Chapter

Access to Education, Participation and Progression

INDICATOR C1

HOW PREVALENT ARE VOCATIONAL PROGRAMMES?

This indicator shows the participation of students in vocational education and training (VET) at the upper secondary level and the distribution of upper secondary and post-secondary non-tertiary vocational graduates across fields of education. It compares the levels of educational expenditure per student for general programmes and VET at the upper secondary level. It also compares educational outcomes of 15 -year-old students enrolled in general and in vocational education.

Key results

Chart C1.1. Difference in science performance associated with students' programme orientation (2006)

$\square \square$ Differences in science performance between general programme students and pre-vocational and vocational programme students
Statistically significant differences are marked in darker tone

Differences in science performance between general programme students and pre-vocational and vocational programme students, with accounting for the economic, social and cultural status of students (ESCS) Statistically significant differences are marked in darker tone

PISA 2006 shows that 15 -year-olds in pre-vocational and vocational programmes have statistically significant lower performance in science compared to students enrolled in general programmes in 12 out of the 14 OECD countries for which data are available. On average, 15 -year-olds enrolled in general programmes score 35 points higher and after adjusting for socio-economic factors a difference of 24 points still remains.

Note: This chart shows data for countries with more than 3% of students in the aggregated category of pre-vocational and vocational programmes.
Countries are ranked in descending order of performance advantage for students enrolled in general programmes versus students enrolled in vocational programmes.
Source: OECD PISA 2006 database. Table C1.4. See Annex 3 for notes (www.oecd.org/edu/eag2008). StatLink (inlाst http://dx.doi.org/10.1787/402134482176

Other highlights of this indicator

- In 13 out of 28 OECD countries and the partner country Slovenia, most upper secondary students are enrolled in pre-vocational and vocational programmes. In most OECD countries, a significant proportion of upper secondary vocational education is school-based.
- In OECD countries with available data, vocational qualification is concentrated in engineering, manufacturing and construction at both the upper secondary (34\%) and post-secondary non-tertiary (22%) levels.
- The 14 OECD countries for which data are available spend, on average, USD 925 more per student on upper secondary vocational programmes than on general programmes.

Policy context

A range of factors - including better employment outcomes for the more educated - has strengthened the incentive for young people to remain in school beyond the end of compulsory education and to graduate from upper secondary education. The continued rise in participation in upper secondary education means that countries have to cater to a more diverse student population at that level.

Countries have taken various approaches to meeting these demands. Some have comprehensive lower secondary systems with non-selective general/academic programmes so that all students have similar opportunities for learning; others provide more distinctive education programmes (academic, pre-vocational and/or vocational programmes) in both lower and upper secondary education. Vocational programmes differ from academic ones not only in terms of their curricula but also because they generally prepare students for specific types of occupations and, in some cases, for direct entry into the labour market.

Countries must continuously review their educational systems to ensure that graduates meet the changing demands of the labour market, and they must also anticipate future requirements. VETrelated issues with which countries are wrestling include increasing the supply of apprentices, dealing with specific skill shortages in the work force, enhancing the status of VET and upgrading its quality.

Today VET encompasses both formal education - secondary programmes (pre-vocational and vocational), post-secondary programmes and even university programmes - and non-formal job-related continuing education and training (see Indicator C5). This indicator focuses on formal education (pre-vocational and vocational programmes) at the upper secondary and postsecondary non-tertiary level.

Evidence and explanations

Participation in upper secondary vocational education

In most OECD countries, students do not follow a uniform curriculum at the upper secondary level. Programmes at this level can be subdivided into three categories based on the degree to which they are oriented towards a specific class of occupations or trades and lead to a qualification that is relevant to the labour market:

- General education programmes are not designed explicitly to prepare participants for specific occupations or trades, or for entry into further vocational or technical education programmes (less than 25% of programme content is vocational or technical).
- Pre-vocational or pre-technical education programmes are mainly designed to introduce participants to the world of work and to prepare them for entry into further vocational or technical education programmes. Successful completion of such programmes does not lead to a vocational or technical qualification that is directly relevant to the labour market. (At least 25% of programme content is vocational or technical.)
- Vocational or technical education programmes prepare participants for direct entry into specific occupations without further training. Successful completion of such programmes leads to a vocational or technical qualification that is relevant to the labour market.

Vocational and pre-vocational programmes are further divided into two categories (school-based and combined school- and work-based programmes) on the basis of the amount of training provided in school as opposed to the work place:

- In school-based programmes, instruction takes place (either partially or exclusively) in educational institutions. They include special training centres run by public or private authorities or enterprise-based special training centres if these qualify as educational institutions. These programmes can have an on-the-job training component involving some practical work experience at the workplace. Programmes are classified as school-based if at least 75% of the programme curriculum is presented in the school environment; this may include distance education.
- In combined school- and work-based programmes, less than 75% of the curriculum is presented in the school environment or through distance education. These programmes can be organised in conjunction with educational authorities or educational institutions and include apprenticeship programmes, that involve concurrent school-based and work-based training, and programmes that involve alternating periods of attendance at educational institutions and of participation in work-based training (sometimes referred to as "sandwich" programmes).

The degree to which a programme has a vocational or general orientation does not necessarily determine whether participants have access to tertiary education. In several OECD countries, vocationally oriented programmes are designed to prepare students for further study at the tertiary level, and in some countries general programmes do not always provide direct access to further education.

For 13 OECD countries and the partner country Slovenia for which data is available, the majority of upper secondary students pursue pre-vocational and vocational programmes. In most OECD countries with dual-system apprenticeship programmes (Austria, Germany, Luxembourg, the Netherlands and Switzerland) and in Australia, Belgium, the Czech Republic, Finland, Italy, Norway, the Slovak Republic and Sweden, and the partner country Slovenia, 55\% or more of upper secondary students are enrolled in pre-vocational or vocational programmes. However, in Canada, Greece, Hungary, Iceland, Ireland, Japan, Korea, Mexico, Portugal and Turkey, and the partner countries Brazil, Chile, Estonia and Israel, 60% or more of upper secondary students are enrolled in general programmes even though pre-vocational and/or vocational programmes are offered (Table C1.1).

In many OECD countries, upper secondary vocational education is school-based. In Austria, the Czech Republic, Iceland and the Slovak Republic, however, about 40% of the students participate in vocational programmes which combine school- and work-based elements. In Denmark, Germany, Hungary, Ireland and Switzerland and the partner country Estonia, around 75% or more of students are enrolled in vocational programmes which have both school-based and work-based elements.

Upper secondary students in many education systems can enrol in vocational programmes, but some OECD countries delay vocational training until after graduation from upper secondary education. While vocational programmes are offered as advanced upper secondary programmes in some OECD countries (e.g. Austria, Hungary and Spain), similar programmes are offered as post-secondary education in others (e.g. Canada and the United States).

Apprenticeship programmes

Table C1.1 includes enrolments in apprenticeship programmes that are a recognised part of the education system in countries. This section provides information on the typical characteristics of these programmes and other work-based learning programmes.

In most OECD countries (Australia,Austria, Belgium, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Ireland, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, the Slovak Republic, Switzerland, Turkey and the United Kingdom) and partner countries (Israel, the Russian Federation and Slovenia), some form of apprenticeship system exists. In some countries (e.g. Austria, Germany and Hungary), apprenticeship contracts are established between a student (not the vocational training school) and a company. For the most part, the majority of countries have combined school and work-based apprenticeship programmes. In contrast, apprenticeship systems do not exist in Japan, Korea, Spain and Sweden. In the United States, there are apprenticeship programmes, but they are not part of the formal education system.

The minimum entry requirement for apprenticeship programmes varies but is typically the completion of lower secondary education (Canada, the Czech Republic, Denmark, Finland, France, Germany, Ireland, Luxembourg, Mexico, the Netherlands, Norway, Poland and the Slovak Republic, and the partner countries Israel and Slovenia). In Austria, the minimum entry requirement is the completion of nine years of compulsory schooling. In Australia, Belgium, the Netherlands, the United Kingdom and the United States, entry is governed (in full or in part) by age criteria, while in New Zealand, participants must be employed. InTurkey, the minimum requirement is completion of primary education, but entrants must be at least 14 years old and have a contract with a workplace. The Russian Federation has no legal framework for entry into apprenticeship programmes.

In some countries the duration of apprenticeship programmes is standardised; it ranges from one to four years in Canada, the Czech Republic, Denmark, France, Germany, Ireland, New Zealand, Norway, Poland and the United Kingdom, and the partner countries Israel and Slovenia. In other countries (e.g. Austria and Belgium), it varies according to subject, specific qualification sought, previous knowledge and/or experience.

In most countries, the successful completion of an apprenticeship programme usually results in the awarding of an upper secondary or post-secondary qualification. In some countries, higher qualifications are possible (such as an advanced diploma in Australia).

Differences in graduation rates in general and vocational programmes

Although average graduation rates for general, pre-vocational and vocational programmes are similar at the upper secondary level (47% and 45%, respectively), graduation rates in general programmes exceed those in pre-vocational and vocational programmes in 15 of 27 OECD countries, and in 5 of 6 partner countries. The exceptions are Austria, Belgium, the Czech Republic, Finland, Germany, Italy, Luxembourg, the Netherlands, the Slovak Republic, Sweden and Switzerland, and the partner country Slovenia (Table A2.1).

Gender differences in vocational programmes

For all OECD countries and partner countries for which comparable data are available, there is no clear gender trend for pre-vocational and vocational upper secondary graduation rates.

Although 47% of males and 44% of females graduate from vocational programmes in OECD countries, female graduates in such programmes outnumber males in Australia, Belgium, Denmark, Finland, Ireland, the Netherlands and Spain and the partner country Brazil (Table A2.1 and Chart C1.2).

Chart C1.2. Upper secondary graduation rates for pre-vocational/vocational programmes, by gender (2006)
Percentage of graduates to the population at the typical age of graduation

1. Year of reference 2005.

Countries are ranked in descending order of upper secondary graduation rates for pre-vocational/vocational programmes for females. Source: OECD. Table A2.1. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ㅍils http://dx.doi.org/10.1787/402134482176

Vocational graduates by field of education

Changing opportunities in the job market, differences in earnings among occupations and sectors, and government policies (such as those that attempt to align VET provision with labour market requirements) affect students' choice of fields of education. In turn, the relative popularity of various fields affects the supply of new graduates and the demand for courses and teaching staff (VET teachers and trainers). The distribution of upper secondary and post-secondary non-tertiary vocational graduates across fields sheds light on the relative importance of different fields from country to country. This knowledge helps policy makers ensure that the demand for qualified skilledVET trainers (who are also adequately prepared for the teaching part of their jobs) is met.

They must also ensure that policies are in place to ensure that VET teachers, trainers and training institutions continue to develop and update their skills and equipment to meet current and future labour market needs. Efficient and effective delivery of VET is necessary to raise the status of VET and can help minimise dropout.

For the 21 OECD countries and 2 partner countries for which data are available, the vast majority of graduates from upper secondary vocational programmes have occupationally oriented qualifications (Table C1.2). More than 78% of qualifications are in four categories: engineering, manufacturing and construction (34%), social sciences, business and law (21%), services (13\%) and health and welfare (11\%). Engineering, manufacturing and construction lead in Belgium, the Czech Republic, Finland, France, Hungary, Iceland, Japan, Korea, Norway, Poland, the Slovak Republic, Spain, Sweden and Turkey and in the partner country Estonia. Social sciences, business and law lead in Australia, Luxembourg, Switzerland and the partner country Slovenia; health and welfare lead in the Netherlands; and mathematics and statistics lead in Denmark. In Germany, both engineering and social science, business and law account for the most graduates.

The picture is similar at the post-secondary non-tertiary level. Engineering, manufacturing and construction account for the most graduates (22%), followed closely by social sciences, business and law (20\%), services (19\%), and health and welfare (13\%) (Table C1.2). Engineering, manufacturing and construction lead in Ireland, Luxembourg and the Netherlands; social sciences, business and law in Australia, the Czech Republic, Finland, Germany, Hungary, Norway and Sweden and the partner country Slovenia; services in Denmark, Iceland, Poland and the Slovak Republic and in the partner country Estonia; and health and welfare in France. Computing takes the lead in Greece, Portugal and Switzerland and humanities and arts in New Zealand.

Differences in educational expenditure per student between general and vocational programmes

In most OECD countries, expenditure per student varies between general and vocational programmes. In the 14 OECD countries for which data are available, expenditure per student in upper secondary vocational programmes in 2005 was, on average, USD 925 higher than in general programmes (Table C1.3).

In countries with dual-system apprenticeship programmes at the upper secondary level (e.g. Austria, Germany, Luxembourg, the Netherlands and Switzerland) the difference between expenditure per student in general and in vocational programmes tends to be larger. For example, Germany and Switzerland spend USD 6284 and USD 7118 more per student, respectively, in vocational than in general programmes, with employers contributing a large part. This difference is smaller in Austria (USD 793). The Netherlands has higher expenditure per student in general programmes than in vocational programmes, while Luxembourg's expenditure per student is similar for both. Among the four other countries - Australia, the Czech Republic, Finland and the Slovak Republic - with 60% or more of upper secondary students enrolled in vocational programmes, the Czech Republic and Finland spend more per student enrolled in vocational programmes than in general programmes (Table C1.1 and Table C1.3).

Learning outcomes from vocational education

Is there a difference in the performance of students enrolled in vocational versus general programmes? The analysis below is limited to student performance in science at age 15. Similar patterns were found for PISA 2006 performance in reading and mathematics, but those findings are not reported here in order to simplify the presentation and avoid repetition.

The PISA 2006 results on student performance in science at age 15 show that in OECD countries, students in pre-vocational and vocational programmes score on average 35 points below students in general programmes before socio-economic factors are taken into account (Table C1.4). The largest differences are observed in Belgium, Greece, Korea and the Netherlands. In the Netherlands, the performance of students in general programmes (565 score points) is significantly higher than the overall OECD average for all students (509 score points), while the performance of students in vocational programmes (434 score points) is lower than the overall OECD average. A similar pattern is found in Belgium, Italy and Korea and the partner country Slovenia. On the other hand, students enrolled in both general and pre-vocational/ vocational programmes performed below the OECD average in Greece and Turkey and in the partner countries Chile, Israel and the Russian Federation. Luxembourg and Mexico are the only countries in which students enrolled in pre-vocational and vocational programmes have a statistically significant advantage (19 and 12 score points, respectively), although in Mexico, students enrolled in general and in pre-vocational and vocational programmes perform below the OECD average (406 and 418 score points, respectively).

Given the influence that socio-economic factors can have on student performance, it is important to examine differences in performance after adjusting for these factors. After adjusting for socioeconomic factors, the performance difference in pre-vocational and vocational programmes is lowered by 11 score points, to remain at 24 score points on average across OECD countries. For 13 OECD countries, there is a statistically significant difference between performance levels of students in general programmes and in pre-vocational and vocational programmes, even after adjusting for socio-economic factors. In Luxembourg and Mexico, students enrolled in pre-vocational and vocational programmes still have a statistically significant advantage (23 and 12 score points, respectively). For the other countries, students enrolled in pre-vocational and vocational programmes have a disadvantage ranging from 23 score points in Austria to 114 score points in the Netherlands (Table C1.4 and Chart C1.1). Nevertheless, this weaker performance does not necessarily mean pre-vocational and vocational programmes have an adverse impact on such students' future careers. In The Netherlands, all 15 year old students are enrolled in either pre-vocational or general programmes. At the age of 16 at the earliest, students can be enrolled in vocational programmes.

In addition to job-related skills, today's VET programmes must also equip students with basic skills (literacy and numeracy) and general competencies (social and communication skills), as employers are increasingly emphasising those skills.

Definitions and methodologies

The student performance data are based on assessments administered as part of the Programme for International Student Assessment (PISA) undertaken by the OECD in 2006.

Data on enrolments is for the school year 2005-2006 and data on finance refer to the financial year 2005 and both are based on the UOE data collection on educational systems administered annually by the OECD.

Data on apprenticeship programmes are based on a special survey carried out by the OECD in the autumn of 2006.

Further references

The following additional material relevant to this indicator is available on line at:
StatLink (anlst http://dx.doi.org/10.1787/402134482176

- Table C1.5. Differences in science performance between the different programme orientations (2006)
- Table C1.6. Performance of 15-year-old students on the mathematics, reading and science scales by programme orientation (2006)

Table C1.1.
Upper secondary enrolment patterns (2006)
Enrolment in upper secondary programmes in public and private institutions by programme destination and programme orientation

1. Year of reference 2005.
2. Excludes ISCED 3C.
3. Includes post-secondary, non-tertiary education.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data
StatLink ग्ञाडात http://dx.doi.org/10.1787/402134482176

Table C1.2.
Percentage of upper secondary and post-secondary non-tertiary pre-vocational/vocational graduates, by field of education (2006)

Note: Column 1 specifies the level of education: 3 equals upper secondary education and 4 equals post-secondary non-tertiary education.

1. Year of reference 2005.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.

Table C1.2. (continued)
Percentage of upper secondary and post-secondary non-tertiary pre-vocational/vocational graduates, by field of education (2006)

	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		苋		$\begin{gathered} 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			品	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
New Zealand	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 13.8 \\ & 35.4 \end{aligned}$	$\begin{aligned} & 11.1 \\ & 22.7 \end{aligned}$	$\begin{array}{r} \hline 5.0 \\ 11.1 \end{array}$	$\begin{aligned} & 5.1 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 4.2 \end{aligned}$	$\begin{array}{r} 2.5 \\ 11.4 \end{array}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$	$\begin{array}{r} \mathrm{n} . \\ 0.5 \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 2.4 \end{aligned}$	$\begin{array}{r} 56.5 \\ 2.4 \end{array}$
Norway	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{array}{r} 1.6 \\ 19.0 \end{array}$	$\begin{array}{r} 6.6 \\ 24.3 \end{array}$	$\begin{aligned} & 15.0 \\ & 19.6 \end{aligned}$	$\begin{aligned} & 42.1 \\ & 21.3 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 8.8 \end{aligned}$	$\begin{array}{r} 29.0 \\ 2.7 \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{array}{r} n \\ 0.5 \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 3.6 \end{aligned}$	$\begin{array}{r} n \\ 0.5 \end{array}$
Poland	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} \mathrm{n} . \\ 0.2 \end{array}$	$\begin{aligned} & 1.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 24.0 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 29.7 \end{aligned}$	$\begin{array}{r} 53.1 \\ 3.9 \end{array}$	$\begin{aligned} & 3.6 \\ & 0.7 \end{aligned}$	$\begin{array}{r} \text { n. } \\ 18.8 \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{array}{r} 0.1 \\ 16.8 \end{array}$	$\begin{array}{r} \text { n } \\ 0.1 \end{array}$
Portugal	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{n} \end{array}$	$\begin{array}{r} \mathrm{m} \\ 25.3 \end{array}$	$\begin{array}{r} \mathrm{m} \\ 19.7 \end{array}$	$\begin{array}{r} \mathrm{m} \\ 6.9 \end{array}$	$\begin{array}{r} \mathrm{m} \\ 12.4 \end{array}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{n} \end{array}$	$\begin{array}{r} \mathrm{m} \\ 0.9 \end{array}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{n} \end{array}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{n} \end{array}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{n} \end{array}$	$\begin{array}{r} \mathrm{m} \\ 34.8 \end{array}$	$\begin{gathered} \mathrm{m} \\ \mathrm{n} \end{gathered}$
Slovak Republic	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 4.7 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 23.6 \\ & 14.6 \end{aligned}$	$\begin{aligned} & 21.7 \\ & 61.2 \end{aligned}$	$\begin{array}{r} 38.0 \\ 1.7 \end{array}$	$\begin{aligned} & 3.8 \\ & 0.9 \end{aligned}$	$\begin{array}{r} 4.4 \\ 15.6 \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & 4.3 \\ & 1.1 \end{aligned}$	a
Spain	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{a} \end{aligned}$	$\begin{array}{r} 17.0 \\ \mathrm{a} \end{array}$	$\begin{array}{r} 22.7 \\ \mathrm{a} \end{array}$	$\begin{array}{r} 12.0 \\ \mathrm{a} \end{array}$	$\begin{array}{r} 30.8 \\ \mathrm{a} \end{array}$	$\begin{array}{r} 2.9 \\ a \end{array}$	$\begin{array}{r} 12.6 \\ \mathrm{a} \end{array}$	n	$\begin{gathered} \mathrm{n} \\ \mathrm{a} \end{gathered}$	$\begin{gathered} \mathrm{n} \\ \mathrm{a} \end{gathered}$	1.1 a	$\begin{aligned} & \mathrm{n} \\ & \mathrm{a} \end{aligned}$
Sweden	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} \mathrm{n} \\ 0.9 \end{array}$	$\begin{array}{r} 23.8 \\ 9.8 \end{array}$	$\begin{array}{r} 5.8 \\ 30.2 \end{array}$	$\begin{aligned} & 10.5 \\ & 14.7 \end{aligned}$	$\begin{aligned} & 34.1 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.0 \end{aligned}$	$\begin{array}{r} 11.5 \\ 9.3 \end{array}$	$\begin{array}{r} 0.1 \\ \mathrm{n} \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{array}{r} \mathrm{n} . \\ 1.9 \end{array}$	$\begin{array}{r} 8.4 \\ \mathrm{n} \end{array}$
Switzerland	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} \mathrm{n} \\ 1.6 \end{array}$	$\begin{aligned} & 3.5 \\ & 0.1 \end{aligned}$	$\begin{array}{r} 37.7 \\ \mathrm{n} \end{array}$	$\begin{aligned} & 9.0 \\ & 7.4 \end{aligned}$	$\begin{array}{r} 32.2 \\ \mathrm{n} \end{array}$	$\begin{array}{r} 3.9 \\ \mathrm{n} \end{array}$	$\begin{array}{r} 6.4 \\ 42.5 \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{array}{r} 2.8 \\ 48.4 \end{array}$	$\begin{array}{r} 4.3 \\ \mathrm{n} \end{array}$
Turkey	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	n	$\begin{array}{r} 2.3 \\ a \end{array}$	$\begin{array}{r} 18.2 \\ \mathrm{a} \end{array}$	$\begin{array}{r} 3.2 \\ a \end{array}$	$\begin{array}{r} 38.4 \\ \mathrm{a} \end{array}$	$\begin{array}{r} 0.1 \\ a \end{array}$	$\begin{array}{r} 10.4 \\ a \end{array}$	n a	$\begin{aligned} & \mathrm{n} \\ & \mathrm{a} \end{aligned}$	n	9.5 a	$\begin{array}{r} 17.9 \\ a \end{array}$
United Kingdom	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	m m	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$									
United States	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{a} \\ \mathrm{~m} \end{gathered}$	a m	$\begin{gathered} \mathrm{a} \\ \mathrm{~m} \end{gathered}$									
OECD average	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{gathered} 0.8 \\ 3.1 \end{gathered}$	$\begin{aligned} & 7.1 \\ & 8.8 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 20.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 12.7 \\ & 18.7 \end{aligned}$	$\begin{aligned} & 33.5 \\ & 21.9 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 10.8 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.3 \end{aligned}$	2.7 8.8	$\begin{aligned} & 5.8 \\ & 2.1 \end{aligned}$
Brazil	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \mathrm{a} \end{gathered}$	m	$\begin{array}{r} \mathrm{m} \\ \mathrm{a} \end{array}$	$\begin{gathered} \mathrm{m} \\ \mathrm{a} \end{gathered}$	m a	$\begin{gathered} \mathrm{m} \\ \mathrm{a} \end{gathered}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{a} \end{array}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{a} \end{array}$	$\begin{gathered} \mathrm{m} \\ \mathrm{a} \end{gathered}$			
Chile	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} \mathrm{m} \\ \mathrm{a} \end{array}$	m	$\begin{array}{r} \mathrm{m} \\ \mathrm{a} \end{array}$									
Estonia	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{array}{r} 6.2 \\ 23.5 \end{array}$	$\begin{aligned} & 19.3 \\ & 29.1 \end{aligned}$	$\begin{aligned} & 62.4 \\ & 24.4 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 5.0 \end{aligned}$	$\begin{array}{r} n \\ 8.7 \end{array}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$
Israel	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	m m	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$									
Russian Federation	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	m m	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	m m	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$						
Slovenia	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{array}{r} 3.0 \\ 12.5 \end{array}$	$\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 36.0 \\ & 34.7 \end{aligned}$	$\begin{aligned} & 13.1 \\ & 14.6 \end{aligned}$	$\begin{aligned} & 31.6 \\ & 32.5 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 2.7 \end{aligned}$	n n	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$	1.8 n	$\begin{aligned} & \mathrm{n} \\ & \mathrm{n} \end{aligned}$

