lock, K., J. Pomerleau, L. Causer, D.R. Altmann and M. McKee (2005), "The Global Burden of Disease Attributable to Low Consumption of Fruit and Vegetables: Implications for the Global Strategy on Diet", Bulletin of the World Health Organisation, Vol. 83, No. 2, pp. 100-108, Feb. Lopez, A.D., C.D. Mathers, M. Ezzati, D.T. Jamison and C.J.L. Murray (2006), Global Burden of Disease and Risk Factors, Oxford University Press/The World Bank, New York. Menotti, A. and M. Lanti (2003), "Coronary Risk Factors Predicting Early and Late Coronary Deaths", Heart, Vol. 89, No. 1, pp. 19-24, Jan. Mundo-Rosas, V., S. Rodríguez-Ramírez and T. Shamah-Levy (2006), "Energy and Nutrient Intake in Mexican Children 1 to 4 Years Old. Results from the Mexican National Health and Nutrition Survey 2006", Salud Publica Mex 2009, Vol. 51-4. Nagura, J. et al. (2005), "Stroke Subtypes and Lesion Sites in Akita, Japan", Journal of Stroke and Cerebrovascular Diseases, Vol. 14, No. 1, Jap-Feb, pp. 1-7. Office of National Statistics website, www.statistics.gov.uk, accessed on 2 March 2010. Olaiz, G., R. Rojas, S. Barquera, T. Shamah, C. Aguilar, P. Cravito, P. López, M. Hernández, R. Tapia and J. Sepúlveda (2003), "Encuesta Nacional de Salud 2000. Tomo 2. La salud de los adultos", Instituto Nacional de Salud Pública, Cuernavaca, México. Olaiz-Fernández, G. J. Rivera-Dommarco, T. Shamah-Levy, R. Rojas, S. Villalpando-Hernández, M. Hernández-Avila and J. Sepúlveda-Amor (2006), "Encuesta Nacional de Salud y Nutrición 2006", Instituto Nacional de Salud Pública, Cuernavaca, México. Palmieri, L., A. Barchielli, G. Cesana, E. de Campora, C.A. Goldoni, P. Spolaore, M. Uguccioni, F. Vancheri, D. Vanuzzo, P. Ciccarelli and S. Giampaoli (2007), "The Italian Register of Cardiovascular Diseases: Attack Rates and Case Fatality for Cerebrovascular Events", Cerebrovascular Diseases, Vol. 24, pp. 530-539. Pardo Silva, M.C., C. De Laet, W.I. Nusselder, A.A. Mamun and A. Peeters (2006). "Adult Obesity and Number of Years Lived With and Without Cardiovascular Disease". Obesity (Silver Spring), Vol. 14, No. 7, pp. 1264-1273, Jul. Pierce, J.P., L. Natarajan, B.J. Caan, B.A. Parker, E.R. Greenberg, S.W. Flatt, C.L. Rock, S. Kealey, W.K. Al-Delaimy, W.A. Bardwell, R.W. Carlson, J.A. Emond, S. Faerber, E.B. Gold, R.A. Hajek, K. Hollenbach, L.A. Jones, N. Karanja, L. Madlensky, J. Marshall, V.A. Newman, C. Ritenbaugh, C.A. Thomson, L. Wasserman and M.L. Stefanick (2007), "Influence of a Diet Very High in Vegetables, Fruit, and Fiber and Low in Fat on Prognosis Following Treatment for Breast Cancer: The Women's Healthy Eating and Living (WHEL) Randomized Trial", Journal of the American Medical Association, Vol. 298, No. 3, pp. 289-298, 18 Jul. Rodriguez-Ramírez, S., V. Mundo-Rosas, T. Shamah-Levy, X. Ponce-Martínez, A. Jiménez-Aguilar and T. González-de Cossío (2009), "Energy and Nutrient Intake in Mexican Adolescents: Analysis of the Mexican National Health and Nutrition Survey 2006", Salud Publica Mex 2009, Vol. 51-4. Shamah-Levy, T., S. Villalpando-Hernández and J.A. Rivera-Dommarco (2007), Resultados de Nutrición de la ENSANUT 2006, Instituto Nacional de Salud Pública. Cuernavaca, México. Skuladottir, H., A. Tjoenneland, K. Overvad, C. Stripp and J.H. Olsen (2006), "Does High Intake of Fruit and Vegetables Improve Lung Cancer Survival?", Lung Cancer, Vol. 51, No. 3, pp. 267-273, Mar. SS – INSP Secretaría de Salud and Instituto Nacional de Salud Pública, "National Health and Nutrition Survey in Mexico 2006". SS - Secretaría de Salud, Dirección General de Información en Salud (DGIS), "Base de datos del Sistema Estadístico Epidemiológico de las Defunciones (SEED) 2004-2008", México. SS - Secretaría de Salud, Dirección General de Información en Salud (DGIS), "Base de datos del Sistema Automatizado de Egresos Hospitalarios (SAEH) 2004-2008", México. Statistics Canada website, www.statcan.gc.ca., accessed on 18 June 2010. Stevens, R.J., R.L. Coleman, A.I. Adler, I.M. Stratton, D.R. Matthews and R.R. Holman (2004), "Risk Factors for Myocardial Infarction Case Fatality and Stroke Case Fatality in Type 2 Diabetes, UKPDS 66", Diabetes Care, Vol. 27, No. 1, pp. 201-207, Jan. Van Baal, P.H., J.J. Polder, G.A. de Wit, R.T. Hoogenveen, T.L. Feenstra, H.C. Boshuizen, P.M. Engelfriet and W.B. Brouwer (2008), "Lifetime Medical Costs of Obesity: Prevention No Cure for Increasing Health Expenditure", PLoS Medicine, Vol. 5, No. 2, e29, Feb. Villalpando, S., V. De la Cruz, R. Rojas, T. Shamah-Levy, M.A. Ávila, B. Gaona, R. Rebollara and L. Hernández (2010), "Prevalence and Distribution of Type 2 Diabetes Mellitus in Mexican Adult Population. A Probabilistic Survey", Salud Pública Mex 2010, Vol. 52, pp. 27-35.
- Wannamethee, S.G., A.G. Shaper and L. Lennon (2004), "Cardiovascular Disease Incidence and Mortality in Older Men with Diabetes and in Men with Coronary Heart Disease", *Heart*, Vol. 90, No. 12, pp. 1398-1403, Dec.

