

Annex A

TECHNICAL BACKGROUND

All tables in Annex A are available on line

Annex A1: Construction of reading scales and indices from the student, school and parent context questionnaires

Annex A2: The PISA target population, the PISA samples and the definition of schools

Annex A3: Standard errors, significance tests and subgroup comparisons

Annex A4: Quality assurance

ANNEX A1
 CONSTRUCTION OF READING SCALES AND INDICES FROM THE STUDENT, SCHOOL AND PARENT CONTEXT QUESTIONNAIRES

How the PISA 2009 reading assessments were designed, analysed and scaled

The development of the PISA 2009 reading tasks was co-ordinated by an international consortium of educational research institutions contracted by the OECD, under the guidance of a group of reading experts from participating countries. Participating countries contributed stimulus material and questions, which were reviewed, tried out and refined iteratively over the three years leading up to the administration of the assessment in 2009. The development process involved provisions for several rounds of commentary from participating countries, as well as small-scale piloting and a formal field trial in which samples of 15 -year-olds from all participating countries took part. The reading expert group recommended the final selection of tasks, which included material submitted by 21 of the participating countries. The selection was made with regard to both their technical quality, assessed on the basis of their performance in the field trial, and their cultural appropriateness and interest level for 15-year-olds, as judged by the participating countries. Another essential criterion for selecting the set of material as a whole was its fit to the framework described in Volume 1, What Students Know and Can Do, to maintain the balance across various categories of text, aspect and situation. Finally, it was carefully ensured that the set of questions covered a range of difficulty, allowing good measurement and description of the reading literacy of all 15 -year-old students, from the least proficient to the highly able.

More than 130 print reading questions were used in PISA 2009, but each student in the sample only saw a fraction of the total pool because different sets of questions were given to different students. The reading questions selected for inclusion in PISA 2009 were organised into half-hour clusters. These, along with clusters of mathematics and science questions, were assembled into booklets containing four clusters each. Each participating student was then given a two-hour assessment. As reading was the focus of the PISA 2009 assessment, every booklet included at least one cluster of reading material. The clusters were rotated so that each cluster appeared in each of the four possible positions in the booklets, and each pair of clusters appeared in at least one of the 13 booklets that were used.

This design, similar to those used in previous PISA assessments, makes it possible to construct a single scale of reading proficiency, in which each question is associated with a particular point on the scale that indicates its difficulty, whereby each student's performance is associated with a particular point on the same scale that indicates his or her estimated proficiency. A description of the modelling technique used to construct this scale can be found in the PISA 2009 Technical Report (OECD, forthcoming).

The relative difficulty of tasks in a test is estimated by considering the proportion of test takers who answer each question correctly. The relative proficiency of students taking a particular test can be estimated by considering the proportion of test questions they answer correctly. A single continuous scale shows the relationship between the difficulty of questions and the proficiency of students. By constructing a scale that shows the difficulty of each question, it is possible to locate the level of reading literacy that the question represents. By showing the proficiency of each student on the same scale, it is possible to describe the level of reading literacy that the student possesses.

The location of student proficiency on this scale is set in relation to the particular group of questions used in the assessment. However, just as the sample of students taking PISA in 2009 is drawn to represent all the 15 -year-olds in the participating countries, so the individual questions used in the assessment are designed to represent the definition of reading literacy adequately. Estimates of student proficiency reflect the kinds of tasks they would be expected to perform successfully. This means that students are likely to be able to complete questions successfully at or below the difficulty level associated with their own position on the scale (but they may not always do so). Conversely, they are unlikely to be able to successfully complete questions above the difficulty level associated with their position on the scale (but they may sometimes do so).

The further a student's proficiency is located above a given question, the more likely he or she is to successfully complete the question (and other questions of similar difficulty); the further the student's proficiency is located below a given question, the lower the probability that the student will be able to successfully complete the question, and other questions of similar difficulty.

How reading proficiency levels are defined in PISA 2009

PISA 2009 provides an overall reading literacy scale for the reading texts, drawing on all the questions in the reading assessment, as well as scales for three aspects and two text formats. The metric for the overall reading scale is based on a mean for OECD countries set at 500 in PISA 2000, with a standard deviation of 100. To help interpret what students' scores mean in substantive terms, the scale is divided into levels, based on a set of statistical principles, and then descriptions are generated, based on the tasks that are located within each level, to describe the kinds of skills and knowledge needed to successfully complete those tasks.

For PISA 2009, the range of difficulty of tasks allows for the description of seven levels of reading proficiency: Level 1 b is the lowest described level, then Level 1a, Level 2, Level 3 and so on up to Level 6.

Students with a proficiency within the range of Level 1 b are likely to be able to successfully complete Level 1 b tasks (and others like them), but are unlikely to be able to complete tasks at higher levels. Level 6 reflects tasks that present the greatest challenge in terms of reading skills and knowledge. Students with scores in this range are likely to be able to complete reading tasks located at that level successfully, as well as all the other reading tasks in PISA.

PISA applies a standard methodology for constructing proficiency scales. Based on a student's performance on the tasks in the test, his or her score is generated and located in a specific part of the scale, thus allowing the score to be associated with a defined proficiency level. The level at which the student's score is located is the highest level for which he or she would be expected to answer correctly, most of a random selection of questions within the same level. Thus, for example, in an assessment composed of tasks spread uniformly across Level 3, students with a score located within Level 3 would be expected to complete at least 50% of the tasks successfully. Because a level covers a range of difficulty and proficiency, success rates across the band vary. Students near the bottom of the level would be likely to succeed on just over 50% of the tasks spread uniformly across the level, while students at the top of the level would be likely to succeed on well over 70% of the same tasks.

Figure I.2.12 in Volume I provides details of the nature of reading skills, knowledge and understanding required at each level of the reading scale.

Explanation of indices

This section explains the indices derived from the student, school and parent context questionnaires used in PISA 2009. Parent questionnaire indices are only available for the 14 countries that chose to administer the optional parent questionnaire.

Several PISA measures reflect indices that summarise responses from students, their parents or school representatives (typically principals) to a series of related questions. The questions were selected from a larger pool of questions on the basis of theoretical considerations and previous research. Structural equation modelling was used to confirm the theoretically expected behaviour of the indices and to validate their comparability across countries. For this purpose, a model was estimated separately for each country and collectively for all OECD countries.

For a detailed description of other PISA indices and details on the methods, see the PISA 2009 Technical Report (OECD, forthcoming).
There are two types of indices: simple indices and scale indices.
Simple indices are the variables that are constructed through the arithmetic transformation or recoding of one or more items, in exactly the same way across assessments. Here, item responses are used to calculate meaningful variables, such as the recoding of the four-digit ISCO-88 codes into "Highest parents' socio-economic index (HISEI)" or, teacher-student ratio based on information from the school questionnaire.

Scale indices are the variables constructed through the scaling of multiple items. Unless otherwise indicated, the index was scaled using a weighted maximum likelihood estimate (WLE) (Warm, 1985), using a one-parameter item response model (a partial credit model was used in the case of items with more than two categories).

The scaling was done in three stages:

- The item parameters were estimated from equal-sized subsamples of students from each OECD country.
- The estimates were computed for all students and all schools by anchoring the item parameters obtained in the preceding step.
- The indices were then standardised so that the mean of the index value for the OECD student population was 0 and the standard deviation was 1 (countries being given equal weight in the standardisation process).

Sequential codes were assigned to the different response categories of the questions in the sequence in which the latter appeared in the student, school or parent questionnaires. Where indicated in this section, these codes were inverted for the purpose of constructing indices or scales. It is important to note that negative values for an index do not necessarily imply that students responded negatively to the underlying questions. A negative value merely indicates that the respondents answered less positively than all respondents did on average across OECD countries. Likewise, a positive value on an index indicates that the respondents answered more favourably, or more positively, than respondents did, on average, in OECD countries. Terms enclosed in brackets $<>$ in the following descriptions were replaced in the national versions of the student, school and parent questionnaires by the appropriate national equivalent. For example, the term <qualification at ISCED level 5A> was translated in the United States into "Bachelor's degree, post-graduate certificate program, Master's degree program or first professional degree program". Similarly the term <classes in the language of assessment> in Luxembourg was translated into "German classes" or "French classes" depending on whether students received the German or French version of the assessment instruments.

In addition to simple and scaled indices described in this annex, there are a number of variables from the questionnaires that correspond to single items not used to construct indices. These non-recoded variables have prefix of "ST" for the questionnaire items in the student questionnaire, " SC " for the items in the school questionnaire, and " PA " for the items in the parent questionnaire. All the context questionnaires as well as the PISA international database, including all variables, are available through www.pisa.oecd.org.

Student-level simple indices

Occupational status of parents

Occupational data for both a student's father and a student's mother were obtained by asking open-ended questions in the student questionnaire (ST9a, ST9b, ST12, ST13a, ST13b and ST16). The responses were coded to four-digit ISCO codes (ILO, 1990) and then mapped to Ganzeboom et al.'s SEI index (1992). Higher scores of SEI indicate higher levels of occupational status. The following three indices are obtained:

- Mother's occupational status (BMMJ).
- Father's occupational status (BFMJ).
- The highest occupational level of parents (HISEI) corresponds to the higher SEI score of either parent or to the only available parent's SEI score.