[^0]Table C1.3.
Annual expenditure on educational institutions per student for all services, by programme orientation (2005) In equivalent USD converted using purchasing power parities for GDP, by level of education, based on full-time equivalent

1.Year of reference 2004.
2. All secondary includes pre-primary and primary educaton.
3. Public institutions only.
4. Year of reference 2006.
5. Lower secondary includes primary education.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink 司ist http://dx.doi.org/10.1787/402134482176

Table C1.4.
Performance of 15 -year-old students on the PISA science scale by programme orientation (2006) Distinction between programme orientation is based on students' self-reports
$\left.\begin{array}{l|c|c|c|c|c|c|c|c}\hline & & & & & & \begin{array}{c}\text { Differences in } \\ \text { science performance } \\ \text { between general }\end{array} \\ \text { programmestudents }\end{array}\right]$

[^1]
WHO PARTICIPATES IN EDUCATION?

This indicator examines access to education and its evolution using information on enrolment rates and on enrolment trends from 1995 to 2006. It also shows patterns of participation at the secondary level of education and the percentage of the youth cohort that will enter different types of tertiary education during their lifetime. Participation rates reflect both the accessibility of tertiary education and the perceived value of attending tertiary programmes. For information on vocational education and training in secondary education, see Indicator C 1.

Key results

Chart C2.1. Enrolment rates of 20-to-29-year-olds (1995, 2000 and 2006)
Full-time and part-time students in public and private institutions
$\square 2006$ • $2000 \diamond 1995$

In Australia, Denmark, Finland, Greece, Iceland, Norway, Poland and Sweden, and in the partner country Slovenia, more than 30% of the population aged 20 to 29 is enrolled in education. From 1995 to 2006, enrolment rates of 20 -to-29-year-olds increased by 8 percentage points.

1. Year of reference 2005.
2. Excludes overseas departments for 1995 and 2000.
3. Break in time series following methodological change from 2006. Countries are ranked in descending order of the enrolment rates of 20-to-29-year-olds in 2006.
Source: OECD. Table C2.2. See Annex 3 for notes (www.oecd.org/edu/eag2008).

Other highlights of this indicator

- In most OECD countries today, virtually everyone has access to at least 12 years of formal education. At least 90% of students are enrolled in education in an age range spanning 14 or more years in Belgium, France, Germany, Hungary, Iceland, Japan, Norway and Spain. In contrast, Mexico and Turkey have enrolment rates exceeding 90% for only nine and six years, respectively; the corresponding figure for the partner country the Russian Federation is nine years.
- In more than one-half of OECD countries, more than 70\% of 3-to-4-year-olds are enrolled in either pre-primary or primary programmes. A child is more likely to be enrolled at age 4 and under in the 19 European Union countries that are members of the OECD than in other OECD countries. The enrolment rate for 3 -to-4-year-olds averages 76.7% for the EU19, while the OECD average is 69.4\%.
- Enrolment rates for 15 -to-19-year-olds increased on average from 74 to 81% from 1995 to 2006. In Belgium, Greece and Poland, and the partner country Slovenia, they reached more than 90% in 2006 (in Belgium they had already reached this level in 1995). The pattern is similar for 20-to-29-year-olds, an age group in which most students are enrolled in tertiary education; between 1995 and 2006, their enrolment rates increased in all OECD countries except Portugal.

Policy context

A well-educated population is essential to a country's economic and social development. Societies therefore have an intrinsic interest in ensuring that children and adults have access to a wide variety of educational opportunities. Early childhood programmes prepare children for primary education; they provide opportunities to enhance and complement their educational experience at home and can help combat linguistic and social disadvantages. Primary and secondary education lay the foundation for a broad range of competencies and prepare young people to become lifelong learners and productive members of society. Tertiary education, either directly after initial schooling or later in life, provides a range of options for acquiring advanced knowledge and skills.

Various factors, including increased risks of unemployment and other forms of exclusion for young adults with insufficient education, have strengthened the incentive to remain in school beyond the end of compulsory education and graduate from upper secondary education. In most OECD countries, graduation from upper secondary education is becoming the norm, and most upper secondary programmes prepare students for tertiary studies (see Indicator A2).

High tertiary participation rates help to ensure the development and maintenance of a highly educated population and labour force. Moreover, tertiary education programmes are generally associated with better access to employment (see Indicator A8) and higher earnings (see Indicator A9). Rates of entry into tertiary education are a partial indication of the degree to which a population is acquiring the high-level skills and knowledge valued by the labour market in today's knowledge society (see Indicator A2).

As students have become more aware of the economic and social benefits of tertiary education, graduation rates for tertiary-type A programmes have risen (see Indicator A3). Tertiary-type A programmes dominate tertiary enrolments and absorb a large proportion of the available resources as they tend to be longer than other tertiary programmes (see Indicator B1, Table B1.3).

The continuing rise in participation and the widening diversity of backgrounds and interests among those aspiring to tertiary studies mean that tertiary institutions need to expand admissions and adapt their programmes to the needs of these new generations of students. In addition, the internationalisation of tertiary education means that some educational institutions may also have to adapt their curriculum and teaching methods to a culturally and linguistically diverse student body (see Indicator C3).

Evidence and explanations

Virtually all young people in OECD countries have access to at least 12 years of formal education. At least 90% of students are enrolled in an age range spanning 14 or more years in Belgium, France, Germany, Hungary, Iceland, Japan, Norway and Spain. By contrast, Mexico and Turkey, and the partner country the Russian Federation, have enrolment rates exceeding 90% for only nine, six and nine years, respectively (Table C2.1). However, patterns of participation in education throughout people's lives vary widely among countries. Enrolment rates in the United Kingdom appear to be lower than in previous years, however this is due to a break in time series following methodological change from 2006.

Participation in early childhood education

A child is more likely to be enrolled at age 4 and under in the EU19 countries than in other OECD countries. On average, the enrolment rate for 3-to-4-year-olds is 76.7% for the EU19 countries, whereas the OECD average is 69.4%.

In the majority of OECD and partner countries, full enrolment (defined here as enrolment rates exceeding 90%) begins between the ages of 5 and 6. However, in Belgium, the Czech Republic, Denmark, France, Germany, Hungary, Iceland, Italy, Japan, Luxembourg, New Zealand, Norway, Portugal, the Slovak Republic, Spain, Sweden and the United Kingdom, and in the partner countries Estonia, Israel and Slovenia, at least 70\% of 3-to-4-year-olds are enrolled in either preprimary or primary programmes. Enrolment rates for early childhood education range from less than 25% in Korea and Turkey to over 90% in Belgium, Denmark, France, Germany, Iceland, Italy, New Zealand, Spain and the United Kingdom (Table C2.1).

Given the importance of early childhood education and care in building a strong foundation for lifelong learning and in ensuring equitable access to later learning opportunities, pre-primary education is very valuable. Many countries have recognised this by making pre-primary education by 3 years of age almost universal. However, institutionally based pre-primary programmes covered by this indicator are not the only available form of effective early childhood education and care. Inferences about access to and quality of pre-primary education and care should therefore be made with caution.

Participation towards the end of compulsory education and beyond

Several factors influence the decision to stay enrolled beyond the end of compulsory education, particularly the limited prospects of young adults with insufficient education; in many countries they are at greater risk of unemployment and other forms of exclusion than their well-educated peers. In many OECD countries, the transition from education to employment has become longer and more complex, providing the opportunity, or the obligation, to combine learning and work to develop marketable skills (see Indicator C4).

The age at which compulsory education ends ranges from 14 in Korea, Portugal and Turkey and the partner countries Brazil and Slovenia to 18 in Belgium, Germany and the Netherlands and the partner country Chile. All other countries lie between these two extremes (Table C2.1). However, the statutory age at which compulsory education ends does not always correspond to the age at which enrolment is universal.

Participation rates tend to be high up to the end of compulsory education in most OECD and partner countries. However, in Germany, Mexico, the Netherlands, New Zealand, Turkey, the United Kingdom and the United States and the partner country Chile, they drop below 90% before the end of compulsory education (Table C2.1 and Table C2.3). In Germany, the Netherlands and the United States and the partner country Chile, this may be due, in part, to the fact that compulsory education ends relatively late at age 18 (age 17, on average, in the United States).

In most OECD and partner countries, enrolment rates decline gradually during the last years of upper secondary education. More than 20% of the population aged 15 to 19 is not enrolled in education in Luxembourg, Mexico, New Zealand, Portugal, Turkey, the United Kingdom and the United States, and in the partner countries Brazil, Chile, Israel and the Russian Federation (Table C2.1).

There has been an average increase of 8 percentage points in the proportion of 15 -to-19-yearolds enrolled in education in OECD countries between 1995 and 2006. Enrolment rates for this age group increased on average from 74 to 81% from 1995 to 2006 and reached more than 90% in 2006 in Belgium, Greece, Poland and the partner country Slovenia (Belgium had already reached 90% or more in 1995) (Table C2.2). However, while enrolment rates for 15 -to19 -year-olds have improved by more than 20 percentage points during the past 11 years in the Czech Republic, Greece and Hungary, they remained virtually unchanged in Australia, Belgium, Canada, France, Germany, Luxembourg, the Netherlands, Norway and Switzerland. Of these, all except Luxembourg have a high proportion of their population of 15-to-19-year-olds enrolled in education (Table C2.2).

Chart C2.2. Enrolment rates of 15-to-19-year-olds (1995, 2000 and 2006) Full-time and part-time students in public and private institutions

1. Excludes overseas departments for 1995 and 2000.
2. Year of reference 2005.
3. Break in time series following methodological change from 2006.

Countries are ranked in descending order of the enrolment rates of 15-to-19-year-olds in 2006.
Source: OECD. Table C2.2. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ज्ञात्रा http://dx.doi.org/10.1787/402156412821

The transition to post-secondary education

Upper secondary students in many education systems can enrol in relatively short programmes (less than two years) to prepare for a certain trade or specific vocational field. Some OECD countries delay vocational training until after graduation from upper secondary education. While these programmes are offered as advanced upper secondary programmes in some OECD countries
(e.g. Austria, Hungary and Spain), they are offered as post-secondary education in others (e.g. Canada and the United States), although the latter often resemble upper secondary level programmes.

From an internationally comparable point of view, these programmes straddle upper secondary and tertiary education and are therefore classified as a distinct level of education (post-secondary non-tertiary education).

End of compulsory education and decline in enrolment rates

An analysis of the participation rates by level of education and single year of age shows that there is no close relationship between the end of compulsory education and the decline in enrolment rates. In most OECD and partner countries, the sharpest decline in enrolment rates occurs not at the end of compulsory education but at the end of upper secondary education. After the age of 16 , however, enrolment rates begin to decline in all OECD and partner countries. Enrolment rates in secondary education fall from 91% on average at age 16 to 82% at age $17,52 \%$ at age 18 and 27% at age 19. In Belgium, the Czech Republic, Finland, Germany, Hungary, Japan, Korea, Norway, Poland, the Slovak Republic and Sweden, and in the partner countries Estonia, Israel and Slovenia, 90% or more of all 17-year-olds are still enrolled at this level, even though compulsory education ends at less than 17 years of age in most of these countries (Table C2.3).

Participation in tertiary education

Enrolment rates indicate the number of individuals participating in tertiary education. On average in OECD countries, 25% of 20 -to- 29 -year-olds are enrolled in education. Enrolment rates are 30% or more in Australia, Denmark, Finland, Greece, Iceland, Norway, Poland and Sweden, and in the partner country Slovenia (Table C2.1).

Policies to expand education have led to greater access to tertiary education in many OECD and partner countries. This has so far more than compensated the declines in cohort sizes which had led, until recently, to predictions of stable or declining demand in several OECD countries. While some OECD countries (Ireland, New Zealand and Portugal) now show signs of a levelling of demand for tertiary education, the overall trend remains upwards. On average, in all OECD countries with comparable data, participation rates in tertiary education grew by 8 percentage points from 1995 to 2006. All OECD and partner countries except Portugal have seen participation by 20 -to-29-year-olds increase. This growth is particularly significant in the Czech Republic, Greece and Hungary, which were earlier at the bottom of the scale of OECD countries but have moved up to the middle (Table C2.2 and Chart C2.1).

The relative size of the public and the private sectors

In OECD and partner countries, education at the primary and secondary levels is still predominantly publicly provided. On average, 91% of primary education students in OECD countries are enrolled in public institutions; the figures decline slightly in secondary education, with 85% of lower secondary students and 83% of upper secondary students taught in public institutions. Japan and Mexico are an exception at the upper secondary level, as independent private providers (those that receive less than 50% of their funds from government sources) take in 31 and 20%, respectively, of upper secondary students (Table C2.4).

At the tertiary level, the pattern is quite different. Private providers generally play a more significant role. In tertiary-type B programmes, the private sector accounts for one third of students, and in tertiary-type A and advanced research programmes it accounts for one fifth of students. In the United Kingdom, all tertiary education is provided through governmentdependent private institutions. Such providers also receive more than half of tertiary-type B students in the partner country Israel (66\%). Government-dependent private providers also take a significant share of tertiary-type A and advanced research programmes in the partner countries Estonia (86%) and Israel (78%). Independent private providers are more prominent at the tertiary level than at pre-tertiary levels (an average of 14% of tertiary students attend such institutions), particularly in Japan, Korea and the partner country Brazil, where more than 70\% of students are enrolled in such institutions (Table C2.5).

Definitions and methodologies

Data on enrolments is for the school year 2005-2006 and data on finance refer to the financial year 2005 and both are based on the UOE data collection on educational systems administered annually by the OECD.

Except where otherwise noted, figures are based on head counts; that is, they do not distinguish between full-time and part-time study because the concept of part-time study is not recognised by some countries. In some OECD countries, part-time education is only partially covered in the reported data.

Net enrolment rates, expressed as percentages in Table C2.1 and Table C2.2, are calculated by dividing the number of students of a particular age group enrolled in all levels of education by the size of the population of that age group.

In Table C2.2, data on trends in enrolment rates for the years 1995, 2000, 2001, 2002, 2003 and 2004 are based on a special survey carried out in OECD countries and four out of six partner countries in January 2007.

Further references

The following additional material relevant to this indicator is available on line at:
StatLink ...inst http://dx.doi.org/10.1787/402156412821

- Table C2.6. Education expectancy (2006)
- Table C2.7. Expected years in tertiary education (2006)

Table C2.1.
Enrolment rates, by age (2006)
Full-time and part-time students in public and private institutions

[^2]Table C2.2.
Trends in enrolment rates (1995-2006)
Full-time and part-time students in public and private institutions in 1995, 2000, 2001, 2002, 2003, 2004, 2005, 2006

1. Excludes the German-speaking Community of Belgium for 2004, 2005 and 2006.
2. Excludes overseas departments (DOM) from 1995 to 2004.
3. Break in time series following methodological change from 2006.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ⿹勹tils

Table C2.3.
Transition characteristics from age 15 to 20, by level of education (2006)
Net enrolment rates (based on head counts)

Note: Mismatches between the coverage of the population data and the student/graduate data mean that the participation/graduation rates may be underestimated for countries such as Luxembourg that are net exporters of students and may be overestimated for those that are net importers.