WHO Cancer Mortality database website, www-dep.iarc.fr/WHOdb/WHOdb.htm., accessed on 18 June 2010.

Yoshida, M. et al. (2005), "Incidence of Acute Myocardial Infraction in Takashima, Shiga, Japan", Circulation Journal, Vol. 69, No. 4, April.

247

Table A.3 shows the cost per capita (per unit of population) and the potential coverage of the interventions assessed in the OECD/WHO analysis. Costs include only the costs of delivering the interventions, and are expressed in USD PPPs. Coverage figures reflect the proportions of national populations which would be given the opportunity to benefit from preventive interventions, without accounting for individual uptake rates, estimated separately.

Table A.4 shows the magnitude of health gains associated with preventive interventions. This is expressed as a ratio between the total number of statistical lives lived during the course of the simulation analysis and the total number of DALYs/LYs gained during the course of the same simulation. The figures in each box of Table A.3 (*n*) should be interpreted as: "The intervention generates a gain of one DALY/LY for every *n* individuals, over their lifetime". The lower the value of *n*, the larger the effectiveness of the intervention.

Figure A.5 shows the cumulative effectiveness of interventions over time. The vertical axis shows the number of disability-adjusted life years gained per million population, while the horizontal axis corresponds to the time frame of the analysis. DALYs are discounted at a 3% rate.

Figure A.6 describes the cumulative impact of interventions on health expenditure over time. The vertical axis shows the cumulative impact of interventions on health expenditures in terms of USD PPPs per capita. The horizontal axis reflects the time frame of the analysis. Figures are discounted at a 3% rate.