Educational level of parents

The educational level of parents is classified using ISCED (OECD, 1999) based on students' responses in the student questionnaire (ST10, ST11, ST14 and ST15). Please note that the question format for school education in PISA 2009 differs from the one used in PISA 2000, 2003 and 2006 but the method used to compute parental education is the same.

As in PISA 2000, 2003 and 2006, indices were constructed by selecting the highest level for each parent and then assigning them to the following categories: (0) None, (1) ISCED 1 (primary education), (2) ISCED 2 (lower secondary), (3) ISCED Level 3B or 3C (vocational/pre-vocational upper secondary), (4) ISCED 3A (upper secondary) and/or ISCED 4 (non-tertiary post-secondary), (5) ISCED 5B (vocational tertiary), (6) ISCED 5A, 6 (theoretically oriented tertiary and post-graduate). The following three indices with these categories are developed:

- Mother's educational level (MISCED).
- Father's educational level (FISCED).
- Highest educational level of parents (HISCED) corresponds to the higher ISCED level of either parent.

Highest educational level of parents was also converted into the number of years of schooling (PARED). For the conversion of level of education into years of schooling, see Table A1.1.

Immigration and language background

Information on the country of birth of students and their parents (ST17) is collected in a similar manner as in PISA 2000, PISA 2003 and PISA 2006 by using nationally specific ISO coded variables. The ISO codes of the country of birth for students and their parents are available in the PISA international database (COBN_S, COBN_M, and COBN_F).

The index on immigrant background (IMMIG) has the following categories: (1) native students (those students born in the country of assessment, or those with at least one parent born in that country; students who were born abroad with at least one parent born in the country of assessment are also classified as 'native' students), (2) second-generation students (those born in the country of assessment but whose parents were born in another country), and (3) first-generation students (those born outside the country of assessment and whose parents were also born in another country). Students with missing responses for either the student or for both parents, or for all three questions have been given missing values for this variable.

Students indicate the language they usually speak at home. The data are captured in nationally-specific language codes, which were recoded into variable ST19Q01 with the following two values: (1) language at home is the same as the language of assessment, and (2) language at home is a different language than the language of assessment.

Relative grade

Data on the student's grade are obtained both from the student questionnaire (ST01) and from the student tracking form. As with all variables that are on both the tracking form and the questionnaire, inconsistencies between the two sources are reviewed and resolved during data-cleaning. In order to capture between-country variation, the relative grade index (GRADE) indicates whether students are at the modal grade in a country (value of 0), or whether they are below or above the modal grade level (+ x grades, - x grades).

The relationship between the grade and student performance was estimated through a multilevel model accounting for the following background variables: i) the PISA index of economic, social and cultural status; ii) the PISA index of economic, social and cultural status squared; iii) the school mean of the PISA index of economic, social and cultural status; iv) an indicator as to whether students were foreign born first-generation students; v) the percentage of first-generation students in the school; and vi) students' gender.
[Part 1/1]
Table A1.1 Levels of parental education converted into years of schooling

Table A1.2 A multilevel model to estimate grade effects in reading, accounting for some background variables

StatLink ․ㅔा

Table A1.2 presents the results of the multilevel model. Column 1 in Table A1.2 estimates the score point difference that is associated with one grade level (or school year). This difference can be estimated for the 32 OECD countries in which a sizeable number of 15 -year-olds in the PISA samples were enrolled in at least two different grades. The average score point difference between two grades is about 39 score points on the PISA reading scale. This implies that one school year corresponds to an average of 39 score points. Since 15 -year-olds cannot be assumed to be distributed at random across the grade levels, adjustments had to be made for the above-mentioned contextual factors that may relate to the assignment of students to the different grade levels. These adjustments are documented in columns 2 to 7 of the table. While it is possible to estimate the typical performance difference among students in two adjacent grades net of the effects of selection and contextual factors, this difference cannot automatically be equated with the progress that students have made over the last school year but should be interpreted as a lower boundary of the progress achieved. This is not only because different students were assessed but also because the content of the PISA assessment was not expressly designed to match what students had learned in the preceding school year but more broadly to assess the cumulative outcome of learning in school up to age 15 . For example, if the curriculum of the grades in which 15 -year-olds are enrolled mainly includes material other than that assessed by PISA (which, in turn, may have been included in earlier school years) then the observed performance difference will underestimate student progress.

Student-level scale indices

Family wealth

The index of family wealth (WEALTH) is based on the students' responses on whether they had the following at home: a room of their own, a link to the Internet, a dishwasher (treated as a country-specific item), a DVD player, and three other country-specific items (some items in ST20); and their responses on the number of cellular phones, televisions, computers, cars and the rooms with a bath or shower (ST21).

Home educational resources

The index of home educational resources (HEDRES) is based on the items measuring the existence of educational resources at home including a desk and a quiet place to study, a computer that students can use for schoolwork, educational software, books to help with students' school work, technical reference books and a dictionary (some items in ST20).

Cultural possessions

The index of cultural possessions (CULTPOSS) is based on the students' responses to whether they had the following at home: classic literature, books of poetry and works of art (some items in ST20).

Economic, social and cultural status

The PISA index of economic, social and cultural status (ESCS) was derived from the following three indices: highest occupational status of parents (HISEI), highest educational level of parents in years of education according to ISCED (PARED), and home possessions (HOMEPOS). The index of home possessions (HOMEPOS) comprises all items on the indices of WEALTH, CULTPOSS and HEDRES, as well as books in the home recoded into a four-level categorical variable ($0-10$ books, 11-25 or 26-100 books, 101-200 or 201-500 books, more than 500 books).

The PISA index of economic, social and cultural status (ESCS) was derived from a principal component analysis of standardised variables (each variable has an OECD mean of 0 and a standard deviation of 1), taking the factor scores for the first principal component as measures of the index of economic, social and cultural status.

Principal component analysis was also performed for each participating country to determine to what extent the components of the index operate in similar ways across countries. The analysis revealed that patterns of factor loading were very similar across countries, with all three components contributing to a similar extent to the index. For the occupational component, the average factor loading was 0.80 , ranging from 0.66 to 0.87 across countries. For the educational component, the average factor loading was 0.79 , ranging from 0.69 to 0.87 across countries. For the home possession component, the average factor loading was 0.73 , ranging from 0.60 to 0.84 across countries. The reliability of the index ranged from 0.41 to 0.81 . These results support the crossnational validity of the PISA index of economic, social and cultural status.

The imputation of components for students missing data on one component was done on the basis of a regression on the other two variables, with an additional random error component. The final values on the PISA index of economic, social and cultural status (ESCS) have an OECD mean of 0 and a standard deviation of 1 .

School-level simple indices

School and class size

The index of school size (SCHSIZE) was derived by summing up the number of girls and boys at a school (SC06).

Student-teacher ratio

Student-teacher ratio (STRATIO) was obtained by dividing the school size by the total number of teachers. The number of part-time teachers (SC09Q12) was weighted by 0.5 and the number of full-time teachers (SC09Q11) was weighted by 1.0 in the computation of this index.

Availability of computers

The index of computer availability (IRATCOMP) was derived from dividing the number of computers available for educational purposes available to students in the modal grade for 15 -year-olds (SC10Q02) by the number of students in the modal grade for 15-year-olds (SC10Q01).

The index of computers connected to the Internet (COMPWEB) was derived from dividing the number of computers for educational purposes available to students in the modal grade for 15-year-olds that are connected to the web (SC10Q03) by the number of computers for educational purposes available to students in the modal grade for 15-year-olds (SC10Q02).

Quantity of teaching staff at school

The proportion of fully certified teachers (PROPCERT) was computed by dividing the number of fully certified teachers (SC09Q21 plus $0.5^{*} \mathrm{SC} 09 \mathrm{Q} 22$) by the total number of teachers (SC09Q11 plus $0.5^{*} \mathrm{SC} 09 \mathrm{Q} 12$). The proportion of teachers who have an ISCED 5A qualification (PROPQUAL) was calculated by dividing the number of these kind of teachers (SC09Q31 plus 0.5*SC09Q32) by the total number of teachers (SC09Q11 plus 0.5^{*} SC09Q12).

School-level scale indices

School responsibility for resource allocation
School principals were asked to report whether "principals", "teachers", "school governing board", "regional or local education authority", or "national education authority" has a considerable responsibility for the following tasks (SC24): i) selecting teachers for hire; ii) firing teachers; iii) establishing teachers' starting salaries; iv) determining teachers' salaries increases; v) formulating the school budget; and vi) deciding on budget allocations within the school. The index of school responsibility for resource allocation (RESPRES) was derived from these six items. The ratio of the number of responsibility that "principals" and/or "teachers" have for these six items to the number of responsibility that "regional or local education authority" and/or "national education authority" have for these six items was computed. Higher values on this index indicate relatively more responsibility for schools than local, regional or national education authority. This index has an OECD mean of 0 and a standard deviation of 1.