1. Year of reference 2005.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink (베엔 http://dx.doi.org/10.1787/402156412821

Table C2.4
Students in primary and secondary education by type of institution or mode of study (2006)
Distribution of students, by mode of enrolment and type of institution

	Type of institution									Mode of enrolment	
	Primary			Lower secondary			Upper secondary			Primary and secondary	
	$\frac{\because}{3}$			$\frac{y}{3}$			$\frac{y}{2}$	$\begin{aligned} & \text { 艮 } \\ & 0 \\ & 0 \end{aligned}$		关	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Australia	70.5	29.5	a	67.5	32.5	a	78.6	21.3	0.1	77.5	22.5
Austria	95.1	4.9	x (2)	92.3	7.7	$\mathrm{x}(5)$	88.5	11.5	$\mathrm{x}(8)$	m	m
Belgium	45.9	54.1	m	43.6	56.4	m	42.5	57.5	m	79.8	20.2
Canada ${ }^{1}$	94.2	$\mathrm{x}(1)$	5.8	94.2	$\mathrm{x}(1)$	5.8	94.5	x(1)	5.5	100.0	a
Czech Republic	98.8	1.2	a	97.9	2.1	a	86.8	13.2	a	100.0	n
Denmark	87.9	12.1	n	75.7	24.0	0.3	97.4	2.6	n	96.4	3.6
Finland	98.7	1.3	a	95.9	4.1	a	85.9	14.1	a	100.0	a
France	85.0	14.5	0.5	78.6	21.1	0.3	69.6	29.5	0.9	100.0	xr
Germany	96.7	3.3	x(2)	92.1	7.9	$\mathrm{x}(5)$	91.4	8.6	x(8)	99.7	0.3
Greece	92.9	a	7.1	94.7	a	5.3	94.1	a	5.9	97.5	2.5
Hungary	93.2	6.8	a	92.5	7.5	a	83.8	16.2	a	94.8	5.2
Iceland	98.8	1.2	n	99.3	0.7	n	90.3	9.3	0.4	91.6	8.4
Ireland	99.2	a	0.8	100.0	a	n	99.3	a	0.7	99.9	0.1
Italy	93.2	a	6.8	96.4	a	3.6	94.5	0.8	4.7	99.2	0.8
Japan	99.0	a	1.0	93.3	a	6.7	69.2	a	30.8	98.8	1.2
Korea	98.7	a	1.3	81.2	18.8	a	51.5	48.5	a	m	m
Luxembourg	92.9	0.6	6.5	79.9	11.9	8.2	83.7	8.1	8.3	100.0	n
Mexico	91.9	a	8.1	87.6	a	12.4	79.9	a	20.1	100.0	a
Netherlands	m	m	m	m	m	m	m	m	m	98.9	1.1
New Zealand	87.9	10.1	2.1	83.5	11.6	5.0	74.4	21.0	4.7	90.8	9.2
Norway	97.7	2.3	x (2)	97.2	2.8	$\mathrm{x}(5)$	91.4	8.6	x(8)	99.1	0.9
Poland	98.1	0.5	1.4	97.3	0.8	2.0	90.7	0.8	8.5	95.0	5.0
Portugal	89.2	2.6	8.3	88.2	6.6	5.2	81.3	5.3	13.4	100.0	a
Slovak Republic	94.9	5.1	n	94.2	5.8	n	87.8	12.2	n	98.9	1.1
Spain	68.5	28.2	3.4	68.1	28.9	3.0	78.3	11.1	10.6	91.6	8.4
Sweden	93.5	6.5	n	92.4	7.6	n	91.2	8.8	n	89.3	10.7
Switzerland	96.1	1.2	2.7	92.9	2.5	4.6	92.9	3.0	4.1	99.8	0.2
Turkey	98.2	a	1.8	a	a	a	97.6	a	2.4	100.0	n
United Kingdom	94.7	a	5.3	93.7	0.9	5.4	52.2	41.9	5.9	96.2	3.8
United States	90.2	a	9.8	91.6	a	8.4	92.0	a	8.0	100.0	a
OECD average	91.1	6.6	2.9	84.9	9.4	3.0	83.2	12.6	5.4	96.2	3.9
EU19 average	89.9	7.9	2.7	87.4	10.7	2.2	83.3	13.4	3.9	96.5	3.7
${ }^{\text {a }}$ Brazil ${ }^{1}$	90.8	a	9.2	90.5	a	9.5	84.9	a	15.1	m	m
Chile	47.2	46.8	6.0	51.4	42.7	5.9	44.3	49.0	6.7	100.0	a
Estonia	97.4	a	2.6	98.4	a	1.6	97.3	a	2.7	96.3	3.6
Israel	100.0	a	a	100.0	a	a	100.0	a	a	100.0	a
Russian Federation	99.4	a	0.6	99.6	a	0.4	99.0	a	1.0	99.9	0.1
Slovenia	99.9	0.1	n	99.9	0.1	n	96.4	3.5	0.2	93.5	6.5

1. Year of reference 2005.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ㅊㅠㅔ댄 http://dx.doi.org/10.1787/402156412821

Table C2.5.
Students in tertiary education by type of institution or mode of study (2006)
Distribution of students, by mode of enrolment, type of institution and programme destination

1. Year of reference 2005.
2. Excludes advanced research programmes.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink (베ाst http://dx.doi.org/10.1787/402156412821

WHO STUDIES ABROAD AND WHERE?

This indicator provides a picture of student mobility and of the internationalisation of tertiary education in OECD and partner countries. It shows global trends and highlights the main destinations of international students and trends in market shares of the international student pool. Some of the factors underlying students' choice of country of study are also examined. It shows the extent of student mobility to different destinations and presents international student intake in terms of the distribution by countries and regions of origin, types of programmes, and fields of education. The distribution of students enrolled outside of their country of citizenship by destination is also examined, along with the immigration implications for host countries. The proportion of international students in tertiary enrolments provides a good indication of the magnitude of student mobility in different countries.

Key results

Chart C3.1. Student mobility in tertiary education (2006)

This chart shows the percentage of international students in tertiary enrolments. According to country-specific immigration legislations and data availability constraints, student mobility is either defined on the basis of students' country of residence or the country where students received their prior education.

Student mobility - i.e. international students who travelled to a country different from their own for the purpose of tertiary study - ranges from below 1 to almost 18% of ter tiary enrolments. International students are most numerous in tertiary enrolments in Australia, Austria, New Zealand, Switzerland and the United Kingdom.

Note: The data presented in this chart are not comparable with data on foreign students in tertiary education presented in editions prior to Education at a Glance 2006 or elsewhere in this chapter. 1. Year of reference 2005.

Countries are ranked in descending order of the percentage of international students in tertiary education. Source: OECD. Table C3.1. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink (베인 http://dx.doi.org/10.1787/402158641726

Other highlights of this indicator

- In 2006, over 2.9 million tertiary students were enrolled outside their country of citizenship. This represented a 3% increase from the previous year in total foreign student intake reported to the OECD and the UNESCO Institute for Statistics.

INDICATOR C3

- France, Germany, the United Kingdom and the United States receive 49\% of all foreign students worldwide. The largest absolute numbers of international students from OECD countries are from France, Germany, Japan and Korea. Students from China and India comprise the largest numbers of international students from partner countries.
- International students make up 15% or more of the enrolments in tertiary education in Australia and New Zealand. International students make up more than 20% of enrolments in advanced research programmes in Belgium, Canada, New Zealand, Switzerland, the United Kingdom and the United States.
- 30% or more of international students are enrolled in sciences, agriculture or engineering in Finland, Germany, Hungary, Sweden, Switzerland and the United States.

Policy context

The general trend towards freely circulating capital, goods and services - coupled with changes in the openness of labour markets - has increased demand for new kinds of educational provision in OECD countries. Governments as well as individuals are looking to higher education to play a role in broadening students' horizons and allowing them to develop a deeper understanding of the world's languages, cultures and business methods. One way for students to expand their knowledge of other societies and languages and hence to leverage their labour market prospects is to study in tertiary educational institutions in countries other than their own. Indeed, several OECD governments - especially in countries of the European Union (EU) - have set up schemes and policies to promote mobility as a way to foster intercultural contacts and help to build social networks for the future.

From a macroeconomic perspective, international negotiations on liberalisation of trade in services highlight the trade implications of the internationalisation of education services. Some OECD countries already show signs of specialisation in education exports. The long-term trend towards greater internationalisation of education (Box C3.1) is likely to have a growing impact on countries' balance of payments as a result of revenue from tuition fees and domestic consumption by international students. It is worth noting that, in addition to student mobility, the cross-border electronic delivery of flexible educational programmes and campuses abroad are also relevant to the trade dimension of international tertiary education, although no comparable data yet exist.

The internationalisation of tertiary education has many economic impacts in addition to the short-term monetary costs and benefits that are reflected in the current account balance. It can also provide an opportunity for smaller and/or less-developed educational systems to improve the cost efficiency of their education provision. Indeed, training opportunities abroad may constitute a cost-efficient alternative to national provision and allow countries to focus limited resources on educational programmes for which economies of scale can be generated, or to expand participation in tertiary education despite bottlenecks in provision.

In addition, the rapid expansion of tertiary education in OECD countries - and more recently in most emerging countries (OECD, 2005a) - has intensified the financial pressures on education systems and has led to greater interest in recruiting foreign students. As tertiary institutions increasingly relied on revenues from foreign tuition fees, some countries actively recruited foreign students. In others, education abroad was encouraged as a way to address unmet demand resulting from bottlenecks caused by the rapid expansion of tertiary education. In the past few years, the rise of the knowledge economy and global competition for skills have provided a new driver for the internationalisation of education systems in many OECD countries, with the recruitment of foreign students part of a broader strategy to recruit highly skilled immigrants.

At the institutional level, the additional revenues that foreign students may generate - either through differentiated tuition fees or public subsidies - help drive international education. But tertiary education institutions also have academic incentives to engage in international activities to build or maintain their reputation in increasingly global academic competition.

At the same time, from the perspective of educational institutions, international enrolments constrain instructional settings and processes insofar as they have to adapt their curriculum and teaching methods to a culturally and linguistically diverse student body. These constraints are,
however, outweighed by numerous benefits to host institutions. A potential international client base compels institutions to offer programmes that stand out among competitors and may contribute to the development of highly reactive, client-driven quality tertiary education that responds to changing needs. International enrolments can also help institutions to reach the critical mass needed to diversify the range of their educational programmes and to increase their financial resources when foreign students bear the full cost of their education (Box C3.3). Given these advantages, institutions may favour the enrolment of international students, thereby restricting access to domestic students. There is little evidence of this, except in some prestigious programmes of elite institutions that are in high demand (OECD, 2004a).

For individuals, the returns to studying abroad depend to a large extent both on the policies of sending countries regarding financial aid to students going abroad and the tuition fee policies of countries of destination (Box C3.3) and their financial support for international students. The cost of living in countries of study and exchange rates also affect the cost of international education. In addition, the long-term returns to international education depend greatly on how international degrees are recognised and valued by local labour markets.

The numbers of students enrolled in other countries can provide some ideas of the extent of the internationalisation of tertiary education. In the future, it will also be important to develop ways to quantify and measure other components of cross-border education.

Evidence and explanations

Concepts and terminology used in this indicator

The concepts and terminology used in this indicator have changed from those used in editions of Education at a Glance produced before 2006. Previously, Indicator C3 focused on foreign students in tertiary education, defined as non-citizens of the country in which they study. This concept was inappropriate for measuring student mobility in that not all foreign students come for the express purpose of studying. In particular, foreign students who are permanent residents in their country of study as a result of immigration - their own or that of their parents - are included in the total. This results in an overestimate of numbers of foreign students in countries with comparatively low rates of naturalisation of their immigrant populations. Moreover, citizens of the country in which they study may be mobile students (i.e. nationals who have lived abroad and return to their country of citizenship to study). Therefore, in an effort to improve the measurement of student mobility and the comparability of data on internationalisation, the OECD - together with Eurostat and the UNESCO Institute for Statistics - revised in 2005 the instruments used to gather data on student mobility. According to this new concept, the term "international students" refers to students who have crossed borders expressly with the intention to study.

The measurement of student mobility depends to a large extent on country-specific immigration legislation and constraints on the availability of data. For instance, the free mobility of individuals within the EU and the broader European Economic Area (EEA) makes it impossible to derive numbers of international students from visa statistics. The OECD therefore allows countries to define as international students those who are not permanent residents of their country of study or, alternatively, those who received their prior education in another country (regardless of citizenship), depending on which operational definition is most appropriate in their national context. Overall, the country of prior education is considered a better operational criterion for EU countries so as
not to omit intra-EU student mobility (Kelo et al., 2005), while the residence criterion is usually a good proxy in countries that require a student visa to enter the country for educational purposes.

The convention adopted here is to use the term "international student" when referring to student mobility and the term "foreign student" for non-citizens enrolled in a country (i.e. including some permanent residents and therefore an overestimate of actual student mobility). However since not all countries are yet able to report data on student mobility on the basis of students' country of residence or of prior education, some tables and charts present indicators on both international and foreign students, albeit separately to emphasise the need for caution in interpreting the results.

In this indicator, data on total foreign enrolments worldwide are based on the number of foreign students enrolled in countries reporting data to the OECD and to the UNESCO Institute for Statistics and thus may be underestimated. In addition, all trend analyses in this indicator are based on numbers of foreign students at different points in time, as time series on student mobility are not yet available. Work is under way to fill this gap and develop retrospective time series on student mobility for future editions of Education at a Glance.

Trends in foreign student numbers

In 2006, 2.9 million tertiary students were enrolled outside their country of citizenship, of whom 2.4 million (83.5%) in the OECD area. This represented a 2.7% increase of 77000 additional individuals in total foreign enrolments worldwide since the previous year. In the OECD area the increase was 3.0%. Since 2000, the number of foreign tertiary students enrolled in the OECD area and worldwide increased by 54.1 and 54.4%, respectively, for an average annual increase of 7.5% (Table C3.6).

Compared to 2000, the number of foreign students enrolled in tertiary education more than doubled in the Czech Republic, Korea, the Netherlands, New Zealand and Spain, and in the partner country Estonia. In contrast, the number of foreign students enrolled in Belgium, the Slovak Republic, Turkey and the United States, grew by about 25% or less (Table C3.1). Changes in foreign student numbers between 2000 and 2006 indicate that, on average, the number of foreign student has grown faster in the OECD area than in the 19 EU countries of the OECD, by 111 and 78%, respectively (Table C3.1).

The combination of OECD and UNESCO Institute for Statistics data makes it possible to examine longer-term trends and illustrates the dramatic growth in foreign enrolments (Box C3.1). Over the past three decades, the number of students enrolled outside their country of citizenship has risen dramatically, from 0.6 million worldwide in 1975 to 2.9 million in 2006, a more than fourfold increase. Growth in the internationalisation of tertiary education has accelerated during the past eleven years, mirroring the growing globalisation of economies and societies.

The rise in the number of students enrolled abroad since 1975 stems from various factors. During the early years, public policies aimed at promoting and nurturing academic, cultural, social and political ties between countries played a key role, especially in the context of the European construction: building mutual understanding among young Europeans was a major policy objective. North American policies of academic co-operation had similar rationales. Over time, however, economic factors played an increasing role. Decreasing transport costs, the spread of new technologies, and faster, cheaper communication made economies and societies increasingly interdependent through the

1980s and 1990s. The trend was particularly marked in the high-technology sector and in the labour market, with the internationalisation of labour markets for the highly skilled giving individuals an incentive to gain international experience as part of their studies. The spread of information and communication technology (ICT) lowered the information and transaction costs of study abroad and boosted demand for international education.

Chart C3.2. Distribution of foreign students in tertiary education, by country of destination (2006)
Percentage offoreign tertiary students reported to the OECD who are enrolled in each country of destination

1. Year of reference 2005.

Source: OECD and UNESCO Institute for Statistics for most data on partner countries. Table C3.7 (available on line at the link below). See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ज्ञाड्रम http://dx.doi.org/10.1787/402158641726

Major destinations of foreign students

In 2006, five out of ten foreign students went to the four countries that host the majority of foreign students enrolled outside of their country of citizenship. The United States received the most (in absolute terms) with 20% of all foreign students worldwide, followed by the United Kingdom (11%), Germany (9%) and France (8%). Altogether, these destinations account for 49% of all tertiary students pursuing their studies abroad (Chart C3.2). Besides these four major destinations, significant numbers of foreign students were enrolled in Australia (6\%), Canada (5\%), Japan (4\%) and New Zealand (2\%), and in the partner country the Russian Federation (3\%), in 2006.

Trends in market shares show the emergence of new players on the international education market

The examination of country-specific trends in market shares of the international education market measured as a percentage of all foreign students worldwide enrolled in a given destination - sheds light on the dynamics of internationalisation of tertiary education. Over a six-year period, the share of the United States as a preferred destination dropped from 25.1 to 20.0%. For Germany the decline was around 1 percentage point, and for Belgium and the United Kingdom, it was about one-half of a percentage point. In contrast, the market shares of Australia, Japan and South Africa expanded by around 1 percentage point. The impressive growth in France (1.2%) and New Zealand (1.9%) keeps them among the big players in the international education market (Chart C3.3).

These trends underline the dynamics of international education in OECD and partner countries, and reflect differences in internationalisation policies; these range from proactive marketing in the Asia-Pacific region to a more passive approach in the traditionally dominant United States,

Chart C3.3. Trends in international education market shares (2000, 2006)
Percentage of all foreign tertiary students enrolled, by destination

where the intake of foreign students was also affected by the tightening of the conditions of entry for international students in the aftermath of the events of 11 September 2001 (see Indicator C3 [OECD, 2005a]).

Underlying factors in students' choice of a country of study

Language of instruction: a critical factor

The language spoken and used in instruction is an essential element in the choice of a foreign country in which to study. Therefore, countries whose language of instruction is widely spoken and read (e.g. English, French, and German) are leading destinations of foreign students, both in absolute and relative terms. Japan is a notable exception: despite a less widespread language of instruction it enrols large numbers of foreign students, 94.2% of whom are from Asia (Table C3.2 and Chart C3.3).

The dominance (in absolute numbers) of English-speaking destinations (Australia, Canada, New Zealand, the United Kingdom and the United States) may be largely due to the fact that students intending to study abroad are likely to have learned English in their home country and/or wish to improve their English language skills through immersion and study abroad. The rapid increase in foreign enrolments in Australia (index change of 175), Canada (157) and, most importantly, New Zealand (825) between 2000 and 2006 can be partly attributed to linguistic considerations (Table C3.1).

Given this pattern, an increasing number of institutions in non-English-speaking countries now offer courses in English to overcome their linguistic disadvantage in terms of attracting foreign students. This trend is especially noticeable in the Nordic countries (Box C3.2).

Box C3.2. OECD and partner countries offering tertiary programmes in English (2006)	
Use of English in instruction	OECD and partner countries

[^3]
Impact of tuition fees and cost of living on foreign students' destinations

Tuition fees and cost of living are also important factors in prospective international students' choice of country. In Denmark, Finland, Iceland, Norway and Sweden, there are no tuition fees for either domestic or international students (Box C3.3). This, associated with the existence of programmes in English, probably explains part of the robust growth between 2000 and 2006 in the number of foreign students enrolled in some of these countries (Table C3.1). However, in the absence of fees, the high unit costs of tertiary education mean that international students place a high monetary burden on their countries of destination (Table B1.1). As a result, Denmark adopted tuition fees for non-EU and non-EEA international students, as of 2006/07. Similar options are currently being discussed in Finland, Norway and Sweden, where foreign enrolments grew by more than 50% between 2000 and 2006.

Countries that charge their international students the full cost of education reap significant trade benefits. Several countries in the Asia-Pacific region have actually made international education an explicit part of their socio-economic development strategies and have initiated policies to attract international students on a revenue-generating or at least self-financing basis. Australia and New Zealand have successfully adopted differentiated tuition fees for international students. In Japan and Korea, with high tuition fees that are the same for domestic and international students, foreign enrolments nevertheless grew robustly between 2000 and 2006 (see Indicator B5). This shows that tuition costs do not necessarily discourage prospective international students as long as the quality of education provided and its likely returns make the investment worthwhile. However, in choosing between similar educational opportunities, cost considerations may play a role, especially for students originating from developing countries. In this respect, the comparatively low rise in foreign enrolments in the United Kingdom and the United States between 2000 and 2006 and the deterioration of the United States' market share may be attributed to the comparatively high tuition fees charged to international students in a context of fierce competition from other primarily English-speaking destinations offering similar educational opportunities at a lower cost (Box C3.3).

Impact of immigration policy on foreign student destinations

In recent years, several OECD countries have softened their immigration policies to encourage the temporary or permanent immigration of their international students. Australia, Canada and New Zealand, for example, make it easy for foreign students who have studied in their universities to settle by granting them additional points for their immigration file. This makes these countries more attractive to students and strengthens their knowledge economy. As a result, immigration considerations may also affect some international students' choice between alternative educational opportunities abroad. In addition, the total freedom of movement of workers within Europe explains part of the high level of student mobility in Europe compared to that between the countries of North America, as the North America Free Trade Agreement (NAFTA) does not include the free movement of workers within a common labour market.

Other factors

Other important factors for foreign students include the academic reputation of particular institutions or programmes; the flexibility of programmes with respect to counting time spent abroad towards degree requirements; the limitations of tertiary education provision in the home country; restrictive university admission policies at home; geographical, trade or historical links between countries; future job opportunities; cultural aspirations; and government policies to facilitate transfer of credits between home and host institutions. The transparency and flexibility of courses and degree requirements also count.

Extent of student mobility in tertiary education

The foregoing analysis has focused on trends in absolute numbers of foreign students and their distribution by countries of destination since time series or global aggregates on student mobility do not exist. It is also possible to measure the extent of student mobility in each country of destination by examining the proportion of international students in total tertiary enrolments. This has the advantage of taking the size of different tertiary education systems into account and highlighting those that are highly internationalised regardless of their size and the importance of their absolute market share.

Wide variations in the proportion of international students enrolled in OECD and partner countries

Among countries for which data on student mobility are available, Australia, Austria, New Zealand, Switzerland and the United Kingdom display the highest levels of incoming student mobility, measured as the proportion of international students in their total tertiary enrolment. In Australia, 17.8% of tertiary students have come to the country in order to pursue their studies. Similarly, international students represent 12.0% of total tertiary enrolments in Austria, 15.5\% in New Zealand, 13.7% in Switzerland and 14.1% in the United Kingdom. In contrast, incoming student mobility is 1% or less of total tertiary enrolments in the Slovak Republic, Spain and the partner country Slovenia (Table C3.1 and Chart C3.1).

Among countries for which data on student mobility are not available, foreign enrolments constitute a large group of tertiary students in France (11.2\%) and Luxembourg (42.2\%), an indication of significant levels of incoming student mobility. However foreign enrolments represent 1% or less of total tertiary enrolments in Korea, Poland, Turkey and the partner country the Russian Federation (Table C3.1).

Student mobility at different levels of tertiary education

The proportion of international students at different levels of tertiary education in each country of destination also sheds light on patterns of student mobility. A first observation is that, with the exception of Japan, New Zealand and Norway, tertiary-type B programmes are far less internationalised than tertiary-type A programmes, suggesting that international students are mostly attracted to traditional academic programmes for which degree transferability is often easier. With the exception of Italy and Portugal, this observation also holds true for countries for which data on student mobility are not available (Table C3.1).