Figure A.7 shows the cumulative effectiveness of a multiple intervention strategy over time in the five countries concerned. The vertical axis shows the number of disability-adjusted life years gained per million population, while the horizontal axis corresponds to the time frame of the analysis. DALYs are discounted at a 3% rate.

Figure A.8 describes the cumulative impact of a multiple intervention strategy on health expenditure over time in the five countries concerned. The vertical axis shows the cumulative impact of interventions on health expenditure in terms of USD PPPs per capita, while the horizontal axis corresponds to the time frame of the analysis. Figures are discounted at a 3% rate.

Figure A.9 presents the cost-effectiveness of a multiple intervention strategy over time in the five countries concerned. The vertical axis shows cost-effectiveness ratios in terms of USD PPPs per DALY gained, while the horizontal axis corresponds to the time frame of the analysis. Both costs and DALYs are discounted at a 3% rate.

		School- based interventions	Worksite interventions	Mass media campaigns	Fiscal measures	Physician counselling	Physician- dietician counselling	Food advertising regulation	Food advertising self- regulation	Food labelling	Multiple- intervention strategy
Canada	Target as % of population	2.4%	15.6%	78.3%	100.0%	12.7%	12.7%	21.0%	21.0%	100.0%	100.0%
	Cost/capita (USD PPPs)	1.78	5.59	1.36	0.13	9.26	19.74	0.55	0.04	1.10	24.03
England	Target as % of population	2.3%	15.7%	78.5%	100.0%	14.7%	14.7%	20.4%	20.4%	100.0%	100.0%
	Cost/capita (USD PPPs)	1.02	3.49	1.85	0.09	6.52	13.80	0.24	0.02	0.84	17.52
Italy	Target as % of population	1.9%	8.2%	82.9%	100.0%	10.2%	10.2%	16.2%	16.2%	100.0%	100.0%
	Cost/capita (USD PPPs)	1.36	2.73	1.56	0.09	6.82	14.42	0.42	0.02	0.93	18.29
Japan	Target as % of population	1.9%	12.7%	83.6%	100.0%	5.8%	5.8%	15.6%	15.6%	100.0%	100.0%
	Cost/capita (USD PPPs)	1.41	4.28	0.84	0.09	4.32	8.82	0.46	0.02	0.99	12.07
Mexico	Target as % of population	4.2%	12.6%	63.5%	100.0%	14.1%	14.1%	34.7%	34.7%	100.0%	100.0%
	Cost/capita (USD PPPs)	1.78	2.48	0.65	0.03	6.42	13.61	0.14	0.01	0.33	16.38

Table A.3. Costs and coverage of selected preventive interventions

Note: Figures should be interpreted as follows: The intervention generates a gain of one DALY/LY for every N individuals over their lifetime. The multiple-intervention strategy is a sum of the following: Food labelling; food advertising self-regulation; school-based intervention; mass media campaign; and physician-dietician counselling in primary care.

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2.

StatLink and http://dx.doi.org/10.1787/888932316571

Table A.4. Magnitude of health gains associated with preventive interventions (population per DALY/LY gained)

	Disability-adjusted life years				Life years					
-	Canada	England	Italy	Japan	Mexico	Canada	England	Italy	Japan	Mexico
School-based interventions	98	105	127	62	235	197	272	237	101	647
Worksite interventions	38	44	70	37	107	63	85	104	46	272
Mass media campaigns	97	79	93	81	172	127	130	100	101	398
Fiscal measures	26	31	26	22	83	43	69	37	40	185
Physician counselling	31	25	33	37	50	50	57	51	49	142
Physician-dietician counselling	9	6	8	10	13	14	17	12	14	41
Food advertising regulation	35	29	94	33	98	57	52	134	40	181
Food advertising self-regulation	64	55	180	59	181	100	95	260	74	340
Food labelling	55	47	47	51	131	82	80	61	63	233
Multiple-intervention strategy	7	4	6	10	11	10	9	9	9	30

Note: Figures should be interpreted as follows: The intervention generates a gain of one DALY/LY for every N individuals, over their lifetime. The multiple-intervention strategy is a sum of the following: Food labelling; food advertising self-regulation; school-based intervention; mass media campaign; and physician-dietician counselling in primary care.