School responsibility for curriculum and assessment

School principals were asked to report whether "principals", "teachers", "school governing board", "regional or local education authority", or "national education authority" has a considerable responsibility for the following tasks (SC24): i) establishing student assessment policies; ii) choosing which textbooks are used; iii) determining course content; and iv) deciding which courses are offered. The index ofschool responsibility for curriculum and assessment (RESPCURR) was derived from these four items. The ratio of the number of responsibility that "principals" and/or "teachers" have for these four items to the number of responsibility that "regional or local education authority" and/or "national education authority" have for these four items was computed. Higher values on this index indicate relatively more responsibility for schools than local, regional or national education authority. This index has an OECD mean of 0 and a standard deviation of 1 .

Teacher shortage

The index on teacher shortage (TCSHORT) was derived from four items measuring school principals' perceptions of potential factors hindering instruction at their school (SC11). These factors are a lack of: i) qualified science teachers; ii) a lack of qualified mathematics teachers; iii) qualified <test language> teachers; and iv) qualified teachers of other subjects. Higher values on this index indicate school principals' reports of higher teacher shortage at a school.

School's educational resources

The index on the school's educational resources (SCMATEDU) was derived from seven items measuring school principals' perceptions of potential factors hindering instruction at their school (SC11). These factors are: i) shortage or inadequacy of science laboratory equipment; ii) shortage or inadequacy of instructional materials; iii) shortage or inadequacy of computers for instruction; $i v)$ lack or inadequacy of Internet connectivity; v) shortage or inadequacy of computer software for instruction; vi) shortage or inadequacy of library materials; and vii) shortage or inadequacy of audio-visual resources. As all items were inverted for scaling, higher values on this index indicate better quality of educational resources.

Parent questionnaire scale indices

Parents' current support of their child's reading literacy

The index of parents' current support of their child's reading literary (CURSUPP) was derived from parents' reports on the frequency with which they or someone else in their home did the following with their child (PA08): i) discuss political or social issues; ii) discuss books, films or television programmes; iii) discuss how well the child is doing at school; iv) go to a bookstore or library with the child; v) talk with the child about what he/she is reading; and vi) help the child with his/her homework. Higher values on this index indicate greater parental support of child's reading literacy.

Parents' support of their child's reading literacy at the beginning of primary school

This index of parents' support of their child's reading literacy at the beginning of primary school (PRESUPP) was derived from parents' reports on the frequency with which they or someone else in their home undertook the following activities with their child when the child attended the first year of primary school (PA03): i) read books; ii) tell stories; iii) sing songs; iv) play with alphabet toys; v) talk about what parent had read; vi) play word games; vii) write letters or words; and viii) read aloud signs and labels. Higher values on this index indicate greater levels of parents' support.

ANNEX A2

THE PISA TARGET POPULATION, THE PISA SAMPLES AND THE DEFINITION OF SCHOOLS

Definition of the PISA target population

PISA 2009 provides an assessment of the cumulative yield of education and learning at a point at which most young adults are still enrolled in initial education.

A major challenge for an international survey is to ensure that international comparability of national target populations is guaranteed in such a venture.

Differences between countries in the nature and extent of pre-primary education and care, the age of entry into formal schooling and the institutional structure of educational systems do not allow the definition of internationally comparable grade levels of schooling. Consequently, international comparisons of educational performance typically define their populations with reference to a target age group. Some previous international assessments have defined their target population on the basis of the grade level that provides maximum coverage of a particular age cohort. A disadvantage of this approach is that slight variations in the age distribution of students across grade levels often lead to the selection of different target grades in different countries, or between education systems within countries, raising serious questions about the comparability of results across, and at times within, countries. In addition, because not all students of the desired age are usually represented in grade-based samples, there may be a more serious potential bias in the results if the unrepresented students are typically enrolled in the next higher grade in some countries and the next lower grade in others. This would exclude students with potentially higher levels of performance in the former countries and students with potentially lower levels of performance in the latter.

In order to address this problem, PISA uses an age-based definition for its target population, i.e. a definition that is not tied to the institutional structures of national education systems. PISA assesses students who were aged between 15 years and 3 (complete) months and 16 years and 2 (complete) months at the beginning of the assessment period, plus or minus a 1 month allowable variation, and who were enrolled in an educational institution with Grade 7 or higher, regardless of the grade levels or type of institution in which they were enrolled, and regardless of whether they were in full-time or part-time education. Educational institutions are generally referred to as schools in this publication, although some educational institutions (in particular, some types of vocational education establishments) may not be termed schools in certain countries. As expected from this definition, the average age of students across OECD countries was 15 years and 9 months. The range in country means was 2 months and 5 days (0.18 years), from the minimum country mean of 15 years and 8 months to the maximum country mean of 15 years and 10 months.

Given this definition of population, PISA makes statements about the knowledge and skills of a group of individuals who were born within a comparable reference period, but who may have undergone different educational experiences both in and outside of schools. In PISA, these knowledge and skills are referred to as the yield of education at an age that is common across countries. Depending on countries' policies on school entry, selection and promotion, these students may be distributed over a narrower or a wider range of grades across different education systems, tracks or streams. It is important to consider these differences when comparing PISA results across countries, as observed differences between students at age 15 may no longer appear as students' educational experiences converge later on.

If a country's scale scores in reading, scientific or mathematical literacy are significantly higher than those in another country, it cannot automatically be inferred that the schools or particular parts of the education system in the first country are more effective than those in the second. However, one can legitimately conclude that the cumulative impact of learning experiences in the first country, starting in early childhood and up to the age of 15 , and embracing experiences both in school, home and beyond, have resulted in higher outcomes in the literacy domains that PISA measures.

The PISA target population did not include residents attending schools in a foreign country. It does, however, include foreign nationals attending schools in the country of assessment.

To accommodate countries that desired grade-based results for the purpose of national analyses, PISA 2009 provided a sampling option to supplement age-based sampling with grade-based sampling.

Population coverage

All countries attempted to maximise the coverage of 15 -year-olds enrolled in education in their national samples, including students enrolled in special educational institutions. As a result, PISA 2009 reached standards of population coverage that are unprecedented in international surveys of this kind.

The sampling standards used in PISA permitted countries to exclude up to a total of 5% of the relevant population either by excluding schools or by excluding students within schools. All but 5 countries, Denmark (8.17%), Luxembourg (8.15%), Canada (6.00%), Norway (5.93%) and the United States (5.16%), achieved this standard, and in 36 countries and economies, the overall exclusion rate was less than 2%. When language exclusions were accounted for (i.e. removed from the overall exclusion rate), the United States no longer had an exclusion rate greater than 5%. For details, see www.pisa.oecd.org.

Exclusions within the above limits include:

- At the school level: i) schools that were geographically inaccessible or where the administration of the PISA assessment was not considered feasible; and ii) schools that provided teaching only for students in the categories defined under "within-school exclusions", such as schools for the blind. The percentage of 15 -year-olds enrolled in such schools had to be less than 2.5% of the nationally desired target population [0.5% maximum for i) and 2% maximum for $i i$]. The magnitude, nature and justification of school-level exclusions are documented in the PISA 2009 Technical Report (OECD, forthcoming).
- At the student level: i) students with an intellectual disability; ii) students with a functional disability; iii) students with limited assessment language proficiency; iv) other - a category defined by the national centres and approved by the international centre; and v) students taught in a language of instruction for the main domain for which no materials were available. Students could not be excluded solely because of low proficiency or common discipline problems. The percentage of 15 -year-olds excluded within schools had to be less than 2.5% of the nationally desired target population.

Table A2.1 describes the target population of the countries participating in PISA 2009. Further information on the target population and the implementation of PISA sampling standards can be found in the PISA 2009 Technical Report (OECD, forthcoming).

- Column 1 shows the total number of $\mathbf{1 5}$-year-olds according to the most recent available information, which in most countries meant the year 2008 as the year before the assessment.
- Column 2 shows the number of 15 -year-olds enrolled in schools in Grade 7 or above (as defined above), which is referred to as the eligible population.
- Column 3 shows the national desired target population. Countries were allowed to exclude up to 0.5% of students a priori from the eligible population, essentially for practical reasons. The following a priori exclusions exceed this limit but were agreed with the PISA Consortium: Canada excluded 1.1% of its population from Territories and Aboriginal reserves; France excluded 1.7% of its students in its territoires d'outre-mer and other institutions; Indonesia excluded 4.7% of its students from four provinces because of security reasons; Kyrgyzstan excluded 2.3\% of its population in remote, inaccessible schools; and Serbia excluded 2% of its students taught in Serbian in Kosovo.
- Column 4 shows the number of students enrolled in schools that were excluded from the national desired target population either from the sampling frame or later in the field during data collection.
- Column 5 shows the size of the national desired target population after subtracting the students enrolled in excluded schools. This is obtained by subtracting Column 4 from Column 3.
- Column 6 shows the percentage of students enrolled in excluded schools. This is obtained by dividing Column 4 by Column 3 and multiplying by 100 .
- Column 7 shows the number of students participating in PISA 2009. Note that in some cases this number does not account for 15 -year-olds assessed as part of additional national options.
- Column 8 shows the weighted number of participating students, i.e. the number of students in the nationally defined target population that the PISA sample represents.
- Each country attempted to maximise the coverage of PISA's target population within the sampled schools. In the case of each sampled school, all eligible students, namely those 15 years of age, regardless of grade, were first listed. Sampled students who were to be excluded had still to be included in the sampling documentation, and a list drawn up stating the reason for their exclusion. Column 9 indicates the total number of excluded students, which is further described and classified into specific categories in Table A2.2. Column 10 indicates the weighted number of excluded students, i.e. the overall number of students in the nationally defined target population represented by the number of students excluded from the sample, which is also described and classified by exclusion categories in Table A2.2. Excluded students were excluded based on five categories: i) students with an intellectual disability - the student has a mental or emotional disability and is cognitively delayed such that he/she cannot perform in the PISA testing situation; ii) students with a functional disability - the student has a moderate to severe permanent physical disability such that he/she cannot perform in the PISA testing situation; iii) students with a limited assessment language proficiency - the student is unable to read or speak any of the languages of the assessment in the country and would be unable to overcome the language barrier in the testing situation (typically a student who has received less than one year of instruction in the languages of the assessment may be excluded); iv) other - a category defined by the national centres and approved by the international centre; and v) students taught in a language of instruction for the main domain for which no materials were available.
- Column 11 shows the percentage of students excluded within schools. This is calculated as the weighted number of excluded students (Column 10), divided by the weighted number of excluded and participating students (Column 8 plus Column 10), then multiplied by 100 .