In Australia, Austria, the Czech Republic, the Slovak Republic and Sweden, the proportions of international students are roughly the same in tertiary-type A and advanced research programmes, an indication that these countries of destination are successful at attracting students from abroad from the start of their tertiary education and keeping or attracting them beyond their first degrees. In contrast, other countries display significantly higher incoming student mobility relative to total enrolments in advanced research programmes than in tertiary-type A programmes. This pattern is clear in Belgium, Canada, Finland, Hungary, Japan, New Zealand, Norway, Spain, Switzerland, the United Kingdom and the United States, and in the partner country Slovenia, as well as in France, Iceland, Italy, Korea, Poland and Turkey, countries for which data on student mobility are not available. It may reflect the attractiveness of advanced research programmes in these countries or a preference for recruitment of international students at higher levels of education to capitalise on their contribution to domestic research and development or in anticipation of their subsequent recruitment as highly qualified immigrants.

Profile of international student intake in different destinations

Asia leads among regions of origin

Asian students form the largest group of international students enrolled in countries reporting data to the OECD or the UNESCO Institute for Statistics: 45.3% of the total in all reporting destinations (42.8% of the total in OECD countries, and 58.3% of the total in partner countries).

Their predominance is greatest in Australia, Japan, Korea and New Zealand, where more than 73% of international or foreign students originate from Asia. In OECD countries, the Asian group is followed by Europeans (23.0\%), particularly EU citizens (15.7\%). Students from Africa account for 9.9% of all international students, while those from North America account for only 3.5\%. Finally, students from South America represent 5.0\% of the total. Altogether, 29.3\% of international students enrolled in the OECD area originate from another OECD country (Table C3.2).

Main countries of origin of international students

The predominance of students from Asia and Europe is also clear when looking at individual countries of origin. Students from France, Germany, Japan and Korea represent the largest groups of international students enrolled in OECD countries, at $2.2 \%, 2.8 \%, 2.4 \%$ and 4.1% of the total respectively, followed by students from Canada and the United States at 1.7% and 1.8%, respectively (Table C3.2).

Among international students originating from partner countries, students from China represent by far the largest group, with 15.4% of all international students enrolled in the OECD area (not including an additional 1.3% from Hong Kong, China) (Table C3.2). Their destination of choice is the United States, followed closely by Japan, with 20.7% and 19.1%, respectively, of all international Chinese students studying abroad. Students from China are followed by those from India (5.4\%), Morocco (1.6\%), and Malaysia (1.6\%) and the Russian Federation (1.2\%). A significant number of Asian students studying abroad also come from Indonesia, the Islamic Republic of Iran, Kazakhstan, Pakistan , Thailand, Uzbekistan and Vietnam (Table C3.3 and Table C3.7, available on line).

The proportion of international students by level and type of tertiary education highlights specialisations

In some countries a comparatively large proportion of international students are enrolled in tertiary-type B programmes. This is the case in Belgium (31.8\%), Japan (24.1\%), New Zealand (27.5\%) and the partner country Slovenia (21.9\%). In Korea, for which data on student mobility are not available, foreign enrolments in tertiary-type B programmes also constitute a large group of foreign students (24.9\%) (Table C3.4).

In other countries, a large proportion of their international students enrol in advanced research programmes. This is particularly true in Spain (36.0\%) and Switzerland (27.3\%). Such patterns suggest that these countries offer attractive advanced programmes to prospective international graduate students. This concentration can also be observed - to a more limited extent - in Canada (9.8\%), Finland (14.3\%), Japan (10.1\%), the United Kingdom (11.6\%) and the United States (15.7%). Among countries for which data on student mobility are not available, foreign enrolments in advanced research programmes constitute a large group of foreign students in France (10.1%). All of these countries are likely to benefit from the contribution of these highlevel international students to domestic research and development. In addition, this specialisation can also generate higher tuition revenue per international student in the countries charging full tuition costs to foreign students (Box C3.3).

The proportion of international students by field of education underlines magnet centres

As shown in Table C3.5, sciences attract about one in six international students in Germany (17.1%), New Zealand (17.4\%), Switzerland (16.6\%) and the United States (18.7\%), but fewer than one in fifty in Japan (1.3%). However, the picture changes slightly when agriculture, engineering, manufacturing and construction programmes are included among scientific disciplines. Finland receives 41.9% of its international students in these fields. The proportion of international students enrolled in agriculture, sciences or engineering is also high in Canada (29.0 \%), Germany (38.3%), Hungary (30.2\%), Sweden (39.6\%), Switzerland (34.2\%), the United Kingdom (29.8\%) and the United States (34.6\%). Similarly, among countries for which data on student mobility are not available, agriculture, sciences and engineering attract at least 27% of foreign students in France (27.0%), Portugal (27.2%) and the Slovak Republic (28.3%). In contrast, few foreign students are enrolled in agriculture, sciences and engineering in Poland (Chart C3.4).

Most countries that enrol large proportions of their international students in agriculture, sciences and engineering deliver programmes in English. In Germany, the large proportion of foreign students in scientific disciplines may also reflect its strong tradition in these fields.

Non-anglophone countries tend to enrol a higher proportion of their international students in the humanities and the arts, areas that are favoured by over 20% of the international students in Austria (23.6\%), Germany (22.0\%), Japan (24.5\%), Norway (20.1\%) and the partner country Slovenia (21.5%). Among countries for which data on student mobility are not available, this is also the case in France (20.7\%), Iceland (44.3\%) and Poland (20.0\%).

Social sciences, business and law programmes also attract international students in large numbers. In Australia, New Zealand and the partner country Estonia, these fields enrol around half of all international students (at 52.7, 49.0 and 53.4%, respectively). The proportion is also high in the Netherlands (45.3%) and the United Kingdom (40.8\%). Among countries for which data on student mobility are not available, France (40.6\%) and Portugal (46.6\%) have the largest proportion of their foreign students enrolled in social sciences, business and law.

The situation of health and welfare is fairly specific since it depends to a large extent on national policies relating to recognition of medical degrees. Health and welfare programmes attract large proportions of international students in EU countries, most notably in Belgium (43.5\%), the Czech Republic (23.5\%), Denmark (19.9\%), Hungary (30.0\%) and Spain (30.7\%). Among countries for which data on student mobility are not available, health and welfare programmes are also chosen by one-fifth to one-quarter of foreign students in Italy (21.6\%), Poland (26.0\%) and the Slovak Republic (30.5%). This pattern relates to the quotas imposed in many European countries which restrict access to educational programmes in the medical field. This increases the demand for training in other EU countries to bypass quotas and take advantage of EU countries' automatic recognition of medical degrees under the European Medical Directive.

Overall, the concentration of international students in various disciplines in countries of destination highlights magnet programmes that attract students from abroad in large numbers. This attraction results from many factors on both the supply and demand side.

Chart C3.4. Distribution of international students by field of education (2006)
Percentage of international tertiary students enrolled in different fields of education

1. Excludes tertiary-type B programmes.
2. Excludes advanced research programmes.
3. Year of reference 2005.
4. Distribution of foreign students by field of education. These data are not comparable with data on international students and are therefore presented separately.
Countries are ranked in descending order of the proportion of international students enrolled in sciences, agriculture, engineering, manufacturing and construction.
Source: OECD. Table C3.5. See Annex 3 for notes (www.oecd.org/edu/eag2008).

On the supply side, some destinations offer centres of excellence or traditional expertise able to attract students from other countries in large numbers (e.g. Finland and Germany in sciences and engineering). In the humanities and arts, some destinations also have a natural monopoly on some programmes. This is especially obvious for linguistic or cultural studies (e.g. Austria, Germany and Japan).

On the demand side, the characteristics of international students can help to explain their concentration in certain fields of education. For instance, students in scientific disciplines are
usually less likely to be fluent in many different languages, which may explain their stronger propensity to study in countries offering education programmes in English, and their lesser propensity to enrol in countries where these are less common (e.g. Japan). Similarly, the demand of many Asian students for business training may explain the strong concentration of international students in social sciences, business and law in neighbouring Australia and New Zealand and to a lesser extent in Japan. Finally, EU provisions for the recognition of medical degrees clearly drive the concentration of international students in health and welfare programmes in EU countries.

Destinations of citizens enrolled abroad

When studying in tertiary education outside of their country of citizenship, OECD students enrol predominantly in another country of the OECD area. On average, only 3.2% of foreign students from OECD countries are enrolled in a partner country. The proportion of foreign students from partner countries enrolled in another partner country is significantly higher, with more than 22% of foreign students from Chile, Estonia, Israel and the Russian Federation enrolled in another partner country. In contrast, students from the Czech Republic (0.9%), France (0.8%), Iceland (0.2%), Ireland (0.2%), Poland (0.8%), the Slovak Republic (0.2%) and most notably, Luxembourg (0.1%) display an extremely low propensity to study outside of the OECD area (Table C3.3).

Language considerations, geographic proximity and similarity of education systems are all important determinants of the choice of destination. Geographic considerations and differences in entry requirements are likely explanations of the concentration of students from Austria in Germany, from Belgium in France and the Netherlands, from France in Belgium, from Canada in the United States, from New Zealand in Australia, from China in Japan, etc. Language issues as well as academic traditions also shed light on the propensity for anglophone students to concentrate in other countries of the Commonwealth or in the United States, even those that are geographically distant. Migration networks also play a role, as illustrated by the concentration of students with Portuguese citizenship in France, students from Turkey in Germany or from Mexico in the United States.

Finally, international students' destinations also highlight the attractiveness of specific education systems, whether due to considerations of academic reputation or subsequent immigration opportunities. In this respect, it is noteworthy that students from China are mostly in Australia, Germany, Japan, New Zealand, the United Kingdom and the United States, most of which have schemes to facilitate the immigration of international students. Similarly, students from India favour Australia, the United Kingdom and the United States; these three destinations attract 81.5% of Indian citizens enrolled abroad (Table C3.3).

Definitions and methodologies

Data sources, definitions and reference period

Data on international and foreign students refer to the academic year 2005/06 and are based on the UOE data collection on education statistics administered by the OECD in 2007 (for details see Annex 3 at www.oecd.org/edu/eag2008). Additional data from the UNESCO Institute for Statistics are also included.

Students are classified as international students if they left their country of origin and moved to another country for the purpose of study. Depending on country-specific immigration legislation, mobility arrangements (e.g. free mobility of individuals within the EU and EEA areas) and data availability, international students may be defined as students who are not permanent or usual
residents of their country of study or alternatively as students who obtained their prior education in a different country (e.g. EU countries).

Permanent or usual residence in the reporting country is defined according to national legislation. In practice, this means holding a student visa or permit, or electing a foreign country of domicile in the year prior to entering the education system of the country reporting data. The country of prior education is defined as the country in which students obtained the qualification required to enrol in their current level of education, i.e. the country in which they obtained their upper secondary or post-secondary non-tertiary education for international students enrolled in tertiary-type A and tertiary-type B programmes and the country in which they obtained their tertiary-type A education for international students enrolled in advanced research programmes. Country-specific operational definitions of international students are indicated in the tables as well as in Annex 3 (www.oecd.org/edu/eag2008).

Students are classified as foreign students if they are not citizens of the country in which the data are collected. While pragmatic and operational, this classification is inappropriate for capturing student mobility because of differing national policies regarding the naturalisation of immigrants. For instance, while Australia and Switzerland report similar intakes of foreign students relative to their tertiary enrolments - 20.9 and 19.2%, respectively - these proportions reflect significant differences in the actual levels of student mobility - 17.8% of tertiary enrolments in Australia and 13.7% in Switzerland (Table C3.1). This is because Australia has a higher propensity to grant permanent residence to its immigrant populations than Switzerland. Therefore, interpretations of data based on the concept of foreign students in terms of student mobility and bilateral comparisons need to be made with caution.

Methodologies

Data on international and foreign students are obtained from enrolments in their countries of destination. The method of obtaining data on international and foreign students is therefore the same as that used for collecting data on total enrolments, i.e. records of regularly enrolled students in an educational programme. Domestic and international students are usually counted on a specific day or period of the year. This procedure makes it possible to measure the proportion of international enrolments in an education system, but the actual number of individuals involved may be much higher since many students study abroad for less than a full academic year, or participate in exchange programmes that do not require enrolment (e.g. inter-university exchange or advanced research short-term mobility). Moreover, the international student body comprises some distance-learning students who are not, strictly speaking, mobile students. This pattern of distance enrolments is fairly common in the tertiary institutions of Australia and the United Kingdom (OECD, 2004a).

Since data on international and foreign students are obtained from tertiary enrolments in their country of destination, the data relate to incoming students rather than to students going abroad. Countries of destination covered by this indicator include all of the OECD countries (with the exception of Mexico) and the partner countries Estonia, the Russian Federation and Slovenia, as well as partner countries reporting similar data to the UNESCO Institute for Statistics in order to derive global figures and to examine the destinations of students and trends in market shares.

Data on students enrolled abroad as well as trend analyses are not based on the numbers of international students but on the number of foreign citizens on whom data consistent across countries and over time are readily available. Yet the data do not include students enrolled in OECD and partner countries that did not report foreign students to the OECD or to the UNESCO Institute for Statistics. All statements on students enrolled abroad may therefore underestimate the real number of citizens studying abroad (Table C3.3), especially in cases where many citizens study in countries that do not report their foreign students to the OECD or UNESCO Institute for Statistics (e.g. China, India).

Table C3.1 displays international as well as foreign enrolments as a proportion of total enrolment at each level of tertiary education. Total enrolment, used as a denominator, comprises all persons studying in the country (including domestic and international students) but excludes students from that country who study abroad. The table also exhibits changes between 2000 and 2006 in foreign enrolments for all tertiary education.

Tables C3.2, C3.4 and C3.5 show the distribution of international students enrolled in an education system - or foreign students for countries that do not have information on student mobility - according to their country of origin in Table C3.2, according to their level and type of tertiary education in Table C3.4, and according to their field of education in Table C3.5.

Table C3.3 presents the distribution of citizens of a given country enrolled abroad according to their country of destination (or country of study). As mentioned above, the total number of students enrolled abroad, which is used as a denominator, covers only students enrolled in other countries reporting data to the OECD or the UNESCO Institute for Statistics. Therefore, the resulting proportions may be biased and overestimated for countries with large numbers of students studying in non-reporting countries.

Table C3.6 shows trends in the absolute numbers of foreign students reported by OECD countries and worldwide between 2000 and 2006, and the indexes of change between 2006 and the years from 2000 to 2005. The figures are based on the number of foreign students enrolled in countries reporting data to the OECD and to the UNESCO Institute for Statistics. Since data for partner countries that did not report to the OECD were not included in the past, the figures are not strictly comparable with those published in editions of Education at a Glance prior to 2006.

Table C3.7 (available on line) provides the matrix of foreign students' numbers by country of origin and country of destination.

Further references

The relative importance of international students in the education system affects tertiary entry and graduation rates and may artificially increase them in some fields or levels of education (see Indicators A2 and A3). It may also affect the mix recorded between public and private expenditure (see Indicator B3).

In countries in which differentiated tuition fees are applied to international students, student mobility may boost the financial resources of tertiary educational institutions and contribute to the financing of the education system. On the other hand, international students may represent a high financial burden for countries in which tertiary tuition fees are low or inexistent given the high level of unit costs in tertiary education (see Indicator B5).

International students enrolled in a country different from their own are only one aspect of the internationalisation of tertiary education. New forms of cross-border education have emerged in the last decade, including the mobility of educational programmes and institutions across borders. Yet, cross-border tertiary education has developed quite differently and in response to different rationales in different world regions. For a detailed analysis of these issues, as well as the trade and policy implications of the internationalisation of tertiary education see OECD (2004a).

The following additional material relevant to this indicator is available on line at:
StatLink जnilst http://dx.doi.org/10.1787/402158641726

- Table C3.7. Number offoreign students in tertiary education, by country of origin and destination (2006) and market shares in international education $(2000,2006)$

Table C3.1.
Student mobility and foreign students in tertiary education $(2000,2006)$
International mobile students enrolled as a percentage of all students (international plus domestic), foreign enrolments as a percentage of all students (foreign and national) and index of change in the number of foreign students

Reading the first column: 17.8% of all students in tertiary education in Australia are international students and 13.7% of all students in tertiary education in Switzerland are international students. According to country-specific immigration legislation and data availability constraints, student mobility is either defined on the basis of students' country of residence (i.e. Australia) or the country where students received their prior education (i.e. Switzerland). The data presented in this table on student mobility represent the best available proxy of student mobility for each country.

Reading the fifth column: 20.9% of all students in tertiary education in Australia are not Australian citizens, and 19.2% of all students in tertiary education in Switzerland are not Swiss citizens.

1. For the purpose of measuring student mobility, international students are defined on the basis of their country of residence.
2. Percentage in total tertiary underestimated because of the exclusion of certain programmes.
3. Year of reference 2005.
4. Excludes private institutions.
5. For the purpose of measuring student mobility, international students are defined on the basis of their country of prior education.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ㄹㅔㅔㄷㅐ http://dx.doi.org/10.1787/402158641726

Table C3.2
Distribution of international and foreign students in tertiary education, by country of origin (2006) Number of international and foreign students enrolled in tertiary education from a given country of origin as a percentage of all international or foreign students in the country of destination, based on head counts