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2.

StatLink ms http://dx.doi.org/10.1787/888932316590

Figure A.5. Cumulative DALYs saved over time (per million population)

Worksite interventions

Fiscal measures

School-based interventions

Mass media campaigns

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink msp http://dx.doi.org/10.1787/888932316286

Figure A.5. Cumulative DALYs saved over time (per million population) (cont.)

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink msp http://dx.doi.org/10.1787/888932316286

Time (years)

Figure A.6. Cumulative impact on health expenditure over time

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink msp http://dx.doi.org/10.1787/888932316305

Figure A.6. Cumulative impact on health expenditure over time (cont.)

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink msp http://dx.doi.org/10.1787/888932316305

Figure A.7. Cumulative DALYs saved with a multiple-intervention strategy over time

Note: The multiple-intervention strategy is a sum of the following: food labelling; food advertising self-regulation; school-based intervention; mass media campaign; and physician-dietician counselling in primary care.

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink msp http://dx.doi.org/10.1787/888932316324

Note: The multiple-intervention strategy is a sum of the following: food labelling; food advertising self-regulation; school-based intervention; mass media campaign; and physician-dietician counselling in primary care.

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink and http://dx.doi.org/10.1787/888932316343

Figure A.9. Cost-effectiveness of a multiple-intervention strategy over time

Note: The multiple-intervention strategy is a sum of the following: food labelling; food advertising self-regulation; school-based intervention; mass media campaign; and physician-dietician counselling in primary care.

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink ms http://dx.doi.org/10.1787/888932316362

Figures A.10 to A.14 illustrate average annual cost-effectiveness ratios of different interventions after they have been in place for 30 years. The vertical axis shows intervention costs in millions of USD PPPs, while the horizontal axis shows intervention effects in thousands of DALYs. Clouds of points for each intervention reflect the uncertainty surrounding cost and effect estimates. Clouds resting mostly or entirely beneath the threshold lines correspond to the interventions with the most favourable cost-effectiveness profiles.

Figures A.15 to A.19 illustrate the average annual cost-effectiveness ratios of different interventions after they have been in place for 100 years. These figures have the same characteristics as Figures A.10 to A.14.

Figure A.10. Canada: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 30 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. *StatLink 雪* http://dx.doi.org/10.1787/888932316381

Figure A.11. England: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 30 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink mgp http://dx.doi.org/10.1787/888932316400

Figure A.12. Italy: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 30 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink mgP http://dx.doi.org/10.1787/888932316419

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. *StatLink* http://dx.doi.org/10.1787/888932316438

Figure A.14. Mexico: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 30 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. *StatLink 雪* http://dx.doi.org/10.1787/888932316457

Figure A.16. England: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 100 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. *StatLink আ3* http://dx.doi.org/10.1787/888932316495

Figure A.17. Italy: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 100 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink mg http://dx.doi.org/10.1787/888932316514

Figure A.18. Japan: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 100 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink mgP http://dx.doi.org/10.1787/888932316533

Figure A.19. Mexico: Probabilistic sensitivity analysis of the cost-effectiveness of interventions at 100 years

Source: CDP model-based analysis relying on input data from multiple sources, listed in Table A.2. StatLink msg http://dx.doi.org/10.1787/888932316552

From: Obesity and the Economics of Prevention Fit not Fat

Access the complete publication at: https://doi.org/10.1787/9789264084865-en

Please cite this chapter as:

OECD (2010), "Annex A. Supplementary Figures and Tables", in *Obesity and the Economics of Prevention: Fit not Fat*, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/9789264084865-18-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