Table A2.1 PISA target populations and samples

		Population and sample information							
		Total population of 15 -year-olds	Total enrolled population of 15 -year-olds at Grade 7 or above	Total in national desired target population	Total school-level exclusions	Total in national desired target population after all school exclusions and before within-school exclusions	School-level exclusion rate (\%)	Number of participating students	Weighted number of participating students
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Australia	286334	269669	269669	7057	262612	2.62	14251	240851
4	Austria	99818	94192	94192	115	94077	0.12	6590	87326
	Belgium	126377	126335	126335	2474	123861	1.96	8501	119140
	Canada	430791	426590	422052	2370	419682	0.56	23207	360286
	Chile	290056	265542	265463	2594	262869	0.98	5669	247270
	Czech Republic	122027	116153	116153	1619	114534	1.39	6064	113951
	Denmark	70522	68897	68897	3082	65815	4.47	5924	60855
	Estonia	14248	14106	14106	436	13670	3.09	4727	12978
	Finland	66198	66198	66198	1507	64691	2.28	5810	61463
	France	749808	732825	720187	18841	701346	2.62	4298	677620
	Germany	852044	852044	852044	7138	844906	0.84	4979	766993
	Greece	102229	105664	105664	696	104968	0.66	4969	93088
	Hungary	121155	118387	118387	3322	115065	2.81	4605	105611
	Iceland	4738	4738	4738	20	4718	0.42	3646	4410
	Ireland	56635	55464	55446	276	55170	0.50	3937	52794
	Israel	122701	112254	112254	1570	110684	1.40	5761	103184
	Italy	586904	573542	573542	2694	570848	0.47	30905	506733
	Japan	1211642	1189263	1189263	22955	1166308	1.93	6088	1113403
	Korea	717164	700226	700226	2927	697299	0.42	4989	630030
	Luxembourg	5864	5623	5623	186	5437	3.31	4622	5124
	Mexico	2151771	1425397	1425397	5825	1419572	0.41	38250	1305461
	Netherlands	199000	198334	198334	6179	192155	3.12	4760	183546
	New Zealand	63460	60083	60083	645	59438	1.07	4643	55129
	Norway	63352	62948	62948	1400	61548	2.22	4660	57367
	Poland	482500	473700	473700	7650	466050	1.61	4917	448866
	Portugal	115669	107583	107583	0	107583	0.00	6298	96820
	Slovak Republic	72826	72454	72454	1803	70651	2.49	4555	69274
	Slovenia	20314	19571	19571	174	19397	0.89	6155	18773
	Spain	433224	425336	425336	3133	422203	0.74	25887	387054
	Sweden	121486	121216	121216	2323	118893	1.92	4567	113054
	Switzerland	90623	89423	89423	1747	87676	1.95	11812	80839
	Turkey	1336842	859172	859172	8569	850603	1.00	4996	757298
	United Kingdom	786626	786825	786825	17593	769232	2.24	12179	683380
	United States	4103738	4210475	4210475	15199	4195276	0.36	5233	3373264
	Albania	55587	42767	42767	372	42395	0.87	4596	34134
$\underline{\square}$	Argentina	688434	636713	636713	2238	634475	0.35	4774	472106
๕	Azerbaijan	185481	184980	184980	1886	183094	1.02	4727	105886
	Brazil	3292022	2654489	2654489	15571	2638918	0.59	20127	2080159
	Bulgaria	80226	70688	70688	1369	69319	1.94	4507	57833
	Colombia	893057	582640	582640	412	582228	0.07	7921	522388
	Croatia	48491	46256	46256	535	45721	1.16	4994	43065
	Dubai (UAE)	10564	10327	10327	167	10160	1.62	5620	9179
	Hong Kong-China	85000	78224	78224	809	77415	1.03	4837	75548
	Indonesia	4267801	3158173	3010214	10458	2999756	0.35	5136	2259118
	Jordan	117732	107254	107254	0	107254	0.00	6486	104056
	Kazakhstan	281659	263206	263206	7210	255996	2.74	5412	250657
	Kyrgyzstan	116795	93989	91793	1149	90644	1.25	4986	78493
	Latvia	28749	28149	28149	943	27206	3.35	4502	23362
	Liechtenstein	399	360	360	5	355	1.39	329	355
	Lithuania	51822	43967	43967	522	43445	1.19	4528	40530
	Macao-China	7500	5969	5969	3	5966	0.05	5952	5978
	Montenegro	8500	8493	8493	10	8483	0.12	4825	7728
	Panama	57919	43623	43623	501	43122	1.15	3969	30510
	Peru	585567	491514	490840	984	489856	0.20	5985	427607
	Qatar	10974	10665	10665	114	10551	1.07	9078	9806
	Romania	152084	152084	152084	679	151405	0.45	4776	151130
	Russian Federation	1673085	1667460	1667460	25012	1642448	1.50	5308	1290047
	Serbia	85121	75128	73628	1580	72048	2.15	5523	70796
	Shanghai-China	112000	100592	100592	1287	99305	1.28	5115	97045
	Singapore	54982	54212	54212	633	53579	1.17	5283	51874
	Chinese Taipei	329249	329189	329189	1778	327411	0.54	5831	297203
	Thailand	949891	763679	763679	8438	755241	1.10	6225	691916
	Trinidad and Tobago	19260	17768	17768	0	17768	0.00	4778	14938
	Tunisia	153914	153914	153914	0	153914	0.00	4955	136545
	Uruguay	53801	43281	43281	30	43251	0.07	5957	33971