The table shows for each country the proportion of international students in tertiary education who are residents of or had their prior education in a given country of origin. When data on student mobility are not available, the table shows the proportion of foreign students in tertiary education that have citizenship of a given country of origin.																			
Reading the third column: 1.4% of international tertiary students in Canada are German residents, 0.1% of international tertiary students in Canada are Greek residents, etc.																			
Reading the sixth column: 5.6% of international tertiary students in Ireland had their prior education in Germany, 0.5% of international tertiary students in Ireland had their prior education in Greece, etc.																			
Countries of origin		Countries of destination																	
		OECD countries																	
		International students														Foreign students			
			N	تِ							$\begin{aligned} & \tilde{\tilde{n}} \\ & \text { ñ } \end{aligned}$	$\begin{gathered} \text { E } \\ \text { 苟 } \\ \text { B } \end{gathered}$						号	
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
	Australia	a	n	0.6	2.2	0.2	0.4	0.0	7.5	n	n	1.1	0.2	0.5	0.5	0.1	n	0.4	0.1
	Austria	0.1	0.1	0.2	0.6	2.3	0.5	0.1	0.1	0.4	n	1.5	2.0	0.4	0.1	a	0.2	0.4	0.2
	Belgium	n	a	0.3	1.4	0.7	0.6	1.9	n	n	n	0.9	0.7	0.8	0.1	0.2	n	0.3	1.1
	Canada	2.0	0.2		0.9	0.3	3.3	0.1	1.2	0.5	n	1.3	0.9	1.4	5.0	0.1	0.2	0.8	0.5
	Czech Republic	0.1	0.1	0.1	0.2	1.0	0.3	0.1	0.1	29.0	n	0.8	0.4	0.3	0.2	1.3	a	0.7	0.3
	Denmark	0.1	n	0.2	,	0.3	0.2	0.1	0.1	n	n	0.7	0.2	0.5	0.2	0.2	n	0.5	0.1
	Finland	n	n	0.1	0.7	0.4	0.6	0.1	0.1	0.1	n	3.0	0.3	0.5	0.1	0.5	n	a	0.1
	France	0.4	36.9	8.3	4.4	2.9	6.3	0.5	0.9	0.4	0.3	6.0	14.8	3.8	1.2	1.1	0.1	1.8	
	Germany	0.9	0.8	1.4	8.3	a	5.6	15.4	3.2	1.0	0.3	9.2	21.6	4.0	1.6	25.9	1.0	3.6	2.7
	Greece	n	0.3	0.1	0.4	1.3	0.5	0.2	n	6.0	n	0.4	0.7	5.4	0.4	0.6	0.5	0.6	0.8
	Hungary	n	0.1	0.1	0.1	1.1	0.1	0.2	n	1.4	n	0.3	0.6	0.2	0.1	2.9	0.2	1.0	0.3
	Iceland	n	n	0.1	7.6	n	0.1	0.1	n	n	n	0.2	n	0.1	0.1	0.1	n	0.3	n
	Ireland	0.1	0.1	0.2	1.0	0.2	a	n	0.1	0.1	n	0.3	0.1	5.1	0.2	0.1	0.2	0.4	0.2
	Italy	0.1	0.3	0.4	1.3	1.8	1.8	0.3	0.1	0.1	0.4	1.9	6.1	1.7	0.6	15.7	0.1	1.5	1.8
	Japan	1.8	0.2	2.1	0.2	1.0	0.5	0.1	2.8	0.1	n	0.5	0.7	1.9	6.9	0.7	0.1	1.1	0.9
	Korea	2.4	0.1	0.4	0.1	1.8	0.1	0.1	0.1	0.2	n	0.3	0.3	1.2	10.5	0.8	0.1	0.4	1.0
	Luxembourg	n	4.4	n	0.6	1.1	0.1	n	n	n	n	n	1.0	0.3	n	1.1	n	0.1	0.7
	Mexico	0.2	0.1	1.7	0.5	0.6	0.1	0.1	0.2	0.1	0.7	0.5	0.5	0.5	2.5	0.1	n	0.5	0.6
	Netherlands	0.1	7.4	0.3	1.0	0.4	0.6	a	0.1	n	0.1	2.3	0.5	0.8	0.3	0.3	0.1	0.9	0.2
	New Zealand	1.1	n	0.1	0.6	0.1	0.1	n	a	n	n	0.1	0.1	0.2	0.2	n	n	0.1	n
	Norway	1.0	0.1	0.3	15.2	0.3	1.4	0.2	0.6	5.7	n	0.8	0.2	0.9	0.2	0.2	0.9	0.7	0.1
	Poland	0.1	0.3	0.3	1.3	6.4	1.4	0.7	n	1.2	0.1	1.8	1.4	1.3	0.5	3.4	1.1	1.7	1.4
	Portugal	n	0.2	0.1	0.2	0.3	0.1	0.1	n	n	0.6	0.6	0.4	0.9	0.1	0.2	0.7	0.3	1.0
	Slovak Republic	0.1	0.1	0.1	0.1	0.6	0.1	0.1	n	a	n	0.1	0.5	0.2	0.1	3.1	68.5	0.2	0.2
	Spain	0.1	0.1	0.3	2.7	2.1	3.0	0.4	n	0.2	a	4.2	1.5	1.9	0.6	1.0	0.1	1.4	1.5
	Sweden	0.5	0.1	0.4	6.7	0.3	0.6	0.1	0.5	0.6	n	a	0.6	1.0	0.6	0.5	0.3	6.3	0.2
	Switzerland	0.2	0.1	0.4	1.4	0.9	0.2	0.1	0.1	n	0.1	0.9	a	0.5	0.2	0.7	0.1	0.4	0.7
	Turkey	0.1	0.3	0.7	0.4	3.4	0.1	0.3	0.1	0.4	n	0.4	1.6	0.6	2.1	5.3	0.2	0.8	1.0
	United Kingdom	0.8	0.1	1.6	13.0	0.9	9.4	0.3	1.1	0.7	0.2	1.2	0.8	a	1.5	0.5	1.7	2.1	1.0
	United States	1.6	0.5	10.4	5.1	1.7	16.1	0.2	5.6	1.5	0.1	2.2	1.5	4.5	a	0.8	0.6	2.3	1.1
	Total from OECD countries	13.9	52.9	31.1	78.2	34.5	54.3	22.2	24.6	49.7	3.2	43.4	60.1	41.3	36.5	67.5	77.2	31.6	19.7
	Brazil	0.2	0.1	0.6	0.3	0.9	0.1	0.1	0.1	0.1	0.3	0.1	1.0	0.4	1.2	0.2	n	0.4	0.9
	Chile	0.1	,	0.2	0.1	0.3	n	n	0.1	0.1	0.2	0.1	0.3	0.1	0.3	n	n	0.2	0.2
	China	22.7	2.2	23.7	7.9	11.6	13.5	3.7	50.9	0.2	n	0.9	2.2	15.4	16.0	3.4	0.3	16.1	6.9
	Estonia	n	0.1	n	0.2	0.3	0.1	n	n	n	n	0.1	0.1	0.1	0.1	0.1	n	7.0	0.0
	India	12.1	0.5	3.7	1.3	1.7	3.5	0.1	4.8	0.4	n	0.2	0.9	5.8	13.5	0.3	0.4	1.9	0.3
	Israel	0.1	n	0.4	0.4	0.6	0.1	0.1	n	9.5	n	n	0.2	0.3	0.6	0.1	0.7	0.2	0.1
	Russian Federation	0.2	0.3	0.5	0.6	5.8	0.8	0.4	0.7	0.9	0.1	0.2	1.8	0.7	0.9	1.1	3.7	12.4	1.2
	Slovenia	n	0.2	,	,	0.1	0.1	n	n	0.1	n	0.2	0.1	0.1	n	1.4	0.1	0.1	n
	Main geographic regions																		
	Total from Africa	3.2	2.7	10.6	2.3	8.7	5.7	1.5	0.6	3.5	0.8	0.6	7.7	9.4	6.4	1.5	1.9	12.6	45.2
	Total from Asia	78.7	5.3	51.0	13.7	30.9	34.1	6.8	73.4	21.0	0.2	3.3	9.2	46.1	63.6	14.3	8.4	29.9	18.5
	Total from Europe	5.1	53.2	16.8	71.5	46.4	36.3	22.9	8.0	72.5	2.7	38.7	64.0	33.1	12.5	82.0	86.6	51.1	20.8
	of which, from EU19 countries	3.5	51.4	14.4	44.1	24.2	31.8	20.9	6.5	41.2	2.2	35.1	54.0	28.9	8.5	58.5	74.9	23.7	13.8
	Total from North America	3.6	0.7	11.0	6.0	2.0	19.4	0.3	6.8	2.0	0.1	3.5	2.4	5.9	5.1	1.0	0.8	3.2	1.6
	Total from Oceania	2.1	0.1	0.7	2.8	0.3	0.5	0.1	10.5	n	n	1.2	0.3	0.7	0.8	0.2	n	0.5	0.1
	Total from South America	1.1	0.9	7.3	1.9	3.8	0.7	1.0	0.7	1.0	3.2	1.0	5.4	2.6	11.5	1.1	0.8	2.3	4.4
	Not specified	6.2	37.1	2.5	1.9	7.8	3.3	67.4	n	n	93.0	51.6	10.9	2.3	n	0.1	1.5	0.4	9.3
	Total from all countries	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
1. International students are defined on the basis of their country of residence. 2. Excludes data for social advancement education. 3. Excludes tertiary-type B programmes. 4. Year of reference 2005. 5. Excludes private institutions. 6. International students are defined on the basis of their country of prior education. 7. Excludes advanced research programmes. 8. Foreign students are defined on the basis of their country of citizenship; these data are not comparable with data on international students and are therefore presented separately in the table. Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008). Please refer to the Reader's Guide for information concerning the symbols replacing missing data. StatLink ग्रोा																			

Table C3.2. (continued-1)
Distribution of international and foreign students in tertiary education, by country of origin (2006) Number of international and foreign students enrolled in tertiary education from a given country of origin as a percentage of all international or foreign students in the country of destination, based on head counts
The table shows for each country the proportion of international students in tertiary education who are residents of or had their prior education in a given
country of origin. When data on student mobility are not available, the table shows the proportion of foreign students in tertiary education that have citizenship
of a given country of origin.
Reading the third column: 1.4% of international tertiary students in Canada are German residents, 0.1% of international tertiary students in Canada are Greek
residents, etc.
Reading the sixth column: 5.6% of international tertiary students in Ireland had their prior education in Germany, 0.5% of international tertiary students in
Ireland had their prior education in Greece, etc.
Reading the 15th column: 25.9% of foreign tertiary students in Austria are German citizens, 0.6% of foreign tertiary students in Austria are Greek citizens, etc.

Countries of destination

Countries of origin	Countries of destination																
	OECD countries												Partner countries				
	Foreign students												International		Foreign		
	$\begin{aligned} & \infty \\ & \stackrel{U}{0} \\ & \text { ¢ } \\ & \hline \end{aligned}$			竕	$\begin{aligned} & \stackrel{\infty}{\text { Ñ }} \\ & \stackrel{\text { N}}{\sim} \end{aligned}$	$\begin{gathered} \infty \\ \\ \frac{1}{0} \\ \hline \end{gathered}$			$\begin{aligned} & \stackrel{\infty}{\square} \\ & \frac{\pi}{0} \\ & \hline \end{aligned}$		我			$\begin{aligned} & \text {. } \\ & \text { d } \\ & \text { d } \\ & \frac{0}{n} \end{aligned}$			
	(19)	(20)	(21)	(22)	(23)	(24)	(25)	(26)	(27)	(28)	(29)	(30)	(31)	(32)	(33)	(34)	(35)
* Australia	0.2	n	0.1	0.1	0.3	0.2	n	0.2	0.1	0.1	0.2	0.4	n	0.1	m	0.1	0.3
A Austria	n	0.4	2.4	0.4	n	n	0.2	0.3	0.3	0.1	0.1	0.4	0.1	1.3	m	0.1	0.3
Belgium	0.2	n	0.7	0.4	n	n	14.1	0.2	0.1	0.5	n	0.4	0.2	0.1	m	n	0.3
- Canada	0.2	0.8	2.7	0.3	0.2	0.7	0.1	0.6	2.3	0.6	0.1	1.7	0.2	0.1	m	0.1	1.5
Czech Republic	0.1	0.1	1.1	0.3	n	n	0.4	0.3	2.3	0.2	n	0.3	n	0.2	m	n	0.2
O Denmark	n	n	8.1	0.1	n	n	0.2	6.0	0.1	n	n	0.2	0.9	0.1	m	n	0.2
$\stackrel{1}{0}$ Finland	0.1	0.2	4.3	0.2	n	n	0.2	2.0	0.1	0.1	n	0.2	42.9	0.1	m	0.2	0.2
France	0.2	0.3	3.9	1.9	0.3	n	34.0	1.1	0.7	4.4	0.1	2.2	0.3	0.1	m	0.1	1.8
Germany	2.1	9.7	13.7	3.4	0.3	0.3	9.8	4.1	3.0	1.8	1.1	2.8	0.9	0.7	m	0.2	2.4
Greece	a	1.1	0.1	11.2	n	n	0.5	0.1	0.2	0.2	5.2	1.3	n	n	m	0.7	1.2
Hungary	0.1	a	0.3	0.5	0.1	n	0.2	0.2	0.6	0.1	n	0.3	0.3	1.2	m	n	0.2
Iceland	n	0.2	a	n	n	n	0.2	1.7	n	n	n	0.1	n	n	m	n	0.1
Ireland	n	0.3	0.3	0.1	n	n	0.4	0.2	0.1	0.1	n	0.8	n	n	m	n	0.7
Italy	0.4	0.2	3.4	a	0.1	n	4.2	0.5	0.4	1.4	0.1	1.2	0.5	8.4	m	0.1	1.0
Japan	0.1	0.1	1.5	0.7	a	5.4	n	0.4	0.2	n	n	2.4	0.3	n	m	0.2	2.0
Korea	n	0.1	0.1	0.7	17.2	,	n	0.2	0.4	n	0.1	4.1	0.1	0.1	m	0.3	3.4
Luxembourg	n	n	n	0.1	n	n	a	n	${ }_{0}$	0.3	n	0.3	n	0.1	m	n	0.2
Mexico	n	0.1	0.4	0.5	0.1	0.1	n	0.3	0.1	0.1	n	1.0	n	0.1	m	0.2	0.8
Netherlands	0.1	0.1	1.0	0.1	0.0	n	0.5	1.1	0.1	1.4	0.1	0.4	n	0.1	m	n	0.3
New Zealand	n	n	0.1	n	0.1	0.1	n	n	0.1	n	n	0.2	n	n	m	n	0.1
Norway	n	5.2	5.5	0.2	n	n	n	a	6.5	0.1	n	0.5	n	0.1	m	n	0.4
Poland	0.5	0.4	2.5	2.7	0.1	0.1	0.9	1.2	a	0.8	0.1	1.2	0.1	0.5	m	0.1	1.0
Portugal	n	0.1	0.3	0.2	n	n	15.9	0.3	0.3	a	n	0.4	n	0.1	m	n	0.3
Slovak Republic	0.1	16.0	0.8	0.4	n	n	0.4	0.3	1.4	0.1	n	0.9	n	0.4	m	n	0.8
Spain	0.1	0.2	5.2	1.0	0.1	n	1.1	0.8	0.3	4.0	n	0.9	0.5	n	m	0.1	0.8
Sweden	0.1	1.5	7.4	0.3	0.1	n	0.2	8.2	2.8	0.1	n	0.5	1.1	0.2	m	0.1	0.5
Switzerland	0.1	0.1	1.1	2.6	n	n	0.3	0.3	n	0.5	n	0.4	0.1	n	m	0.1	0.3
Turkey	0.7	0.3	0.1	0.6	0.1	0.2	0.3	0.3	0.4	0.1	${ }^{\text {a }}$	1.2	0.1	0.1	m	1.8	1.3
United Kingdom	0.5	0.4	3.2	0.6	0.3	0.1	0.4	2.4	0.4	0.5	0.6	0.9	0.2	n	m	0.1	0.8
United States	0.6	1.5	6.9	0.8	1.3	2.2	n	2.4	6.7	0.9	0.1	1.8	1.0	0.1	m	0.8	1.6
Total from OECD countries	6.5	39.5	77.3	30.3	20.8	9.7	84.2	36.0	30.0	18.5	8.0	29.3	49.9	14.0	m	5.6	25.4
Brazil	n	n	0.4	1.7	0.4	0.1	0.4	0.4	0.3	11.2	n	0.7	0.1	0.3	m	0.3	0.7
Chile	n	n	0.3	0.4	n	n	n	0.5	n	n	n	0.2	n	n	m	0.4	0.2
China	0.2	1.0	2.1	2.0	66.4	68.7	1.3	4.4	2.7	0.5	0.6	15.4	12.2	0.2	m	10.8	14.6
Estonia	0.1	0.1	0.8	0.1	n	n	n	0.5	0.1	n	n	0.1	a	0.2	1.0	0.3	0.1
India	n	0.3	0.1	0.8	0.3	1.2	0.1	1.0	1.5	0.1	n	5.4	1.1	0.8	m	1.9	4.8
Israel	0.4	5.3	0.1	2.2	n	n	n	0.1	0.3	n	0.1	0.4	n	n	m	0.8	0.4
Russian Federation	1.3	1.6	2.8	1.6	0.3	1.1	0.6	5.4	4.0	0.4	3.2	1.2	7.2	1.0	a	3.0	1.5
Slovenia	n	0.2	n	0.8	n	n	n	n	0.1	0.1	n	0.1	n	1.0	m	n	0.1
Main geographic regions																	
Total from Africa	4.3	1.8	1.4	9.4	0.7	0.8	7.1	9.7	4.1	63.1	1.8	9.9	0.4	n	m	17.8	11.2
Total from Asia	63.9	14.7	7.1	13.2	94.2	93.1	2.5	15.9	18.5	1.8	53.4	42.8	14.7	1.8	40.4	58.3	45.3
Total from Europe	30.4	80.8	78.9	66.9	2.2	2.2	89.2	45.5	67.3	18.6	29.7	23.0	83.5	97.0	23.2	15.9	21.8
of which, from EU19 countries	4.6	31.1	58.7	23.8	1.5	0.7	83.4	29.4	13.2	16.0	7.5	15.7	48.1	13.4	m	m	m
Total from North America	0.8	2.3	9.5	1.1	1.5	2.9	0.1	3.0	9.0	1.6	0.2	3.5	1.2	0.2	m	1.0	3.1
Total from Oceania	0.2	0.1	0.3	0.2	0.4	0.4	n	0.3	0.2	0.1	0.2	0.7	n	0.1	m	0.1	0.6
Total from South America	0.3	0.3	2.7	8.7	1.0	0.7	0.7	2.6	0.8	14.8	n	5.0	0.2	0.9	m	6.9	5.3
Not specified	n	n	0.1	0.6	n	n	0.4	23.2	0.1	n	14.6	15.1	n	n	36.3	n	12.6
Total from all countries	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

1. International students are defined on the basis of their country of residence.
2. Excludes data for social advancement education.
3. Excludes tertiary-type B programmes.
4. Year of reference 2005.
5. Excludes private institutions.
6. International students are defined on the basis of their country of prior education.
7. Excludes advanced research programmes.
8. Foreign students are defined on the basis of their country of citizenship; these data are not comparable with data on international students and are therefore presented separately in the table.
Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ज्ञातst http://dx.doi.org/10.1787/402158641726

Table C3．3．
Citizens studying abroad in tertiary education，by country of destination（2006）
Number of students enrolled in tertiary education in a given country of destination as a percentage of all students enrolled abroad，based on head counts
The table shows for each country the proportion of students studying abroad in tertiary education in a given country of destination．
Reading the second column：6．7\％of Czech citizens enrolled in tertiary education abroad study in Austria，13．0\％of German citizens enrolled in tertiary education abroad study in Austria，etc．
Reading the first row： 2.5% of Australian citizens enrolled in tertiary education abroad study in France， 3.3% of Australian citizens enrolled in tertiary education abroad study in Germany，etc．

Countries of destination

Countries of origin	Countries of destination																			
	OECD countries																			
			$\sum_{\substack{E \\ 0}}^{E_{0}}$			$\begin{aligned} & \text { प्ँ } \\ & \tilde{E} \\ & \tilde{0} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { 药 } \end{aligned}$			$\begin{aligned} & \underset{U}{0} \\ & \text { む } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { 芴 } \\ & \stackrel{E}{3} \end{aligned}$			$\frac{\lambda}{\leftrightarrows}$	$\frac{\tilde{N}}{\text { İ }}$	$\begin{aligned} & \text { 틀 } \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{0}{x} \\ & \stackrel{y}{x} \\ & \sum_{2} \end{aligned}$		$\begin{aligned} & \text { J } \\ & \text { N } \\ & \text { N } \\ & \text { N } \\ & \text { Z } \end{aligned}$
	（1）	（2）	（3）	（4）	（5）	（6）	（7）	（8）	（9）	（10）	（11）	（12）	（13）	（14）	（15）	（16）	（17）	（18）	（19）	（20）
Australia	a	0.5	0.2	6.4	n	0.4	0.3	2.5	3.3	0.3	0.1	n	0.5	0.5	3.3	0.5	n	m	0.6	27.7
Austria	1.3	a	0.3	1.5	0.3	0.3	0.3	3.4	51.3	0.1	0.4	0.1	0.5	1.7	0.4	n	n	m	1.6	0.3
B Belgium	0.7	0.6	a	3.7	0.1	0.2	0.2	23.6	8.5	0.3	0.1	n	0.7	1.8	0.5	0.1	1.4	m	18.9	n
Canada	8.7	0.1	0.3	a	0.1	0.3	0.2	3.0	1.4	0.1	0.3	n	1.0	0.3	0.7	0.4	n	m	0.3	1.0
O Czech Republic	1.5	6.7	0.8	1.7	a	0.6	0.8	9.2	30.5	0.1	0.2	0.1	0.5	2.2	0.5	0.1	0.1	m	1.5	0.3
－Denmark	2.0	1.1	0.8	3.2	n	a	0.7	3.9	9.3	0.1	n	0.9	0.4	0.8	0.3	0.1	n	m	2.1	0.8
Finland	0.8	1.9	0.5	1.5	0.1	1.9	a	3.0	9.3	0.1	0.3	0.3	0.8	0.9	0.5	n	n	m	1.7	0.3
France	1.1	0.7	26.9	12.0	n	0.3	0.2	a	9.6	0.1	0.1	n	1.2	1.4	0.6	n	0.6	m	1.1	0.5
Germany	2.0	13.0	0.7	2.0	0.3	1.4	0.4	8.4	a	0.4	1.8	0.1	0.9	2.1	0.5	0.1	0.1	m	15.2	1.5
Greece	0.1	0.6	1.2	0.4	0.3	0.1	0.1	5.0	15.4	a	0.4	n	0.2	13.5	0.1	n	n	m	1.1	n
Hungary	0.7	13.9	1.1	1.7	0.4	0.8	1.1	8.1	33.6	0.2	a	n	0.2	2.8	1.1	n	n	m	4.3	0.1
Iceland	0.8	0.6	0.4	1.2	0.1	44.5	0.8	1.3	3.0	0.2	0.9	a	0.2	0.5	0.4	n	0.1	m	2.3	0.3
Ireland	0.9	0.2	0.3	1.3	0.2	0.3	0.2	2.5	2.2	n	0.2	n	a	0.2	0.1	n	n	m	0.6	0.1
Italy	0.6	15.4	5.8	1.1	0.1	0.4	0.3	11.1	18.8	0.2	0.1	0.1	0.6	a	0.3	n	0.1	m	1.3	0.1
Japan	5.4	0.5	0.3	3.0	n	0.1	0.2	3.5	3.9	n	n	n	0.1	0.5	a	2.0	n	m	0.4	1.7
Korea	4.3	0.3	0.1	0.7	n	n	n	2.3	5.0	n	n	n	n	0.3	21.5	a	n	m	0.3	n
Luxembourg	0.2	5.8	21.8	0.4	n	n	0.1	22.4	31.2	n	n	n	0.2	0.5	n	n	a	m	0.6	n
Mexico	1.4	0.2	0.3	7.0	n	0.3	0.2	5.5	4.7	n	n	n	0.1	0.9	0.5	0.1	n	a	0.6	0.2
Netherlands	1.7	1.0	25.1	3.3	0.1	1.4	0.6	4.6	12.3	0.1	0.1	0.1	0.6	0.2	0.5	n	n	m	a	0.4
New Zealand	47.6	0.1	n	3.6	n	0.5	0.2	1.3	1.5	n	n	n	0.4	0.1	1.8	0.6	n	m	0.5	a
Norway	12.7	0.4	0.2	2.0	1.4	15.4	0.4	2.4	4.7	n	5.3	0.3	1.3	0.8	0.3	n	n	m	1.8	1.5
Poland	0.5	3.7	1.3	2.0	0.7	1.8	0.4	9.5	44.6	0.2	0.2	n	0.5	3.7	0.3	0.1	n	m	2.4	n
Portugal	0.3	0.4	6.5	2.0	1.1	0.3	0.2	18.7	11.6	n	0.1	n	0.1	0.7	0.3	n	1.3	m	2.1	0.1
Slovak Republic	0.5	5.3	0.3	0.5	63.8	0.1	0.1	1.8	7.4	n	10.1	n	0.1	0.8	0.1	n	n	m	0.5	n
Spain	0.4	1.5	4.0	1.0	0.1	0.6	0.5	13.6	19.9	n	0.1	0.1	1.4	1.9	0.3	n	n	m	3.0	0.1
Sweden	6.1	1.3	0.3	2.4	0.4	9.2	3.9	3.8	4.8	0.1	1.5	0.4	0.6	0.9	0.7	n	n	m	1.2	1.2
Switzerland	2.7	2.8	0.7	4.2	0.1	0.6	0.4	15.4	20.6	0.2	0.1	0.1	0.2	12.0	0.4	n	n	m	1.5	0.4
Turkey	0.4	3.6	0.6	1.3	0.1	0.4	0.1	4.2	44.3	0.2	0.1	n	n	0.5	0.3	0.1	n	m	1.2	n
United Kingdom	6.2	0.8	0.8	11.4	1.5	1.9	0.8	10.3	7.5	0.3	0.2	0.1	4.8	1.1	1.4	0.1	n	m	3.1	1.7
United States	5.9	0.7	0.4	19.2	0.3	0.7	0.4	5.6	6.6	0.2	0.4	0.1	4.2	0.8	3.5	1.0	n	m	1.0	4.2
Total from OECD countries	3.0	3.1	3.6	3.9	2.0	1.1	0.3	5.8	12.7	0.1	0.7	0.1	0.8	1.7	3.2	0.3	m	m	2.7	1.1
＊Brazil	2.0	0.3	0.7	3.5	n	0.4	0.2	9.9	9.2	n	n	n	0.1	4.0	2.2	0.1	n	m	0.5	0.2
Chile	1.7	0.2	1.2	3.6	0.1	0.4	0.2	7.9	8.2	n	n	n	n	2.8	0.4	0.1	n	m	0.4	0.7
China	9.3	0.3	0.3	6.8	n	0.5	0.3	3.8	6.1	n	n	n	0.4	0.2	19.1	3.4	n	m	0.8	4.2
Estonia	0.2	0.7	0.5	0.6	0.1	2.7	14.5	2.8	18.4	0.4	0.2	0.1	0.3	1.4	0.5	n	n	m	1.2	n
$\stackrel{\text { India }}{ }$	15.1	0.1	0.1	4.8	n	0.2	0.1	0.5	2.8	n	n	n	0.3	0.3	0.3	0.2	n	m	0.2	1.2
ニั Israel	1.6	0.3	0.3	7.0	1.1	0.4	0.1	2.1	9.2	0.5	5.4	n	n	7.5	0.3	n	n	m	1.5	n
Russian Federation	0.9	0.8	0.9	3.2	1.6	0.9	2.3	6.3	25.7	0.4	0.5	n	0.2	1.6	0.7	0.5	n	m	1.0	0.5
Slovenia	0.4	19.5	4.4	0.8	0.8	0.3	0.3	3.6	21.0	n	0.8	n	0.2	14.1	0.5	n	n	m	1.9	0.1