[^0]Table A2.1 PISA target populations and samples

		Population and sample information				Coverage indices		
		Number of excluded students	Weighted number of excluded students	Within-school exclusion rate (\%)	Overall exclusion rate (\%)	Coverage index 1: Coverage of national desired population	Coverage index 2: Coverage of national enrolled population	Coverage index 3: Coverage of 15-year-old population
		(9)	(10)	(11)	(12)	(13)	(14)	(15)
0	Australia	313	4389	1.79	4.36	0.956	0.956	0.841
U	Austria	45	607	0.69	0.81	0.992	0.992	0.875
	Belgium	30	292	0.24	2.20	0.978	0.978	0.943
	Canada	1607	20837	5.47	6.00	0.940	0.930	0.836
	Chile	15	620	0.25	1.22	0.988	0.987	0.852
	Czech Republic	24	423	0.37	1.76	0.982	0.982	0.934
	Denmark	296	2448	3.87	8.17	0.918	0.918	0.863
	Estonia	32	97	0.74	3.81	0.962	0.962	0.911
	Finland	77	717	1.15	3.40	0.966	0.966	0.928
	France	1	304	0.04	2.66	0.973	0.957	0.904
	Germany	28	3591	0.47	1.30	0.987	0.987	0.900
	Greece	142	2977	3.10	3.74	0.963	0.963	0.911
	Hungary	10	361	0.34	3.14	0.969	0.969	0.872
	Iceland	187	189	4.10	4.50	0.955	0.955	0.931
	Ireland	136	1492	2.75	3.23	0.968	0.967	0.932
	Israel	86	1359	1.30	2.68	0.973	0.973	0.841
	Italy	561	10663	2.06	2.52	0.975	0.975	0.863
	Japan	0	0	0.00	1.93	0.981	0.981	0.919
	Korea	16	1748	0.28	0.69	0.993	0.993	0.879
	Luxembourg	196	270	5.01	8.15	0.919	0.919	0.874
	Mexico	52	1951	0.15	0.56	0.994	0.994	0.607
	Netherlands	19	648	0.35	3.46	0.965	0.965	0.922
	New Zealand	184	1793	3.15	4.19	0.958	0.958	0.869
	Norway	207	2260	3.79	5.93	0.941	0.941	0.906
	Poland	15	1230	0.27	1.88	0.981	0.981	0.930
	Portugal	115	1544	1.57	1.57	0.984	0.984	0.837
	Slovak Republic	106	1516	2.14	4.58	0.954	0.954	0.951
	Slovenia	43	138	0.73	1.61	0.984	0.984	0.924
	Spain	775	12673	3.17	3.88	0.961	0.961	0.893
	Sweden	146	3360	2.89	4.75	0.953	0.953	0.931
	Switzerland	209	940	1.15	3.08	0.969	0.969	0.892
	Turkey	11	1497	0.20	1.19	0.988	0.988	0.566
	United Kingdom	318	17094	2.44	4.62	0.954	0.954	0.869
	United States	315	170542	4.81	5.16	0.948	0.948	0.822
	Albania	0	0	0.00	0.87	0.991	0.991	0.614
E	Argentina	14	1225	0.26	0.61	0.994	0.994	0.686
๕	Azerbaijan	0	0	0.00	1.02	0.990	0.990	0.571
	Brazil	24	2692	0.13	0.72	0.993	0.993	0.632
	Bulgaria	0	0	0.00	1.94	0.981	0.981	0.721
	Colombia	11	490	0.09	0.16	0.998	0.998	0.585
	Croatia	34	273	0.63	1.78	0.982	0.982	0.888
	Dubai (UAE)	5	7	0.07	1.69	0.983	0.983	0.869
	Hong Kong-China	9	119	0.16	1.19	0.988	0.988	0.889
	Indonesia	0	0	0.00	0.35	0.997	0.950	0.529
	Jordan	24	443	0.42	0.42	0.996	0.996	0.884
	Kazakhstan	82	3844	1.51	4.21	0.958	0.958	0.890
	Kyrgyzstan	86	1384	1.73	2.96	0.970	0.948	0.672
	Latvia	19	102	0.43	3.77	0.962	0.962	0.813
	Liechtenstein	0	0	0.00	1.39	0.986	0.986	0.890
	Lithuania	74	632	1.53	2.70	0.973	0.973	0.782
	Macao-China	0	0	0.00	0.05	0.999	0.999	0.797
	Montenegro	0	0	0.00	0.12	0.999	0.999	0.909
	Panama	0	0	0.00	1.15	0.989	0.989	0.527
	Peru	9	558	0.13	0.33	0.997	0.995	0.730
	Qatar	28	28	0.28	1.35	0.986	0.986	0.894
	Romania	0	0	0.00	0.45	0.996	0.996	0.994
	Russian Federation	59	15247	1.17	2.65	0.973	0.973	0.771
	Serbia	10	133	0.19	2.33	0.977	0.957	0.832
	Shanghai-China	7	130	0.13	1.41	0.986	0.986	0.866
	Singapore	48	417	0.80	1.96	0.980	0.980	0.943
	Chinese Taipei	32	1662	0.56	1.09	0.989	0.989	0.903
	Thailand	6	458	0.07	1.17	0.988	0.988	0.728
	Trinidad and Tobago	11	36	0.24	0.24	0.998	0.998	0.776
	Tunisia	7	184	0.13	0.13	0.999	0.999	0.887
	Uruguay	14	67	0.20	0.26	0.997	0.997	0.631

[^1][Part 1/1]
Table A2.2 Exclusions

		Student exclusions (unweighted)						Student exclusion (weighted)					
			Number of excluded students with a disability (Code 2)	$\begin{gathered}\text { Number } \\ \text { of } \\ \text { exluded } \\ \text { students } \\ \text { because } \\ \text { of }\end{gathered}$ language (Code 3)	Number of excluded students for other reasons (Code 4)	Number of excluded students because of no materials available in the language of instruction (Code 5)	Total number of excluded students	Weighted number of excluded students with a disability (Code 1)	Weighted number of excluded students with a disability (Code 2)	Weighted number of excluded students because of language (Code 3)	Weighted number of excluded students for other reasons (Code 4)	Number of excluded students because of no materials available in the language of instruction (Code 5)	Total weighted number of excluded students
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	Australia	24	210	79	0	0	313	272	2834	1283	0	0	4389
U	Austria	0	26	19	0	0	45	0	317	290	0	0	607
-	Belgium	3	17	10	0	0	30	26	171	95	0	0	292
	Canada	49	1458	100	0	0	1607	428	19082	1326	0	0	20837
	Chile	5	10	0	0	0	15	177	443	0	0	0	620
	Czech Republic	8	7	9	0	0	24	117	144	162	0	0	423
	Denmark	13	182	35	66	0	296	165	1432	196	656	0	2448
	Estonia	3	28	1	0	0	32	8	87	2	0	0	97
	Finland	4	48	12	11	2	77	38	447	110	99	23	717
	France	1	0	0	0	0	1	304	0	0	0	0	304
	Germany	6	20	2	0	0	28	864	2443	285	0	0	3591
	Greece	7	11	7	117	0	142	172	352	195	2257	0	2977
	Hungary	0	1	0	9	0	10	0	48	0	313	0	361
	Iceland	3	78	64	38	1	187	3	78	65	39	1	189
	Ireland	4	72	25	35	0	136	51	783	262	396	0	1492
	Israel	10	69	7	0	0	86	194	1049	116	0	0	1359
	Italy	45	348	168	0	0	561	748	6241	3674	0	0	10663
	Japan	0	0	0	0	0	0	0	0	0	0	0	0
	Korea	7	9	0	0	0	16	994	753	0	0	0	1748
	Luxembourg	2	132	62	0	0	196	2	206	62	0	0	270
	Mexico	25	25	2	0	0	52	1010	905	36	0	0	1951
	Netherlands	6	13	0	0	0	19	178	470	0	0	0	648
	New Zealand	19	84	78	0	3	184	191	824	749	0	29	1793
	Norway	8	160	39	0	0	207	90	1756	414	0	0	2260
	Poland	2	13	0	0	0	15	169	1061	0	0	0	1230
	Portugal	2	100	13	0	0	115	25	1322	197	0	0	1544
	Slovak Republic	12	37	1	56	0	106	171	558	19	768	0	1516
	Slovenia	6	10	27	0	0	43	40	32	66	0	0	138
	Spain	45	441	289	0	0	775	1007	7141	4525	0	0	12673
	Sweden	115	0	31	0	0	146	2628	0	732	0	0	3360
	Switzerland	11	106	92	0	0	209	64	344	532	0	0	940
	Turkey	3	3	5	0	0	11	338	495	665	0	0	1497
	United Kingdom	40	247	31	0	0	318	2438	13482	1174	0	0	17094
	United States	29	236	40	10	0	315	15367	127486	21718	5971	0	170542
	Albania	0	0	0	0	0	0	0	0	0	0	0	0
\%	Argentina	4	10	0	0	0	14	288	937	0	0	0	1225
む	Azerbaijan	0	0	0	0	0	0	0	0	0	0	0	0
	Brazil	21	3	0	0	0	24	2495	197	0	0	0	2692
	Bulgaria	0	0	0	0	0	0	0	0	0	0	0	0
	Colombia	7	2	2	0	0	11	200	48	242	0	0	490
	Croatia	4	30	0	0	0	34	34	239	0	0	0	273
	Dubai (UAE)	1	1	3	0	0	5	2	2	3	0	0	7
	Hong Kong-China	0	9	0	0	0	9	0	119	0	0	0	119
	Indonesia	0	0	0	0	0	0	0	0	0	0	0	0
	Jordan	11	7	6	0	0	24	166	149	127	0	0	443
	Kazakhstan	10	17	0	0	55	82	429	828	0	0	2587	3844
	Kyrgyzstan	68	13	5	0	0	86	1093	211	80	0	0	1384
	Latvia	6	8	5	0	0	19	25	44	33	0	0	102
	Liechtenstein	0	0	0	0	0	0	0	0	0	0	0	0
	Lithuania	4	69	1	0	0	74	33	590	9	0	0	632
	Macao-China	0	0	0	0	0	0	0	0	0	0	0	0
	Montenegro	0	0	0	0	0	0	0	0	0	0	0	0
	Panama	0	0	0	0	0	0	0	0	0	0	0	0
	Peru	4	5	0	0	0	9	245	313	0	0	0	558
	Qatar	9	18	1	0	0	28	9	18	1	0	0	28
	Romania	0	0	0	0	0	0	0	0	0	0	0	0
	Russian Federation	11	47	1	0	0	59	2081	13010	157	0	0	15247
	Serbia	4	5	0	0	1	10	66	53	0	0	13	133
	Shanghai-China	1	6	0	0	0	7	19	111	0	0	0	130
	Singapore	2	22	24	0	0	48	17	217	182	0	0	417
	Chinese Taipei	13	19	0	0	0	32	684	977	0	0	0	1662
	Thailand	0	5	1	0	0	6	0	260	198	0	0	458
	Trinidad and Tobago		10	0	0	0	11	3	33	0	0	0	36
	Tunisia	4	1	2	0	0	7	104	21	58	0	0	184
	Uruguay	2	9	3	0	0	14	14	34	18	0	0	67

Exclusion codes:
Code 1 Functional disability - student has a moderate to severe permanent physical disability
Code 2 Intellectual disability - student has a mental or emotional disability and has either been tested as cognitively delayed or is considered in the professional opinion of qualified staff to be cognitively delayed.
Code 3 Limited assessment language proficiency - student is not a native speaker of any of the languages of the assessment in the country and has been resident in the country for less than one year
Code 4 Other defined by the national centres and approved by the international centre
Code 5 No materials available in the language of instruction.
Note: For a full explanation of other details in this table, please refer to the PISA 2009 Technical Report (OECD, forthcoming).
StatLink (inlist http://dx.doi.org/10.1787/888932343190

- Column 12 shows the overall exclusion rate, which represents the weighted percentage of the national desired target population excluded from PISA either through school-level exclusions or through the exclusion of students within schools. It is calculated as the school-level exclusion rate (Column 6 divided by 100) plus within-school exclusion rate (Column 11 divided by 100) multiplied by 1 minus the school-level exclusion rate (Column 6 divided by 100). This result is then multiplied by 100. Five countries, Denmark, Luxembourg, Canada, Norway and the United States, had exclusion rates higher than 5\%. When language exclusions were accounted for (i.e. removed from the overall exclusion rate), the United States no longer had an exclusion rate greater than 5\%.
- Column 13 presents an index of the extent to which the national desired target population is covered by the PISA sample. Denmark, Luxembourg, Canada, Norway and the United States were the only countries where the coverage is below 95%.
- Column 14 presents an index of the extent to which $\mathbf{1 5}$-year-olds enrolled in schools are covered by the PISA sample. The index measures the overall proportion of the national enrolled population that is covered by the non-excluded portion of the student sample. The index takes into account both school-level and student-level exclusions. Values close to 100 indicate that the PISA sample represents the entire education system as defined for PISA 2009. The index is the weighted number of participating students (Column 8) divided by the weighted number of participating and excluded students (Column 8 plus Column 10), times the nationally defined target population (Column 5) divided by the eligible population (Column 2) (times 100).
- Column 15 presents an index of the coverage of the $\mathbf{1 5}$-year-old population. This index is the weighted number of participating students (Column 8) divided by the total population of 15 -year-old students (Column 1).

This high level of coverage contributes to the comparability of the assessment results. For example, even assuming that the excluded students would have systematically scored worse than those who participated, and that this relationship is moderately strong, an exclusion rate in the order of 5% would likely lead to an overestimation of national mean scores of less than 5 score points (on a scale with an international mean of 500 score points and a standard deviation of 100 score points). This assessment is based on the following calculations: if the correlation between the propensity of exclusions and student performance is 0.3 , resulting mean scores would likely be overestimated by 1 score point if the exclusion rate is 1%, by 3 score points if the exclusion rate is 5%, and by 6 score points if the exclusion rate is 10%. If the correlation between the propensity of exclusions and student performance is 0.5 , resulting mean scores would be overestimated by 1 score point if the exclusion rate is 1%, by 5 score points if the exclusion rate is 5%, and by 10 score points if the exclusion rate is 10%. For this calculation, a model was employed that assumes a bivariate normal distribution for performance and the propensity to participate. For details, see the PISA 2009 Technical Report (OECD, forthcoming).

Sampling procedures and response rates

The accuracy of any survey results depends on the quality of the information on which national samples are based as well as on the sampling procedures. Quality standards, procedures, instruments and verification mechanisms were developed for PISA that ensured that national samples yielded comparable data and that the results could be compared with confidence.

Most PISA samples were designed as two-stage stratified samples (where countries applied different sampling designs, these are documented in the PISA 2009 Technical Report [OECD, forthcoming]). The first stage consisted of sampling individual schools in which 15 -year-old students could be enrolled. Schools were sampled systematically with probabilities proportional to size, the measure of size being a function of the estimated number of eligible (15 -year-old) students enrolled. A minimum of 150 schools were selected in each country (where this number existed), although the requirements for national analyses often required a somewhat larger sample. As the schools were sampled, replacement schools were simultaneously identified, in case a sampled school chose not to participate in PISA 2009.

In the case of Iceland, Liechtenstein, Luxembourg, Macao-China and Qatar, all schools and all eligible students within schools were included in the sample.

Experts from the PISA Consortium performed the sample selection process for most participating countries and monitored it closely in those countries that selected their own samples. The second stage of the selection process sampled students within sampled schools. Once schools were selected, a list of each sampled school's 15 -year-old students was prepared. From this list, 35 students were then selected with equal probability (all 15 -year-old students were selected if fewer than 35 were enrolled). The number of students to be sampled per school could deviate from 35, but could not be less than 20.

Data-quality standards in PISA required minimum participation rates for schools as well as for students. These standards were established to minimise the potential for response biases. In the case of countries meeting these standards, it was likely that any bias resulting from non-response would be negligible, i.e. typically smaller than the sampling error.

A minimum response rate of 85% was required for the schools initially selected. Where the initial response rate of schools was between 65 and 85%, however, an acceptable school response rate could still be achieved through the use of replacement schools. This procedure brought with it a risk of increased response bias. Participating countries were, therefore, encouraged to persuade as many of the schools in the original sample as possible to participate. Schools with a student participation rate between 25% and 50% were not regarded as participating schools, but data from these schools were included in the database and contributed to the various estimations. Data from schools with a student participation rate of less than 25% were excluded from the database.
[Part 1/2]
Table A2.3 Response rates

		Initial sample - before school replacement					Final sample - after school replacement		
		Weighted school participation rate before replacement (\%)	Weighted number of responding schools (weighted also by enrolment)	Weighted number of schools sampled (responding and non-responding) (weighted also by enrolment)	Number of responding schools (unweighted)	Number of responding and non-responding schools (unweighted)	Weighted school participation rate after replacement (\%)	Weighted number of responding schools (weighted also by enrolment)	Weighted number of schools sampled (responding and non-responding) (weighted also by enrolment)
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Australia	97.78	265659	271696	342	357	98.85	268780	271918
U	Austria	93.94	88551	94261	280	291	93.94	88551	94261
	Belgium	88.76	112594	126851	255	292	95.58	121291	126899
	Canada	88.04	362152	411343	893	1001	89.64	368708	411343
	Chile	94.34	245583	260331	189	201	99.04	257594	260099
	Czech Republic	83.09	94696	113961	226	270	97.40	111091	114062
	Denmark	83.94	55375	65967	264	325	90.75	59860	65964
	Estonia	100.00	13230	13230	175	175	100.00	13230	13230
	Finland	98.65	62892	63751	201	204	100.00	63748	63751
	France	94.14	658769	699776	166	177	94.14	658769	699776
	Germany	98.61	826579	838259	223	226	100.00	838259	838259
	Greece	98.19	98710	100529	181	184	99.40	99925	100529
	Hungary	98.21	101523	103378	184	190	99.47	103067	103618
	Iceland	98.46	4488	4558	129	141	98.46	4488	4558
	Ireland	87.18	48821	55997	139	160	88.44	49526	55997
	Israel	92.03	103141	112069	170	186	95.40	106918	112069
	Italy	94.27	532432	564811	1054	1108	99.08	559546	564768
	Japan	87.77	999408	1138694	171	196	94.99	1081662	1138694
	Korea	100.00	683793	683793	157	157	100.00	683793	683793
	Luxembourg	100.00	5437	5437	39	39	100.00	5437	5437
	Mexico	95.62	1338291	1399638	1512	1560	97.71	1367668	1399730
	Netherlands	80.40	154471	192140	155	194	95.54	183555	192118
	New Zealand	84.11	49917	59344	148	179	91.00	54130	59485
	Norway	89.61	55484	61920	183	207	96.53	59759	61909
	Poland	88.16	409513	464535	159	187	97.70	453855	464535
	Portugal	93.61	102225	109205	201	216	98.43	107535	109251
	Slovak Republic	93.33	67284	72092	180	191	99.01	71388	72105
	Slovenia	98.36	19798	20127	337	352	98.36	19798	20127
	Spain	99.53	422692	424705	888	892	99.53	422692	424705
	Sweden	99.91	120693	120802	189	191	99.91	120693	120802
	Switzerland	94.25	81005	85952	413	429	98.71	84896	86006
	Turkey	100.00	849830	849830	170	170	100.00	849830	849830
	United Kingdom	71.06	523271	736341	418	549	87.35	643027	736178
	United States	67.83	2673852	3941908	140	208	77.50	3065651	3955606
	Albania	97.29	39168	40259	177	182	99.37	39999	40253
$\stackrel{5}{5}$	Argentina	97.18	590215	607344	194	199	99.42	603817	607344
ะ	Azerbaijan	99.86	168646	168890	161	162	100.00	168890	168890
	Brazil	93.13	2435250	2614824	899	976	94.75	2477518	2614806
	Bulgaria	98.16	56922	57991	173	178	99.10	57823	58346
	Colombia	90.21	507649	562728	260	285	94.90	533899	562587
	Croatia	99.19	44561	44926	157	159	99.86	44862	44926
	Dubai (UAE)	100.00	10144	10144	190	190	100.00	10144	10144
	Hong Kong-China	69.19	53800	77758	108	156	96.75	75232	77758
	Indonesia	94.54	2337438	2472502	172	183	100.00	2473528	2473528
	Jordan	100.00	105906	105906	210	210	100.00	105906	105906
	Kazakhstan	100.00	257427	257427	199	199	100.00	257427	257427
	Kyrgyzstan	98.53	88412	89733	171	174	99.47	89260	89733
	Latvia	97.46	26986	27689	180	185	99.39	27544	27713
	Liechtenstein	100.00	356	356	12	12	100.00	356	356
	Lithuania	98.13	41759	42555	192	197	99.91	42526	42564
	Macao-China	100.00	5966	5966	45	45	100.00	5966	5966
	Montenegro	100.00	8527	8527	52	52	100.00	8527	8527
	Panama	82.58	33384	40426	180	220	83.76	33779	40329
	Peru	100.00	480640	480640	240	240	100.00	480640	480640
	Qatar	97.30	10223	10507	149	154	97.30	10223	10507
	Romania	100.00	150114	150114	159	159	100.00	150114	150114
	Russian Federation	100.00	1392765	1392765	213	213	100.00	1392765	1392765
	Serbia	99.21	70960	71524	189	191	99.97	71504	71524
	Shanghai-China	99.32	98841	99514	151	152	100.00	99514	99514
	Singapore	96.19	51552	53592	168	175	97.88	52454	53592
	Chinese Taipei	99.34	322005	324141	157	158	100.00	324141	324141
	Thailand	98.01	737225	752193	225	230	100.00	752392	752392
	Trinidad and Tobago	97.21	17180	17673	155	160	97.21	17180	17673
	Tunisia	100.00	153198	153198	165	165	100.00	153198	153198
	Uruguay	98.66	42820	43400	229	233	98.66	42820	43400