Note：The proportion of students abroad is based only on the total of students enrolled in countries reporting data to the OECD and UNESCO Institute for Statistics．
1．Data by country of origin relate to international students defined on the basis of their country of residence．
2．Excludes tertiary－type B programmes．
3．Excludes data for social advancement education．
4．Year of reference 2005.
5．Excludes private institutions．
6．Excludes advanced research programmes．
7．Data by country of origin relate to international students defined on the basis of their country of prior education．
8．Excludes part－time students．
Source：OECD．See Annex 3 for notes（www．oecd．org／edu／eag2008）．
Please refer to the Reader＇s Guide for information concerning the symbols replacing missing data．
StatLink ․ㅔㅇㅔN http：／／dx．doi．org／10．1787／402158641726

Table C3．3．（continued）
Citizens studying abroad in tertiary education，by country of destination（2006）
Number of students enrolled in tertiary education in a given country of destination as a percentage of all students enrolled abroad，based on head counts
The table shows for each country the proportion of students studying abroad in tertiary education in a given country of destination．
Reading the second column： 6.7% of Czech citizens enrolled in tertiary education abroad study in Austria， 13.0% of German citizens enrolled in tertiary education abroad study in Austria，etc．
Reading the first row： 2.5% of Australian citizens enrolled in tertiary education abroad study in France， 3.3% of Australian citizens enrolled in tertiary education abroad study in Germany，etc．

Countries of origin		Countries of destination																		
		OECD countries											Partner countries							 （39）
			$\begin{aligned} & \text { T } \\ & \text { 틍 } \end{aligned}$	W		$\begin{aligned} & \tilde{\pi} \\ & \tilde{n} \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { d } \\ & 0 \\ & 0 \end{aligned}$						N	$\underset{~ ت}{\underset{U}{\mathrm{Z}}}$	$\begin{aligned} & \text { 哥 } \\ & 0 \\ & \text { 曷 } \end{aligned}$	$\begin{aligned} & \overline{\widetilde{0}} \\ & \text { تِ } \end{aligned}$				
		（21）	（22）	（23）	（24）	（25）	（26）	（27）	（28）	（29）	（30）	（31）	（32）	（33）	（34）	（35）	（36）	（37）	（38）	
\％	Australia	0.3	0.1	0.2	n	0.4	3.2	0.7	0.3	16.0	28.9	97.6	m	m	n	m	m	n	2.4	100.0
E	Austria	0.3	0.3	0.2	0.1	1.2	3.9	7.7	0.2	11.0	7.0	95.8	m	m	n	m	m	0.1	4.2	100.0
${ }^{\text {b }}$	Belgium	0.3	0.1	0.7	n	3.2	2.1	2.9	n	21.5	6.8	98.6	m	m	n	m	m	n	1.4	100.0
8	Canada	0.2	0.6	0.2	n	0.2	1.0	0.6	n	10.6	67.0	98.4	m	m	n	m	m	n	1.6	100.0
U	Czech Republic	0.6	3.5	0.4	6.4	1.5	2.9	2.2	n	11.6	12.7	99.1	m	m	n	m	m	n	0.9	100.0
\bigcirc	Denmark	13.5	0.2	0.1	n	1.1	15.3	1.6	0.1	25.1	14.6	98.2	m	m	n	m	m	n	1.8	100.0
	Finland	2.9	0.1	0.1	n	1.1	38.9	1.2	0.1	17.9	6.3	92.4	m	m	4.0	m	m	n	7.6	100.0
	France	0.2	0.1	1.1	n	2.7	2.5	6.6	n	18.9	10.5	99.2	m	m	n	m	m	n	0.8	100.0
	Germany	0.7	0.4	0.4	n	2.1	3.9	11.1	0.3	17.0	11.7	98.5	m	m	n	m	m	n	1.5	100.0
	Greece	n	0.1	0.1	0.2	0.5	0.7	0.7	2.4	43.5	5.3	92.1	m	m	n	m	m	n	7.9	100.0
	Hungary	0.4	0.8	0.2	0.4	0.5	2.2	2.5	n	9.8	10.5	97.6	m	m	0.1	m	m	0.2	2.4	100.0
	Iceland	6.7	n	n	n	0.3	13.0	0.4	n	9.4	12.3	99.8	m	m	n	m	m	n	0.2	100.0
	Ireland	0.1	0.1	n	n	0.3	0.7	0.2	n	83.4	5.7	99.8	m	m	n	m	m	n	0.2	100.0
	Italy	0.2	0.1	0.6	n	6.7	1.8	11.3	n	13.6	8.3	98.8	m	m	n	m	m	0.2	1.2	100.0
	Japan	0.1	n	n	n	0.2	0.4	0.4	n	10.2	65.7	98.6	m	m	n	m	m	n	1.4	100.0
	Korea	n	n	n	n	0.4	0.1	0.2	n	3.9	58.9	98.4	m	m	n	m	m	n	1.6	100.0
	Luxembourg	n	n	0.6	n	0.1	0.1	3.8	n	11.3	0.7	99.9	m	m	n	m	m	n	0.1	100.0
	Mexico	0.2	n	0.1	n	12.1	0.8	0.5	n	6.5	53.9	96.2	m	m	n	m	m	n	3.8	100.0
	Netherlands	1.2	0.1	1.9	n	2.2	5.4	2.7	0.1	20.5	12.4	98.5	m	m	n	m	m	n	1.5	100.0
	New Zealand	0.2	0.2	n	n	0.1	1.1	0.5	n	13.4	22.9	96.9	m	m	n	m	m	n	3.1	100.0
	Norway	a	5.2	0.1	0.6	0.4	10.2	0.6	n	21.5	9.5	99.0	m	m	n	m	m	n	1.0	100.0
	Poland	0.5	a	0.4	0.1	1.6	2.6	1.5	n	12.0	8.7	99.2	m	m	n	m	m	n	0.8	100.0
	Portugal	0.3	0.3	a	n	17.0	1.4	6.3	n	20.8	6.3	98.4	m	m	n	m	m	n	1.6	100.0
	Slovak Republic	0.2	0.7	0.1	a	0.4	0.2	0.8	n	2.8	3.1	99.8	m	m	n	m	m	n	0.2	100.0
	Spain	0.4	0.1	2.5	n	a	4.3	5.9	n	23.2	13.3	98.4	m	m	n	m	m	n	1.6	100.0
	Sweden	8.1	2.2	0.1	0.1	1.3	a	1.8	n	22.9	22.9	98.2	m	m	0.1	m	m	n	1.8	100.0
	Switzerland	0.4	n	0.8	n	2.9	2.7	a	n	15.9	12.5	97.5	m	m	n	m	m	n	2.5	100.0
	Turkey	0.1	0.1	n	n	0.1	0.5	1.4	a	3.7	21.1	84.5	m	m	n	m	m	n	15.5	100.0
	United Kingdom	1.4	0.2	0.3	n	2.5	3.0	1.5	0.5	a	34.2	97.5	m	m	n	m	m	n	2.5	100.0
	United States	0.7	1.5	0.3	0.1	1.3	1.9	0.9	0.1	29.9	a	92.0	m	m	n	m	m	n	8.0	100.0
	Total from OECD countries	0.6	0.4	0.4	0.1	1.9	2.4	3.1	0.2	16.1	25.3	96.8	m	m	0.1	n	m	n	3.2	100.0
	Brazil	0.3	0.2	9.0	n	9.3	0.6	1.4	n	5.5	34.1	93.7	a	m	n	m	m	n	6.3	100.0
$\stackrel{y}{g}$	Chile	0.9	n	0.1	n	17.8	3.4	1.3	n	4.6	20.6	76.7	m	a	n	m	m	n	23.3	100.0
${ }^{3}$	China	0.1	n	n	n	0.1	0.3	0.2	n	11.2	20.7	88.4	m	m	n	m	m	n	11.6	100.0
\bigcirc	Estonia	1.8	0.3	n	n	1.9	5.9	0.6	n	8.3	7.7	71.4	m	m	a	m	18.7	n	28.6	100.0
E	India	0.1	0.1	n	n	n	0.5	0.2	n	13.0	53.5	93.7	m	m	n	m	m	n	6.3	100.0
む	Israel	0.1	0.2	n	1.1	0.8	0.3	0.5	0.2	6.6	25.0	72.2	m	m	n	a	m	n	27.8	100.0
	Russian Federation	1.6	0.9	0.1	n	1.1	1.5	1.3	1.2	4.4	10.1	70.6	m	m	2.3	m	a	n	29.4	100.0
	Slovenia	0.1	0.3	0.7	0.1	1.9	1.9	1.7	n	10.4	8.0	93.7	m	m	n	m	m	a	6.3	100.0

Note：The proportion of students abroad is based only on the total of students enrolled in countries reporting data to the OECD and UNESCO Institute for Statistics．
1．Data by country of origin relate to international students defined on the basis of their country of residence．
2．Excludes tertiary－type B programmes．
3．Excludes data for social advancement education．
4．Year of reference 2005.
5．Excludes private institutions．
6．Excludes advanced research programmes．
7．Data by country of origin relate to international students defined on the basis of their country of prior education．
8．Excludes part－time students．
Source：OECD．See Annex 3 for notes（www．oecd．org／edu／eag2008）．
Please refer to the Reader＇s Guide for information concerning the symbols replacing missing data．
StatLink 唡定四 http：／／dx．doi．org／10．1787／402158641726

Table C3.4.
Distribution of international and foreign students in tertiary education, by level and type of tertiary education (2006)

[^4]Table C3.5.
Distribution of international and foreign students in tertiary education, by field of education (2006)

Foreign students by field of education										
.4 France ${ }^{6}$	0.2	1.2	11.5	8.9	20.7	15.4	1.6	40.6	0.1	100
Iceland ${ }^{6}$	0.4	5.5	5.6	3.6	44.3	17.9	1.4	21.3	n	100
${ }_{8}^{8}$ Italy ${ }^{6}$	1.8	2.1	14.4	21.6	18.6	6.5	1.8	32.3	1.0	100
E0land ${ }^{6}$	0.7	5.4	4.3	26.0	20.0	5.3	3.6	34.8	n	100
Portugal ${ }^{6}$	1.2	4.9	18.6	7.7	8.5	7.4	5.0	46.6	n	100
Slovak Republic ${ }^{6}$	9.8	4.7	11.3	30.5	14.8	7.3	5.4	16.3	a	100
Turkey ${ }^{6}$	2.3	8.8	14.3	14.2	9.8	8.9	3.2	38.5	n	100

1. International students are defined on the basis of their country of residence.
2. Excludes tertiary-type B programmes.
3. Year of reference 2005.
4. International students are defined on the basis of their country of prior education.
5. Excludes advanced research programmes.
6. Foreign students are defined on the basis of their country of citizenship; these data are not comparable with data on international students and are therefore presented separately in the table and chart.
Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ज्ञाता St http://dx.doi.org/10.1787/402158641726

Table C3.6.
Trends in the number of foreign students enrolled outside their country of origin (2000 to 2006)
Number of foreign students enrolled in tertiary education outside their country of origin, head counts

| Number of foreign students | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2006 | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 0}$ |
| Foreign students
 enrolled worldwide | 2924679 | 2847536 | 2697759 | 2507931 | 2267627 | 1972111 | 1894792 |
| Foreign students
 enrolled in OECD
 countries | 2440657 | 2368931 | 2265135 | 2085263 | 1897866 | 1642676 | 1583744 |

Note: Figures are based on the number of foreign students enrolled in OECD and partner countries reporting data to the OECD and UNESCO Institute for Statistics, in order to provide a global picture of foreign students worldwide. The coverage of these reporting countries has evolved over time, therefore missing data have been imputed wherever necessary to ensure the comparability of time series over time. Given the inclusion of UNESCO data for partner countries and the imputation of missing data, the estimates of the number of foreign students may differ from those published in previous editions of Education at a Glance.
Source: OECD and UNESCO Institute for Statistics for most data on partner countries. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ज्ञाताstu http://dx.doi.org/10.1787/402158641726

HOW SUCCESSFUL ARE STUDENTS IN MOVING FROM EDUCATION TO WORK?

This indicator shows the number of years that young adults are expected to spend in education, employment and non-employment and examines their education and employment status by gender. During the past decade, individuals have spent more time in initial education, delaying their entry into the workforce. Part of this additional time is spent combining work and education, a practice that is widespread in some countries. Once students have completed their initial education, access to the labour market is often impeded by periods of unemployment or nonemployment, although males and females are affected differently. This indicator is based on the current situation of persons between the ages of 15 and 29 and gives a picture of major trends in the transition from school to work.

Key results

Chart C4.1. Change in the proportion of 15-to-19-year-olds in education and change in the proportion not in education and not employed among 15-to-19-year-olds between 1995 and 2005

This chart relates the increase in the proportion of 15 -to-19-year-olds in education to the decrease in the proportion of 15 -to-19-year-olds not in education and not employed.

Most OECD countries have expanded their education system to accommodate more of the younger cohorts. For 15-to-19-year-olds, recruitment to education has largely taken place among individuals outside the labour market (not in education or employment) and to a lesser extent among employed individuals. With few exceptions, policies to expand education systems have thus helped to lower unemployment and inactivity among young adults.

1. Data for Japan refer to 15-to-24-year-olds.

Source: OECD. Table C4.1b. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ज्ञाst http://dx.doi.org/10.1787/402165765880

Other highlights of this indicator

- On average across OECD countries, a young person aged 15 in 2006 can expect to continue in formal education for about 6.7 years. In 20 of the 29 OECD countries and 3 partner countries for which data are available, this period is from 5 to 7.5 years. However, it ranges from 3.1 years (Turkey) to a high of 8.7 years (Denmark and Iceland).
- In addition to the expected number of years spent in education, a young person aged 15 can expect to hold a job for 6.2 of the 15 subsequent years, to be unemployed for a total of 0.8 years and to be out of the labour market (not employed, not in education and not looking for a job) for 1.3 years on average across OECD countries.
- Among 15-to-19-year-olds, the proportion of individuals in school in OECD countries has increased by 5.1 percentage points, from 80.4 to 85.6%, between 2000 and 2006. Growth has been greatest in the Netherlands and the Slovak Republic with increases exceeding 11 and 23 percentage points, respectively.
- The 15 -to-19-year-old population that is not in education is generally associated with being unemployed or out of the labour force. Some countries are better able than others to provide employment for young adults with relatively low educational attainment. In Iceland, Japan and Norway, more than 70% of this age group not in education have employment.
- On average, completing upper secondary education reduces unemployment among 20 -to- 24 -year-olds by 7.4 percentage points and that of 25 -to- 29 -yearolds by 6.8 percentage points. The lack of an upper secondary qualification is clearly a serious impediment to finding employment, and a tertiary qualification further increases the likelihood of job seekers finding employment.

Policy context

All OECD countries are experiencing rapid social and economic changes that make the transition to working life more uncertain for younger individuals. In some OECD countries, education and work are largely consecutive, while in others they may be concurrent. The ways in which education and work are combined can significantly affect the transition process. Of particular interest is the extent to which working while studying (beyond students' usual summer jobs) may facilitate entry into the labour force.

The transition from education to work is a complex process that depends not only on the length and quality of the schooling received but also on a country's general labour market and economic conditions. High general unemployment rates make the transition substantially more difficult. Unemployment rates among those entering the labour market typically reflect this situation through rates that are above those of the more experienced workforce.

General labour market conditions also influence the schooling decisions of younger individuals: when labour markets are poor, younger individuals tend to remain longer in education; the opposite applies when they are good. It is logical that employment prospects should influence the length and timing of schooling, since high unemployment rates drive down the opportunity costs of education, such as foregone earnings, which tend to be the most prominent component of the cost of education in most countries.

Taken together, the interaction between the education system and the labour market makes it difficult to understand the school-to-work transition, but educational policies can make a substantial contribution towards facilitating it. Most countries have extended their educational systems not only by expanding tertiary education but also by increasing the proportion of young adults receiving an upper secondary education. These policies have aimed at forming a competitive labour force but also at bringing down unemployment rates and inactivity among the younger population.

Evidence and explanations

On average, a person aged 15 in 2006 can expect to continue in education for 6.7 years (Table C4.1a). Some will continue longer than others. In 20 of the 29 countries studied, including the partner country Israel, a 15 -year-old can expect to spend on average from five to seven and a half additional years in education. However, the gap between the two extremes is large: eight years or more in Denmark, Finland, Iceland and the Netherlands and the partner country Slovenia, but less than five years in Mexico and Turkey.

In addition to the average 6.7 years spent in education, a person aged 15 can expect to hold a job for 6.2 of the following 15 years, to be unemployed for a total of 0.8 years and to be out of the labour market for 1.3 years, neither in education nor seeking work (Table C4.2).

The average cumulative duration of unemployment varies significantly among countries, owing to differences in general unemployment rates as well as differences in the duration of education. The cumulative average duration of unemployment is six months or less in Australia, Denmark, Iceland, Ireland, Japan, Mexico, the Netherlands, New Zealand, Norway, Switzerland and the United States but around one and a half years in Poland and the Slovak Republic, a large improvement over recent years for these two countries, however.

Chart C4.2. Expected years in education and not in education for 15-to-29-year-olds (2006) Number of years, by work status

\square Not in education, not in the labour force
\square Not in education, unemployed
\square Not in education, employed
\square In education, employed (including work study programmes)
\square In education, not employed

1. Data refer to 15 -to-24-year-olds.
2. Year of reference 2004.
3. Year of reference 2005.

Countries are ranked in descending order of the expected years in education of the youth population.
Source: OECD. Table C4.1a. See Annex 3 for notes (www.oecd.org/edu/eag2008).