StatLink 完ilst http://dx.doi.org/10.1787/888932343190
[Part 2/2]
Table A2.3 Response rates

PISA 2009 also required a minimum participation rate of 80% of students within participating schools. This minimum participation rate had to be met at the national level, not necessarily by each participating school. Follow-up sessions were required in schools in which too few students had participated in the original assessment sessions. Student participation rates were calculated over all original schools, and also over all schools, whether original sample or replacement schools, and from the participation of students in both the original assessment and any follow-up sessions. A student who participated in the original or follow-up cognitive sessions was regarded as a participant. Those who attended only the questionnaire session were included in the international database and contributed to the statistics presented in this publication if they provided at least a description of their father's or mother's occupation.

Table A2.3 shows the response rates for students and schools, before and after replacement.

- Column 1 shows the weighted participation rate of schools before replacement. This is obtained by dividing Column 2 by Column 3.
- Column 2 shows the weighted number of responding schools before school replacement (weighted by student enrolment).
- Column 3 shows the weighted number of sampled schools before school replacement (including both responding and nonresponding schools, weighted by student enrolment).
- Column 4 shows the unweighted number of responding schools before school replacement.
- Column 5 shows the unweighted number of responding and non-responding schools before school replacement.
- Column 6 shows the weighted participation rate of schools after replacement. This is obtained by dividing Column 7 by Column 8.
- Column 7 shows the weighted number of responding schools after school replacement (weighted by student enrolment).
- Column 8 shows the weighted number of schools sampled after school replacement (including both responding and nonresponding schools, weighted by student enrolment).
- Column 9 shows the unweighted number of responding schools after school replacement.
- Column 10 shows the unweighted number of responding and non-responding schools after school replacement.
- Column 11 shows the weighted student participation rate after replacement. This is obtained by dividing Column 12 by Column 13.
- Column 12 shows the weighted number of students assessed.
- Column 13 shows the weighted number of students sampled (including both students who were assessed and students who were absent on the day of the assessment).
- Column 14 shows the unweighted number of students assessed. Note that any students in schools with student-response rates less than 50% were not included in these rates (both weighted and unweighted).
- Column 15 shows the unweighted number of students sampled (including both students that were assessed and students who were absent on the day of the assessment). Note that any students in schools where fewer than half of the eligible students were assessed were not included in these rates (neither weighted nor unweighted).

Definition of schools

In some countries, sub-units within schools were sampled instead of schools and this may affect the estimation of the betweenschool variance components. In Austria, the Czech Republic, Germany, Hungary, Japan, Romania and Slovenia, schools with more than one study programme were split into the units delivering these programmes. In the Netherlands, for schools with both lower and upper secondary programmes, schools were split into units delivering each programme level. In the Flemish Community of Belgium, in the case of multi-campus schools, implantations (campuses) were sampled, whereas in the French Community, in the case of multi-campus schools, the larger administrative units were sampled. In Australia, for schools with more than one campus, the individual campuses were listed for sampling. In Argentina, Croatia and Dubai (UAE), schools that had more than one campus had the locations listed for sampling. In Spain, the schools in the Basque region with multi-linguistic models were split into linguistic models for sampling.

Grade levels

Students assessed in PISA 2009 are at various grade levels. The percentage of students at each grade level is presented by country in Table A2.4a and by gender within each country in Table A2.4b.
[Part 1/1]
Table A2.4a Percentage of students at each grade level

StatLink न्तोाड़ http://dx.doi.org/10.1787/888932343190
[Part 1/2]
Table A2.4b Percentage of students at each grade level, by gender

[Part 2/2]
Table A2.4b Percentage of students at each grade level, by gender

StatLink न्त्रोड्य http://dx.doi.org/10.1787/888932343190

Students in or out of the regular education system in Argentina

The low performance of 15 -year-old students in Argentina is, to some extent, influenced by a fairly large proportion of 15-year-olds enrolled in programmes outside the regular education system. Table A2.5 shows the proportion of students inside and outside the regular education system, alongside their performance in PISA 2009.

Percentage of students and mean scores in reading, mathematics and science, according to whether Table A2.5 students are in or out of the regular education system in Argentina

	Percentage of students		Mean performance					
			Reading		Mathematics		Science	
	\%	S.E.	Mean	S.E.	Mean	S.E.	Mean	S.E.
Students in the regular educational system ${ }^{1}$	60.9	2.2	439	5.1	421	4.8	439	4.9
Students out of the regular educational system ${ }^{2}$	39.1	2.2	335	8.0	337	6.7	341	8.3

[^2]
ANNEX A3
 STANDARD ERRORS, SIGNIFICANCE TESTS AND SUB-GROUP COMPARISONS

The statistics in this report represent estimates of national performance based on samples of students, rather than values that could be calculated if every student in every country had answered every question. Consequently, it is important to measure the degree of uncertainty of the estimates. In PISA, each estimate has an associated degree of uncertainty, which is expressed through a standard error. The use of confidence intervals provides a way to make inferences about the population means and proportions in a manner that reflects the uncertainty associated with the sample estimates. From an observed sample statistic and assuming a normal distribution, it can be inferred that the corresponding population result would lie within the confidence interval in 95 out of 100 replications of the measurement on different samples drawn from the same population.

In many cases, readers are primarily interested in whether a given value in a particular country is different from a second value in the same or another country, e.g. whether females in a country perform better than males in the same country. In the tables and charts used in this report, differences are labelled as statistically significant when a difference of that size, smaller or larger, would be observed less than 5% of the time, if there were actually no difference in corresponding population values. Similarly, the risk of reporting a correlation as significant if there is, in fact, no correlation between two measures, is contained at 5%.

Throughout the report, significance tests were undertaken to assess the statistical significance of the comparisons made. Except when noted statistical test evaluate whether the estimate is significantly different from zero. In specific cases statistical tests evaluate whether the estimates for individual countries are statistically different from the OECD average.

Gender differences

Gender differences in student performance or other indices were tested for statistical significance. Positive differences indicate higher scores for males while negative differences indicate higher scores for females. Generally, differences marked in bold in the tables in this volume are statistically significant at the 95% confidence level.

Performance differences between the top and bottom quartiles of PISA indices and scales

Differences in average performance between the top and bottom quarters of the PISA indices and scales were tested for statistical significance. Figures marked in bold indicate that performance between the top and bottom quarters of students on the respective index is statistically significantly different at the 95% confidence level.

Change in the performance per unit of the index

For many tables, the difference in student performance per unit of the index shown was calculated. Figures in bold indicate that the differences are statistically significantly different from zero at the 95% confidence level.

Relative risk or increased likelihood

The relative risk is a measure of association between an antecedent factor and an outcome factor. The relative risk is simply the ratio of two risks, i.e. the risk of observing the outcome when the antecedent is present and the risk of observing the outcome when the antecedent is not present. Figure A3.1 presents the notation that is used in the following.

- Figure A3.1 ■

Labels used in a two-way table

p_{11}	p_{12}	$p_{1 .}$
p_{21}	p_{22}	$p_{2 .}$
$p_{.1}$	$p_{.2}$	$p_{. .}$

$p_{\text {.. }}$ is equal to $\frac{n . .}{n .,}$, with n.. the total number of students and $p_{\text {.. }}$ is therefore equal to $1, p_{i,}, p_{\text {.j }}$ respectively represent the marginal probabilities for each row and for each column. The marginal probabilities are equal to the marginal frequencies divided by the total number of students. Finally, the $p_{i j}$ represent the probabilities for each cell and are equal to the number of observations in a particular cell divided by the total number of observations.

In PISA, the rows represent the antecedent factor with the first row for "having the antecedent" and the second row for "not having the antecedent" and the columns represent the outcome with, the first column for "having the outcome" and the second column for "not having the outcome". The relative risk is then equal to:
$R R=\frac{\left(p_{11} / p_{1 .}\right)}{\left(p_{21} / p_{2 .}\right)}$

Figures in bold in the data tables presented in Annex B of this report indicate that the relative risk is statistically significantly different from 1 at the 95% confidence level.