The average overall number of expected years in education is higher for females (6.9 years compared to 6.5 for males). In all countries except Austria, Germany, Japan, Mexico, the Netherlands, Switzerland and Turkey, females spend more years in education than males. In Turkey, female students can expect to spend nearly one year less in education than their male counterparts; in Finland, Ireland, Italy, Norway and the partner country Estonia, the opposite applies (Chart C4.3). However, up to age 29, males are likely to be employed much more than females, a difference of one and a half years in OECD countries. This reflects the fact that females are more likely to be outside both the education system and the labour market (not in education, not employed and not looking for a job).

Chart C4.3. Gender difference in expected years in education and not in education for 15-to-29-year-olds (2006)

1. Year of reference 2005.
2. Year of reference 2004.

Countries are ranked in descending order of the difference between females and males in expected years in education of the 15-to-29-year-olds.
Source: OECD. Table C4.1a. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ⿹ㅔㅔ댄 http://dx.doi.org/10.1787/402165765880

However, males and females differ very little in terms of the expected number of years in unemployment, even though expected periods of unemployment tend to be marginally longer for males (0.9 for males, 0.7 for females). While the situation is similar for both in many countries, females appear to be at a particular advantage in Canada, Germany, the Slovak Republic, Turkey and the United Kingdom. Periods of unemployment for females exceed those for males in Denmark, Greece, Portugal, Spain and the partner country Slovenia (Table C4.1a).

Whereas young males can expect to spend 1.6 years neither in education nor in employment between the ages of 15 and 29, the average figure for females is 2.7 years. In the Czech Republic, Hungary, Mexico, the Slovak Republic and Turkey, there is a much stronger tendency for young females to leave the labour market and to spend time out of the educational system and not working. In Austria, Belgium, Canada, Denmark, Finland, Japan, the Netherlands, Norway, Sweden and Switzerland, young males and young females do not differ by more than half a year in this measure.

Conversely, relative to males, females between the ages of 15 and 29 in all OECD countries can expect a shorter duration of employment after education; this is partly a consequence of the time spent in education, but is also attributable to other factors such as time spent in child-bearing and child-rearing (Table C4.1a).

Unemployment and inactivity among young non-students

Young adults represent the principal source of new skills. In most OECD countries, education policy seeks to encourage them to complete at least upper secondary education. Since many jobs in the current labour market require ever higher general skill levels, persons with low attainment are often penalised.

Both unemployment and non-employment (unemployment and not in the labour force) rise with the proportion of individuals not in education. The 15-to-19-year-old population that is not in education is generally associated with being unemployed or out of the labour force. Approximately half of those not in education are out of the labour force or unemployed (Chart C4.4).

Chart C4.4. Percentage of 15-to-19-year-olds not in education and unemployed
or not in the labour force

Note: Missing bars refer to cells below reliability thresholds.

1. Year of reference 2005.
2. Year of reference 2004.
3. Data refer to 15 -to- 24 -year-olds.

Countries are ranked in descending order of the percentage of 15-to-19-year-olds not in education.
Source: OECD. Table C4.2a. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ग्गills http://dx.doi.org/10.1787/402165765880

Some countries are better able than others to provide employment for young adults with relatively low educational attainment (indicated by the difference between the bars and the triangles). In Iceland, Japan and Norway, more than 70% of those not in education find employment. Low unemployment levels among the working age population in general (25-to-64-year-olds) typically contribute to a smoother transition from school to work for young adults with low levels of education.

The group of young adults not currently engaged in employment, education or training (NEET) has attracted considerable attention in some countries. This group is out of both the labour market and the education system and receives little or no support from the welfare system in most countries. The proportion of 15 -to-19-year-olds not in education and not in the labour force ranges from over 30% in Turkey to 1% in Poland. On average across OECD countries, 4.3% of this cohort are not in education and not in the labour force. Obviously, their lack of education contributes to the fact that they are inactive, as their skills are likely to be inadequate for finding a suitable job (Table C4.2a).

Differences in unemployment rates among young non-students by level of educational attainment are an indicator of the degree to which further education improves the economic opportunities of young adults. On average, completing upper secondary education reduces this unemployment ratio (unemployment among non-students as a percentage of the age cohort) among 20-to-24-year-olds by 7.4 percentage points and that of 25 -to- 29 -year-olds by 6.2 percentage points (Table C 4.3).

Chart C4.5. Share of 25-to-29-year-olds who are unemployed and not in education, by level of educational attainment (2006)

[^5]Since it has become the norm in most OECD countries to complete upper secondary education, those who do not complete this level of education are much more likely to have difficulty finding employment when they enter the labour market. Countries with unemployment levels of 15% or more, for 20-to-24-year-olds with less than upper secondary education attainment, include Belgium, the Czech Republic, France, Poland, the Slovak Republic and Sweden. At the end of the transition period, between the ages of 25 and 29 when most young adults have finished their studies, differences in access to employment are linked to the education level attained. The lack of an upper secondary qualification is clearly a serious handicap. Conversely, for most job seekers tertiary education offers a premium (Chart C4.5).

In 15 OECD countries and 3 partner countries, for upper secondary graduates aged 25 to 29 , the ratio of persons not in education and unemployed to the cohort population is at or above 5%. In a few OECD countries, even young adults who have completed tertiary education are subject to considerable unemployment risk when they enter the labour market. Unemployment rates for 25 -to-29-year-olds with tertiary education exceed 10% in Greece and Italy. In these two countries and in Denmark, New Zealand, Portugal and Spain, upper secondary and postsecondary non-tertiary unemployment rates are lower than tertiary unemployment rates.

Among 20-to-24-year-olds with tertiary attainment, the ratio of unemployed non-students to the cohort population is 10% or more - and in some cases significantly more - in Greece, Poland and Portugal (Table C4.3). Countries with high unemployment rates among young tertiary educated individuals are also those with high unemployment rates for tertiary educated individuals in the total population (25-to-64-year-olds). Unemployment rates among young adults largely mirrors those of the labour market in general (see Indicator A8).

Entry into the labour market after initial education

The transition from education to work occurs at different points in time in OECD countries, depending on a range of educational and labour market characteristics. As they grow older, young adults spend less time in education and more in the labour force. On average, 83% of 15-to-19-year-olds are in education, a proportion that drops to 39.7% for 20 -to-24-year-olds and to 13.8% for 25 -to-29-year-olds (Table C4.2a). Since 1995 the proportion of 15-to-19-year-olds in education has expanded rapidly in most OECD countries, with increases of 20\% or more in the Czech Republic, Iceland and the Slovak Republic. Young adults thus begin their transition to work later, and in some cases the transition is longer. This reflects not only the demand for education, but also the general state of the labour market, the length and orientation of educational programmes in relation to the labour market and the prevalence of part-time education (Table C4.4a).

Overall, older non-students are much more likely to be employed than non-students aged 15 to 19 , and a higher percentage of male than female non-students are employed. A significantly higher share of females than males are out of the labour force. This is particularly true of the 25-to-29-year-old age group and is likely to reflect, in part, time spent in child-bearing and childrearing (Tables C 4.2 b and C 4.2 c on line).

Employment-to-population ratios among young adults not in education provide information on the effectiveness of transition frameworks and thus help policy makers to evaluate transition policies. In 2006 in 9 out of 26 OECD countries (the Czech Republic, Finland, France, Germany,

Hungary, Luxembourg, the Netherlands, Poland, the Slovak Republic), and in the partner countries Estonia and Slovenia, 90% or more of 15 -to-19-year-olds were in education. This indicates that few leave school early. While the average of employment-to-population ratios for 20 -to- 24 -year-olds not in education exceeds 44.3%, the ratios in some OECD countries such as Hungary and Poland are considerably lower (Table C4.4a).

The recruiting ground for the expansion of education among 15-to-19-year-olds between 1995 and 2005 has generally been the ranks of the unemployed and those out of the labour force (Chart C4.1). A comparison of the expansion of education between 1995 and 2000 among 15-to-19-year-olds and changes in the proportion of those not in education and not employed among 20-to-24-year-olds from 2000 to 2005 suggests further that most countries have suffered little or no negative spillover effects to the labour market at the later stage (Table C4.4a). For 20 -to- 24 -year-olds and 25 -to- 29 -year-olds, the effect on employment has been greater than on non-employed across OECD countries.

Education systems have continued to expand since the start of the decade. Between 2000 and 2006 in OECD countries, the proportion of individuals in school has increased by more than 5 percentage points among 15 -to-19-year-olds. During the key transition period (i.e. ages 20 to 24) the proportion of individuals in education has increased by 6 percentage points. Important changes have occurred in several countries (Table C4.4a). The proportion of 20-to-24-year-olds in education has risen by more than 10 percentage points in the Czech Republic, Germany, Greece, Hungary, the Netherlands, Poland and the Slovak Republic; at the same time, the proportion of 20 -to-24-year-olds not employed has fallen in all of these countries. In OECD countries, the number of individuals in employment has decreased by 3.5 percentage points, largely because a large proportion of the students are those with better employment prospects.

In OECD countries, the proportion of 25-to-29-year-olds in education increased between 2000 and 2006 by 2.2 percentage points on average, reinforcing the earlier trend towards remaining longer in education. On average, however, only 15% of 25 -to- 29 -year-olds were in education in 2006, 69% were employed and an additional 17% were not in the labour market and not employed. The non-employed ratio has dropped marginally in OECD countries (from 19 to 16.9%) during the period. In Greece, Hungary and the Slovak Republic, non-employment decreased by around 5 percentage points.

The lengthening of education has contributed to lower non-employment rates in most OECD countries, and this is particularly clear among 15-to-19-year-olds). Even if the expansion of education among 20 -to- 24 -year-olds and 25 -to- 29 -year-olds has led, on average, to lower employment rates, the positive effects for individuals and society typically far exceed the lost productivity of the extra years of schooling. The returns to education are substantial in most OECD countries and earnings foregone during studies are outweighed by the benefits later in working life (see Indicator A10).

Definition and methodologies

The statistics presented here are calculated from labour force survey data on age-specific proportions of young people in each of the specified categories. These proportions are then totalled over the 15 -to-29-year-old age group to yield the expected number of years spent in various situations. For countries providing data only from age 16, it is assumed that all 15-year-
olds are in education and out of the labour force. This assumption tends to increase the average number of expected years in education compared to (OECD, 2004b).

Persons in education include part-time as well as full-time students, as the coverage should be as close as possible to that of formal education in administrative sources on enrolment. Therefore, non-formal education or educational activities of very short duration (for example, at the work place) are excluded.

Data for this indicator are collected as part of the annual OECD Labour Force Survey (for certain European countries the data come from the annual European Labour Force Survey, see Annex 3) and usually refer to the first quarter, or the average of the first three months of the calendar year, thereby excluding summer employment. The labour force status categories shown in this indicator are defined according to International Labour Organisation (ILO) guidelines, with one exception. For the purposes of this indicator, persons in work-study programmes (see below) have been classified separately as being in education and employed, without reference to their ILO labour force status during the survey reference week, since they may not necessarily be in the work component of their programmes during that week and may therefore not be employed then. The category other employed includes individuals employed according to the ILO definition, but excludes those attending work-study programmes who are already counted as employed. Finally, the category not in the labour force includes individuals who are not working and who are not unemployed, i.e. individuals who are not looking for a job.

Work-study programmes combine work and education as part of an integrated, formal education or training activity, such as the dual system in Germany; apprentissage or formation en alternance in France and Belgium; internship or co-operative education in Canada; and apprenticeship in Ireland. Vocational education and training take place both in school settings and working environments. Students or trainees can be paid or not, usually depending on the type of job and the course or training.

Participation rates in education and training are here estimated on the basis of self-reports collected during labour force surveys which often correspond imprecisely to enrolments obtained from administrative sources shown elsewhere in this publication, for several reasons. First, age may not be measured in the same way. For example, in administrative data, both enrolment and age are measured on 1 January in OECD countries in the northern hemisphere, whereas in some labour force surveys, both participation in education and age are measured in the reference week, which does not make a significant difference with the administrative measure. However, in other surveys, the age recorded is the age to be attained at the end of the calendar year, even if the survey is conducted early in the year; in this case, the rates of participation in education reflect a population that is one year younger than the specified age range. At ages when movements out of education may be significant, this affects the recorded rates of participation in education and training, which are overestimated. From 2003, the French data take into account the age measured in the reference week. Second, young people may be enrolled in several programmes and may sometimes be counted twice in administrative statistics but only once in a labour force survey. Moreover, not all enrolments may be captured in administrative statistics, particularly in profit-making institutions. Third, the programme classification used in self-reports in labour force surveys does not always correspond to the qualification standards used for administrative data collections.

The principle behind the estimation of expected years in education is that knowledge of the proportion of young adults in or out of education is used as a basis for assumptions about how long a typical individual will spend in different labour and educational situations.

The unemployment-to-population and the employment-to-population ratios are calculated by dividing the total number of individuals unemployed or employed by the number of individuals in that population.

With respect to Table C4.4b, there is a break in the time series for Finland. In 2004, military conscripts in Finland were not included in the data, but in previous years they were included in the category "Not in education, not employed".

Further references

Education at a Glance: OECD Indicators - 2004 Edition, OECD (2004b).
The following additional material relevant to this indicator is available on line at:
StatLink ज्ञाاsta http://dx.doi.org/10.1787/402165765880

- Percentage of the youth population in education and not in education (2006)

Table C4.2b. Young males
Table C4.2c. Young females

- Trends in the percentage of young population in education and not in education (1995-2006) Table C4.4b. Trends for young males
Table C4.4c. Trends for young females

Table C4.1a.
Expected years in education and not in education for 15-to-29-year-olds (2006) By gender and work status

		Expected years in education			Expected years not in education			
		荌		7 0 0 0 0 0 0		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \bar{J} \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Males Females $\mathrm{M}+\mathrm{F}$	$\begin{aligned} & 2.9 \\ & 2.9 \\ & 2.9 \end{aligned}$	$\begin{aligned} & 3.8 \\ & 3.8 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.7 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.1 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.7 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.3 \\ & 8.2 \end{aligned}$
庿 Austria	Males Females M + F	$\begin{aligned} & 3.9 \\ & 4.4 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.0 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.4 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.6 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 1.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 8.6 \\ & 8.6 \end{aligned}$
Belgium	Males Females $\mathrm{M}+\mathrm{F}$	$\begin{aligned} & 5.8 \\ & 6.2 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.7 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 6.0 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 0.9 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.4 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 8.3 \\ & 8.5 \end{aligned}$
Canada	Males Females M+F	$\begin{aligned} & 3.9 \\ & 3.7 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.2 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 6.3 \\ & 6.9 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.2 \\ & 6.6 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.4 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 8.1 \\ & 8.4 \end{aligned}$
Czech Republic	Males Females M+F	$\begin{aligned} & 4.7 \\ & 5.5 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 6.6 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 5.3 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 2.3 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 8.8 \\ & 8.4 \\ & 8.6 \end{aligned}$
Denmark	Males Females M +F	$\begin{aligned} & 3.6 \\ & 4.1 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.9 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 9.0 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 5.8 \\ & 4.9 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 6.0 \\ & 6.3 \end{aligned}$
Finland	Males Females M+F	$\begin{aligned} & 5.8 \\ & 6.1 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.7 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 8.8 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 4.5 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.5 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.2 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 6.2 \\ & 6.7 \end{aligned}$
France	Males Females M+F	$\begin{aligned} & 6.0 \\ & 6.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.9 \\ & 7.7 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 4.8 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.1 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.2 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.1 \\ & 7.3 \end{aligned}$
Germany	Males Females M+F	$\begin{aligned} & 5.1 \\ & 5.1 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.6 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 7.7 \\ & 7.8 \end{aligned}$	$\begin{aligned} & 5.3 \\ & 4.9 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 1.5 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.3 \\ & 7.2 \end{aligned}$
Greece	Males Females M+F	$\begin{aligned} & 5.8 \\ & 6.2 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.5 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 7.3 \\ & 5.1 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.6 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 1.8 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 8.9 \\ & 8.5 \\ & 8.7 \end{aligned}$
Hungary	Males Females M + F	$\begin{aligned} & 6.3 \\ & 6.6 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.8 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.3 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 4.5 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.5 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 7.7 \\ & 7.9 \end{aligned}$
Iceland	Males Females M+F	$\begin{aligned} & 4.5 \\ & 3.3 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 5.6 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 8.9 \\ & 8.7 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 5.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.7 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.1 \\ & 6.3 \end{aligned}$
Ireland	Males Females $\mathrm{M}+\mathrm{F}$	$\begin{aligned} & 4.0 \\ & 4.6 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 1.0 \\ & 0.9 \end{aligned}$	$\begin{aligned} & 4.8 \\ & 5.6 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.5 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.4 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 10.2 \\ 9.4 \\ 9.8 \end{array}$
Italy	Males Females M+F	$\begin{aligned} & 5.5 \\ & 6.3 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 5.9 \\ & 6.9 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 4.5 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 2.5 \\ & 1.9 \end{aligned}$	$\begin{aligned} & 9.1 \\ & 8.1 \\ & 8.6 \end{aligned}$
Japan ${ }^{1}$	Males Females $\mathrm{M}+\mathrm{F}$	$\begin{aligned} & 5.2 \\ & 4.6 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.4 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 3.6 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.7 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.6 \\ & 4.3 \end{aligned}$
Luxembourg	Males Females M+F	$\begin{aligned} & 6.9 \\ & 7.5 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.2 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 7.7 \\ & 7.4 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 5.7 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.9 \\ & 0.6 \end{aligned}$	$\begin{array}{r} 7.8 \\ 7.3 \\ 7.6 \end{array}$
Mexico ${ }^{2}$	Males Females M+F	$\begin{aligned} & 3.7 \\ & 3.9 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 0.9 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 8.6 \\ & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.3 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 5.4 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.2 \\ & 10.1 \end{aligned}$
Netherlands	Males Females M+F	$\begin{aligned} & 3.3 \\ & 3.4 \\ & 3.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.8 \\ & 4.5 \\ & 4.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.1 \\ & 7.9 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 5.9 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7.1 \\ & 7.0 \\ & \hline \end{aligned}$

1. Data refer to 15 -to-24-year-olds.
2. Year of reference 2004.
3. Year of reference 2005.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink जinाsta http://dx.doi.org/10.1787/402165765880

Table C4.1a. (continued)
Expected years in education and not in education for 15-to-29-year-olds (2006) By gender and work status

1. Data refer to 15 -to- 24 -year-olds.
2. Year of reference 2004.
3. Year of reference 2005.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ज्ञातst http://dx.doi.org/10.1787/402165765880

Table C4.1b
Trends in expected years in education and not in education for 15-to-29-year-olds (1998-2006) By gender