Difference in reading performance between public and private schools

Differences in performance between public and private schools were tested for statistical significance. For this purpose, governmentdependent and government-independent private schools were jointly considered as private schools. Positive differences represent higher scores for public schools while negative differences represent higher scores for private schools. Figures in bold in data tables presented in Annex B of this report indicate statistically significant different scores at the 95% confidence level.

Difference in reading performance between native students and students with an immigrant background

Differences in performance between native and non-native students were tested for statistical significance. For this purpose, first-generation and second-generation students were jointly considered as students with an immigrant background. Positive differences represent higher scores for native students, while negative differences represent higher scores for first-generation and second-generation students. Figures in bold in data tables presented in this volume indicate statistically significantly different scores at the 95% confidence level.

Effect sizes

Sometimes it is useful to compare differences in an index between groups, such as males and females, across countries. A problem that may occur in such instances is that the distribution of the index varies across groups or countries. One way to resolve this is to calculate an effect size that accounts for differences in the distributions. An effect size measures the difference between, say, the self-efficacy in reading of male and female students in a given country, relative to the average variation in self-efficacy in reading scores among male and female students in the country.

An effect size also allows a comparison of differences across measures that differ in their metric. For example, it is possible to compare effect sizes between the PISA indices and the PISA test scores, as when, for example, gender differences in performance in reading are compared with the gender differences in several of the indices.

In accordance with common practices, effect sizes less than 0.20 are considered small in this volume, effect sizes in the order of 0.50 are considered medium, and effect sizes greater than 0.80 are considered large. Many comparisons in this report consider differences only if the effect sizes are equal to or greater than 0.20 , even if smaller differences are still statistically significant; figures in bold in data tables presented in Annex B of this report indicate values equal to or greater than 0.20 . Values smaller than 0.20 but that due to rounding are shown as 0.20 in tables and figures have not been highlighted. Light shading represents the absolute value of effect size is equal or more than 0.2 and less than 0.5 ; medium shading represents the absolute value of effect size is equal or more than 0.5 and less than 0.8 ; and dark shading represents the absolute value of effect size is equal or more than 0.8 .

The effect size between two subgroups is calculated as:
$\sqrt{\sqrt{\frac{m_{1}-m_{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}}, \text { i.e. }}$
m_{1} and m_{2} respectively represent the mean values for the subgroups 1 and $2 . \sigma_{1}^{2}$ and $\boldsymbol{\sigma}_{2}^{2}$ respectively represent the values of variance for the subgroups 1 and 2 . The effect size between the two subgroups 1 and 2 is calculated as dividing the mean difference between the two subgroups ($m_{1}-m_{2}$), by the square root of the sum of the subgroup's variance $\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)$ divided by 2 .

Skewness of a distribution

The skewness is a measure of the symmetry of a distribution. In PISA 2009, the skewness for the distribution of socio-economic background was calculated. Negative values for the skewness indicate a longer tail of students from disadvantaged socio-economic background while positive values indicate a longer tail of students from advantaged socio-economic backgrounds.

ANNEX A4

QUALITY ASSURANCE

Quality assurance procedures were implemented in all parts of PISA 2009, as was done for all previous PISA surveys.
The consistent quality and linguistic equivalence of the PISA 2009 assessment instruments were facilitated by providing countries with equivalent source versions of the assessment instruments in English and French, and requiring countries (other than those assessing students in English and French) to prepare and consolidate two independent translations using both source versions. Precise translation and adaptation guidelines were supplied, also including instructions for selecting and training the translators. For each country, the translation and format of the assessment instruments (including test materials, marking guides, questionnaires and manuals) were verified by expert translators appointed by the PISA Consortium before they were used in the PISA 2009 Field Trial and Main Study. These translators' mother tongue was the language of instruction in the country concerned and they were knowledgeable about education systems. For further information on the PISA translation procedures, see the PISA 2009 Technical Report (OECD, forthcoming).

The survey was implemented through standardised procedures. The PISA Consortium provided comprehensive manuals that explained the implementation of the survey, including precise instructions for the work of School Co-ordinators and scripts for Test Administrators to use during the assessment sessions. Proposed adaptations to survey procedures, or proposed modifications to the assessment session script, were submitted to the PISA Consortium for approval prior to verification. The PISA Consortium then verified the national translation and adaptation of these manuals.

To establish the credibility of PISA as valid and unbiased, and to encourage uniformity in administering the assessment sessions, Test Administrators in participating countries were selected using the following criteria: it was required that the Test Administrator not be the reading, mathematics or science instructor of any students in the sessions he or she would administer for PISA; it was recommended that the Test Administrator not be a member of the staff of any school where he or she would administer for PISA; and it was considered preferable that the Test Administrator not be a member of the staff of any school in the PISA sample. Participating countries organised an in-person training session for Test Administrators.

Participating countries were required to ensure that: Test Administrators worked with the School Co-ordinator to prepare the assessment session, including updating student tracking forms and identifying excluded students; no extra time was given for the cognitive items (while it was permissible to give extra time for the student questionnaire); no instrument was administered before the two one-hour parts of the cognitive session; Test Administrators recorded the student participation status on the student tracking forms and filled in a Session Report Form; no cognitive instrument was permitted to be photocopied; no cognitive instrument could be viewed by school staff before the assessment session; and Test Administrators returned the material to the National Centre immediately after the assessment sessions.

National Project Managers were encouraged to organise a follow-up session when more than 15% of the PISA sample was not able to attend the original assessment session.

National Quality Monitors from the PISA Consortium visited all National Centres to review data-collection procedures. Finally, School Quality Monitors from the PISA Consortium visited a sample of 15 schools during the assessment. For further information on the field operations, see the PISA 2009 Technical Report (OECD, forthcoming).

Marking procedures were designed to ensure consistent and accurate application of the marking guides outlined in the PISA Operations Manuals. National Project Managers were required to submit proposed modifications to these procedures to the Consortium for approval. Reliability studies to analyse the consistency of marking were implemented, these are discussed in more detail below.

Software specially designed for PISA facilitated data entry, detected common errors during data entry, and facilitated the process of data cleaning. Training sessions familiarised National Project Managers with these procedures.

For a description of the quality assurance procedures applied in PISA and in the results, see the PISA 2009 Technical Report (OECD, forthcoming).

The results of data adjudication show that the PISA Technical Standards were fully met in all countries and economies that participated in PISA 2009, though for one country, some serious doubts were raised. Analysis of the data for Azerbaijan suggest that the PISA Technical Standards may not have been fully met for the following four main reasons: i) the order of difficulty of the clusters is inconsistent with previous experience and the ordering varies across booklets; ii) the percentage correct on some items is higher than that of the highest scoring countries; iii) the difficulty of the clusters varies widely across booklets; and iv) the coding of items in Azerbaijan is at an extremely high level of agreement between independent coders, and was judged, on some items, to be too lenient. However, further investigation of the survey instruments, the procedures for test implementation and coding of student responses at the national level did not provide sufficient evidence of systematic errors or violations of the PISA Technical Standards. Azerbaijan's data are, therefore, included in the PISA 2009 international dataset.

For the PISA 2009 assessment in Austria, a dispute between teacher unions and the education minister has led to the announcement of a boycott of PISA which was withdrawn after the first week of testing. The boycott required the OECD to remove identifiable cases from the dataset. Although the Austrian dataset met the PISA 2009 technical standards after the removal of these cases, the negative atmosphere in regard to educational assessment has affected the conditions under which the assessment was administered and could have adversely affected student motivation to respond to the PISA tasks. The comparability of the 2009 data with data from earlier PISA assessments can therefore not be ensured and data for Austria have therefore been excluded from trend comparisons.

From:
 PISA 2009 Results: Overcoming Social Background
 Equity in Learning Opportunities and Outcomes (Volume II)

Access the complete publication at:

https://doi.org/10.1787/9789264091504-en

Please cite this chapter as:

OECD (2010), "Annex A: Technical background", in PISA 2009 Results: Overcoming Social Background: Equity in Learning Opportunities and Outcomes (Volume II), OECD Publishing, Paris.

DOI: https://doi.org/10.1787/9789264091504-12-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

[^0]: Note: For a full explanation of the details in this table, please refer to the PISA 2009 Technical Report (OECD, forthcoming). The figure for total national population of 15 -year-olds enrolled in Column 1 may occasionally be larger than the total number of 15 -year-olds in Column 2 due to differing data sources. In Greece, Column 1 does not include immigrants but Column 2 does include immigrants.
 StatLink त्रोाड्य http://dx.doi.org/10.1787/888932343190

[^1]: Note: For a full explanation of the details in this table please refer to the PISA 2009 Technical Report (OECD, forthcoming). The figure for total national population of 15 -year-olds enrolled in Column 1 may occasionally be larger than the total number of 15 -year-olds in Column 2 due to differing data sources. In Greece, Column 1 does not include immigrants but Column 2 does include immigrants.

[^2]: 1. Students who are not in grade 10 or 11 and in programme $3,4,5,6,7$ or 8 .
 2. Students who are in grade 10 or 11 and in programme $3,4,5,6,7$ or 8 .