			1998		1999		2000		2001		2002		2003		2004		2005		2006	
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
$\begin{aligned} & \text { y } \\ & \ddot{y} \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Australia	Males	6.0	9.0	6.4	8.6	6.4	8.6	6.6	8.4	6.7	8.3	6.7	8.3	6.8	8.2	6.7	8.3	6.8	8.2
		Females	6.0	9.0	6.2	8.8	6.5	8.5	6.4	8.6	6.7	8.3	6.9	8.1	6.8	8.2	6.8	8.2	6.7	8.3
		M +F	6.0	9.0	6.3	8.7	6.4	8.6	6.5	8.5	6.7	8.3	6.8	8.2	6.8	8.2	6.8	8.2	6.8	8.2
	Austria ${ }^{1}$	Males	m	m	m	m	m	m	m	m	5.9	9.1	6.2	8.8	6.2	8.8	6.2	8.8	6.5	8.5
		Females	m	m	m	m	m	m	m	m	6.0	9.0	6.2	8.8	6.2	8.8	6.2	8.8	6.4	8.6
		M +F	m	m	m	m	m	m	m	m	5.9	9.1	6.2	8.8	6.2	8.8	6.2	8.8	6.4	8.6
	Belgium	Males	6.4	8.6	7.0	8.0	6.9	8.1	7.3	7.7	6.3	8.7	6.6	8.4	6.7	8.3	6.4	8.6	6.3	8.7
		Females	6.5	8.5	7.3	7.7	7.2	7.8	7.2	7.8	6.7	8.3	6.8	8.2	6.7	8.3	6.9	8.1	6.7	8.3
		M +F	6.5	8.5	7.1	7.9	7.0	8.0	7.2	7.8	6.5	8.5	6.7	8.3	6.7	8.3	6.7	8.3	6.5	8.5
	Canada	Males	6.3	8.7	6.2	8.8	6.1	8.9	6.2	8.8	6.1	8.9	6.1	8.9	6.1	8.9	6.3	8.7	6.3	8.7
		Females	6.6	8.4	6.6	8.4	6.6	8.4	6.8	8.2	6.8	8.2	6.8	8.2	6.8	8.2	6.9	8.1	6.9	8.1
		M +F	6.5	8.5	6.4	8.6	6.3	8.7	6.5	8.5	6.5	8.5	6.5	8.5	6.5	8.5	6.6	8.4	6.6	8.4
	Czech Republic	Males	4.7	10.3	4.6	10.4	4.7	10.3	5.0	10.0	5.1	9.9	5.3	9.7	5.6	9.4	5.8	9.2	6.2	8.8
		Females	4.8	10.2	4.7	10.3	4.8	10.2	5.1	9.9	5.2	9.8	5.4	9.6	5.7	9.3	6.1	8.9	6.6	8.4
		M +F	4.7	10.3	4.6	10.4	4.8	10.2	5.1	9.9	5.2	9.8	5.4	9.6	5.7	9.3	5.9	9.1	6.4	8.6
	Denmark	Males	8.6	6.4	8.1	6.9	8.3	6.7	8.1	6.9	8.4	6.6	7.4	7.6	8.1	6.9	8.0	7.0	8.4	6.6
		Females	8.8	6.2	8.8	6.2	9.0	6.0	8.4	6.6	8.8	6.2	8.3	6.7	8.6	6.4	8.7	6.3	9.0	6.0
		M +F	8.7	6.3	8.5	6.5	8.7	6.3	8.3	6.7	8.6	6.4	7.9	7.1	8.3	6.7	8.3	6.7	8.7	6.3
	Finland	Males	m	m	m	m	m	m	m	m	m	m	8.1	6.9	8.0	7.0	8.0	7.0	7.9	7.1
		Females	m	m	m	m	m	m	m	m	m	m	8.6	6.4	8.5	6.5	8.6	6.4	8.8	6.2
		M + F	m	m	m	m	m	m	m	m	m	m	8.3	6.7	8.3	6.7	8.3	6.7	8.3	6.7
	France ${ }^{2}$	Males	7.8	7.2	7.8	7.2	7.9	7.1	7.8	7.2	7.8	7.2	m	m	7.5	7.5	7.4	7.6	7.5	7.5
		Females	8.0	7.0	8.0	7.0	8.1	6.9	8.1	6.9	8.2	6.8	m	m	7.7	7.3	7.9	7.1	7.9	7.1
		M +F	7.9	7.1	7.9	7.1	8.0	7.0	8.0	7.0	8.0	7.0	m	m	7.6	7.4	7.7	7.3	7.7	7.3
	Germany	Males	m	m	6.8	8.2	6.8	8.2	6.9	8.1	7.3	7.7	7.6	7.4	8.0	7.0	7.9	7.1	8.0	7.0
		Females	m	m	6.7	8.3	6.7	8.3	6.9	8.1	7.2	7.8	7.6	7.4	7.7	7.3	7.7	7.3	7.7	7.3
		M +F	m	m	6.7	8.3	6.7	8.3	6.9	8.1	7.3	7.7	7.6	7.4	7.8	7.2	7.8	7.2	7.8	7.2
	Greece	Males	5.6	9.4	5.9	9.1	5.8	9.2	6.1	8.9	5.9	9.1	5.7	9.3	5.6	9.4	5.9	9.1	6.1	8.9
		Females	5.6	9.4	5.8	9.2	6.0	9.0	6.1	8.9	6.2	8.8	6.2	8.8	5.8	9.2	6.2	8.8	6.5	8.5
		M +F	5.6	9.4	5.8	9.2	5.9	9.1	6.1	8.9	6.0	9.0	6.0	9.0	5.7	9.3	6.0	9.0	6.3	8.7
	Hungary	Males	5.6	9.4	5.6	9.4	6.1	8.9	6.1	8.9	6.1	8.9	6.6	8.4	6.6	8.4	6.8	8.2	6.9	8.1
		Females	5.7	9.3	5.9	9.1	6.1	8.9	6.4	8.6	6.5	8.5	6.8	8.2	7.0	8.0	7.1	7.9	7.3	7.7
		M + F	5.7	9.3	5.7	9.3	6.1	8.9	6.2	8.8	6.3	8.7	6.7	8.3	6.8	8.2	6.9	8.1	7.1	7.9
	Iceland	Males	8.2	6.8	8.3	6.7	8.4	6.6	7.6	7.4	8.1	6.9	8.5	6.5	8.6	6.4	8.2	6.8	8.6	6.4
		Females	8.4	6.6	8.1	6.9	8.4	6.6	8.8	6.2	9.0	6.0	9.2	5.8	8.7	6.3	8.9	6.1	8.9	6.1
		M +F	8.3	6.7	8.2	6.8	8.4	6.6	8.2	6.8	8.5	6.5	8.8	6.2	8.7	6.3	8.6	6.4	8.7	6.3
	Ireland	Males	m	m	5.4	9.6	5.3	9.7	5.2	9.8	5.4	9.6	5.5	9.5	5.4	9.6	5.2	9.8	4.8	10.2
		Females	m	m	5.9	9.1	6.1	8.9	6.0	9.0	6.0	9.0	6.0	9.0	5.9	9.1	5.7	9.3	5.6	9.4
		M + F	m	m	5.7	9.3	5.7	9.3	5.6	9.4	5.7	9.3	5.7	9.3	5.7	9.3	5.4	9.6	5.2	9.8
	Italy	Males	5.7	9.3	5.8	9.2	5.7	9.3	5.8	9.2	5.9	9.1	6.7	8.3	5.8	9.2	5.8	9.2	5.9	9.1
		Females	6.2	8.8	6.2	8.8	6.2	8.8	6.3	8.7	6.5	8.5	7.3	7.7	6.6	8.4	6.6	8.4	6.9	8.1
		M +F	5.9	9.1	6.0	9.0	6.0	9.0	6.0	9.0	6.2	8.8	7.0	8.0	6.2	8.8	6.2	8.8	6.4	8.6
	Japan ${ }^{3}$	Males	9.4	5.6	9.3	5.7	9.7	5.3	9.9	5.1	9.0	6.0	9.0	6.0	9.2	5.8	9.3	5.7	9.0	6.0
		Females	8.6	6.4	8.7	6.3	8.9	6.1	8.9	6.1	8.6	6.4	8.5	6.5	8.5	6.5	8.6	6.4	8.1	6.9
		M +F	9.0	6.0	9.0	6.0	9.3	5.7	9.4	5.6	8.8	6.2	8.8	6.2	8.9	6.1	9.0	6.0	8.5	6.5
	Luxembourg	Males	6.5	8.5	7.0	8.0	6.9	8.1	7.2	7.8	7.3	7.7	7.0	8.0	6.9	8.1	7.2	7.8	7.2	7.8
		Females	6.2	8.8	6.2	8.8	6.7	8.3	6.8	8.2	7.2	7.8	6.8	8.2	7.1	7.9	7.3	7.7	7.7	7.3
		M +F	6.3	8.7	6.6	8.4	6.8	8.2	7.0	8.0	7.3	7.7	6.9	8.1	7.0	8.0	7.3	7.7	7.4	7.6
	Mexico	Males	3.9	11.1	4.1	10.9	4.0	11.0	4.2	10.8	4.5	10.5	4.5	10.5	4.5	10.5	m	m	5.0	10.0
		Females	3.5	11.5	3.8	11.2	3.6	11.4	3.9	11.1	4.1	10.9	4.1	10.9	4.2	10.8	m	m	4.8	10.2
		M +F	3.7	11.3	4.0	11.0	3.8	11.2	4.0	11.0	4.3	10.7	4.3	10.7	4.4	10.6	m	m	4.9	10.1
	Netherlands	Males	8.0	7.0	8.0	7.0	5.8	9.2	7.2	7.8	7.4	7.6	7.4	7.6	7.7	7.3	7.9	7.1	8.1	6.9
		Females	7.4	7.6	7.5	7.5	5.7	9.3	6.8	8.2	7.1	7.9	7.2	7.8	7.5	7.5	7.7	7.3	7.9	7.1
		M +F	7.7	7.3	7.8	7.2	5.7	9.3	7.0	8.0	7.2	7.8	7.3	7.7	7.6	7.4	7.8	7.2	8.0	7.0

[^6]2. Breaks in time series are due to a change in methodology: age is measured in the reference week from 2004, as is participation in education.
3. Data refer to 15 -to- 24 -year-olds.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2006).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ज्ञाist http://dx.doi.org/10.1787/402165765880

Table C4.1b. (continued)
Trends in expected years in education and not in education for 15-to-29-year-olds (1998-2006) By gender

			1998		1999		2000		2001		2002		2003		2004		2005		2006	
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)
00000000	New Zealand	Males Females $\mathrm{M}+\mathrm{F}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	m m m	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	6.1 6.1 6.1	8.9 8.9 8.9	$\begin{aligned} & 5.6 \\ & 5.8 \\ & 5.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 9.4 \\ 9.2 \\ 9.3 \end{array}$
	Norway	Males	6.5	8.5	6.6	8.4	6.7	8.3	6.2	8.8	6.2	8.8	6.5	8.5	6.7	8.3	6.8	8.2	6.3	8.7
		Females	7.4	7.6	7.5	7.5	7.8	7.2	7.2	7.8	7.3	7.7	7.4	7.6	7.6	7.4	7.8	7.2	7.3	7.7
		M +F	7.0	8.0	7.0	8.0	7.3	7.7	6.7	8.3	6.7	8.3	6.9	8.1	7.1	7.9	7.3	7.7	6.8	8.2
	Poland	Males	6.3	8.7	6.3	8.7	6.5	8.5	7.2	7.8	7.8	7.2	7.9	7.1	7.8	7.2	8.1	6.9	7.7	7.3
		Females	6.4	8.6	6.5	8.5	6.6	8.4	7.5	7.5	8.1	6.9	8.4	6.6	8.4	6.6	8.6	6.4	8.1	6.9
		M +F	6.4	8.6	6.4	8.6	6.6	8.4	7.4	7.6	7.9	7.1	8.1	6.9	8.1	6.9	8.4	6.6	7.9	7.1
	Portugal	Males	5.2	9.8	5.5	9.5	5.4	9.6	5.4	9.6	5.2	9.8	5.4	9.6	5.5	9.5	5.5	9.5	5.6	9.4
		Females	5.8	9.2	6.0	9.0	6.0	9.0	6.1	8.9	6.0	9.0	6.2	8.8	6.0	9.0	6.2	8.8	6.3	8.7
		M +F	5.5	9.5	5.7	9.3	5.7	9.3	5.7	9.3	5.6	9.4	5.8	9.2	5.7	9.3	5.8	9.2	5.9	9.1
	Slovak Republic	Males	4.5	10.5	4.5	10.5	4.4	10.6	4.3	10.7	5.0	10.0	5.1	9.9	5.7	9.3	6.0	9.0	6.0	9.0
		Females	4.8	10.2	4.6	10.4	4.4	10.6	4.5	10.5	5.4	9.6	5.7	9.3	6.0	9.0	6.3	8.7	6.5	8.5
		M +F	4.6	10.4	4.5	10.5	4.4	10.6	4.4	10.6	5.2	9.8	5.4	9.6	5.8	9.2	6.2	8.8	6.3	8.7
	Spain	Males	6.3	8.7	6.1	8.9	6.3	8.7	6.3	8.7	6.1	8.9	6.1	8.9	5.9	9.1	5.2	9.8	5.3	9.7
		Females	7.4	7.6	7.2	7.8	7.2	7.8	7.2	7.8	7.1	7.9	7.0	8.0	6.8	8.2	5.9	9.1	5.9	9.1
		M + F	6.8	8.2	6.7	8.3	6.7	8.3	6.8	8.2	6.6	8.4	6.5	8.5	6.3	8.7	5.6	9.4	5.6	9.4
	Sweden	Males	7.3	7.7	7.3	7.7	7.2	7.8	7.1	7.9	7.2	7.8	7.4	7.6	7.3	7.7	7.5	7.5	7.3	7.7
		Females	8.1	6.9	8.0	7.0	7.9	7.1	7.8	7.2	7.9	7.1	7.9	7.1	8.2	6.8	8.4	6.6	8.1	6.9
		M + F	7.7	7.3	7.7	7.3	7.5	7.5	7.4	7.6	7.5	7.5	7.6	7.4	7.7	7.3	7.9	7.1	7.7	7.3
	Switzerland	Males	6.7	8.3	6.8	8.2	7.2	7.8	7.3	7.7	6.9	8.1	6.7	8.3	6.9	8.1	6.9	8.1	6.8	8.2
		Females	5.8	9.2	6.1	8.9	6.3	8.7	6.6	8.4	6.5	8.5	6.2	8.8	6.6	8.4	6.6	8.4	6.6	8.4
		M + F	6.3	8.7	6.4	8.6	6.8	8.2	7.0	8.0	6.7	8.3	6.4	8.6	6.8	8.2	6.8	8.2	6.7	8.3
	Turkey	Males	3.6	11.4	3.8	11.2	3.2	11.8	3.3	11.7	3.4	11.6	3.9	11.1	3.4	11.6	3.5	11.5	m	m
		Females	2.3	12.7	2.5	12.5	2.3	12.7	2.3	12.7	2.4	12.6	2.6	12.4	2.5	12.5	2.6	12.4	m	m
		M + F	3.0	12.0	3.2	11.8	2.8	12.2	2.8	12.2	2.9	12.1	3.3	11.7	3.0	12.0	3.1	11.9	m	m
	United Kingdom	Males	m	m	m	m	5.9	9.1	5.8	9.2	5.4	9.6	6.1	8.9	6.0	9.0	6.1	8.9	6.0	9.0
		Females	m	m	m	m	6.2	8.8	6.2	8.8	6.5	8.5	6.3	8.7	6.1	8.9	6.3	8.7	6.2	8.8
		M +F	m	m	m	m	6.0	9.0	6.0	9.0	5.9	9.1	6.2	8.8	6.1	8.9	6.2	8.8	6.1	8.9
	United States	Males	6.4	8.6	6.5	8.5	6.4	8.6	6.5	8.5	6.6	8.4	m	m	6.5	8.5	6.5	8.5	6.4	8.6
		Females	6.6	8.4	6.4	8.6	6.6	8.4	6.7	8.3	6.9	8.1	m	m	7.0	8.0	7.0	8.0	6.9	8.1
		M +F	6.5	8.5	6.5	8.5	6.5	8.5	6.6	8.4	6.8	8.2	m	m	6.7	8.3	6.8	8.2	6.7	8.3
	OECD average	Males	6.2	8.8	6.3	8.7	6.2	8.8	6.3	8.7	6.3	8.7	6.4	8.6	6.5	8.5	6.6	8.4	6.6	8.4
		Females	6.3	8.7	6.4	8.6	6.4	8.6	6.5	8.5	6.6	8.4	6.7	8.3	6.8	8.2	6.9	8.1	7.0	8.0
		$\boldsymbol{M}+\boldsymbol{F}$	6.2	8.8	6.3	8.7	6.3	8.7	6.4	8.6	6.5	8.5	6.6	8.4	6.6	8.4	6.8	8.2	6.8	8.2
	EU19 average	Males	6.3	8.7	6.4	8.6	6.2	8.8	6.4	8.6	6.4	8.6	6.6	8.4	6.6	8.4	6.7	8.3	6.7	8.3
		Females	6.6	8.4	6.6	8.4	6.5	8.5	6.7	8.3	6.8	8.2	6.9	8.1	7.0	8.0	7.1	7.9	7.2	7.8
		$\boldsymbol{M}+\boldsymbol{F}$	6.4	8.6	6.5	8.5	6.4	8.6	6.5	8.5	6.6	8.4	6.7	8.3	6.8	8.2	6.9	8.1	6.9	8.1
范	Estonia	Males	m	m	m	m	m	m	m	m	m	m	6.9	8.1	7.5	7.5	8.1	6.9	7.2	7.8
		Females	m	m	m	m	m	m	m	m	m	m	8.6	6.4	8.4	6.6	8.1	6.9	8.1	6.9
		M +F	m	m	m	m	m	m	m	m	m	m	7.7	7.3	8.0	7.0	8.1	6.9	7.6	7.4
	Israel	Males	m	m	m	m	m	m	m	m	5.8	9.2	5.9	9.1	5.9	9.1	5.9	9.1	6.0	9.0
		Females	m	m	m	m	m	m	m	m	6.0	9.0	6.0	9.0	6.2	8.8	6.1	8.9	6.5	8.5
		M +F	m	m	m	m	m	m	m	m	5.9	9.1	6.0	9.0	6.0	9.0	6.0	9.0	6.2	8.8
	Slovenia	Males	m	m	m	m	m	m	m	m	m	m	8.1	6.9	8.2	6.8	8.0	7.0	8.1	6.9
		Females	m	m	m	m	m	m	m	m	m	m	9.1	5.9	9.4	5.6	8.7	6.3	8.6	6.4
		M +F	m	m	m	m	m	m	m	m	m	m	8.6	6.4	8.8	6.2	8.3	6.7	8.4	6.6

1. Breaks in time series are due to a change in survey methodology from 2003 to 2004.
2. Breaks in time series are due to a change in methodology: age is measured in the reference week from 2004, as is participation in education. 3. Data refer to 15 -to- 24 -year-olds.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2006).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink 侢ist http://dx.doi.org/10.1787/402165765880

Table C4.2a.
Percentage of the youth population in education and not in education (2006) By age group and work status

	$\begin{gathered} \text { Age } \\ \text { group } \end{gathered}$	In education					Not in education				
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & \text { D } \\ & \frac{0}{0} \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		7 0 0 0 0 0	
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
\% Australia	15-to-19	7.3	29.5	5.3	37.2	79.3	13.7	3.7	3.4	20.7	100
	20-to-24	6.2	21.0	1.2	10.6	39.0	49.5	4.2	7.2	61.0	100
Eٍ	25-to-29	1.3	10.9	0.5	3.8	16.6	67.7	3.7	12.0	83.4	100
- Austria	15-to-19	25.1	2.5	1.8	55.6	85.0	8.5	3.6	3.0	15.0	100
U	20-to-24	2.2	9.1	1.1	20.3	32.6	54.8	5.1	7.4	67.4	100
	25-to-29	c	7.6	0.7	5.3	13.7	71.0	5.3	10.0	86.3	100
Belgium	15-to-19	c	1.4	c	86.1	88.9	4.0	2.4	4.7	11.1	100
	20-to-24	c	3.0	1.1	31.1	35.6	47.6	9.9	7.0	64.4	100
	25-to-29	c	3.3	c	2.9	7.2	75.3	8.2	9.4	92.8	100
Canada	15-to-19	a	29.5	5.1	46.5	81.1	11.6	2.9	4.5	18.9	100
	20-to-24	a	19.3	1.5	17.7	38.4	48.6	5.9	7.1	61.6	100
	25-to-29	a	6.8	0.4	5.1	12.4	72.1	5.3	10.2	87.6	100
Czech Republic	15-to-19	21.2	0.4	c	69.4	91.0	4.5	3.1	1.4	9.0	100
	20-to-24	0.9	2.9	0.3	35.9	40.0	45.8	7.9	6.2	60.0	100
	25-to-29	c	3.0	0.1	4.5	7.7	71.0	5.0	16.3	92.3	100
Denmark	15-to-19	a	46.1	5.3	37.4	88.9	6.7	1.9	2.5	11.1	100
	20-to-24	a	33.3	2.5	19.5	55.3	38.8	2.4	3.4	44.7	100
	25-to-29	a	17.6	0.9	10.8	29.4	62.2	3.7	4.6	70.6	100
Finland	15-to-19	a	11.4	6.1	74.4	91.8	4.6	1.7	1.9	8.2	100
	20-to-24	a	20.6	4.4	26.8	51.7	35.0	6.9	6.4	48.3	100
	25-to-29	a	15.1	2.3	8.2	25.6	60.4	5.1	8.8	74.4	100
France	15-to-19	4.9	1.9	0.5	83.0	90.4	3.2	3.8	2.6	9.6	100
	20-to-24	5.0	6.8	1.4	33.7	47.0	36.5	11.0	5.5	53.0	100
	25-to-29	5.0	4.3	1.0	4.3	14.6	68.1	8.5	8.8	85.4	100
Germany	15-to-19	17.0	6.4	1.6	67.5	92.4	3.3	2.2	2.0	7.6	100
	20-to-24	13.5	9.0	0.7	22.3	45.5	37.8	9.9	6.8	54.5	100
	25-to-29		7.4		8.7	18.5	61.5	10.1	9.9	81.5	100
Greece	15-to-19	a	1.5	c	83.8	85.7	5.4	2.8	6.0	14.3	100
	20-to-24	a	3.6	1.6	40.5	45.7	36.9	10.7	6.8	54.3	100
	25-to-29	a	1.9	c	5.5	7.8	71.1	11.2	9.9	92.2	100
Hungary	15-to-19	a	0.4	c	90.9	91.3	2.7	1.8	4.2	8.7	100
	20-to-24	a	4.6	1.1	42.1	47.8	33.7	6.8	11.7	52.2	100
	25-to-29	a	7.6	0.6	5.3	13.5	62.2	6.4	17.8	86.5	100
Iceland	15-to-19	a	49.1	6.2	31.7	86.9	9.9	c	c	13.1	100
	20-to-24	a	31.3	c	20.9	53.6	41.9	c	c	46.4	100
	25-to-29	a	15.9	c	17.0	33.7	62.3	c	c	66.3	100
Ireland		a		c	71.0	81.7		2.6	2.4	18.3	100
	20-to-24	a	7.5	c	18.6	26.5	61.7	5.1	6.7	73.5	100
	25-to-29	a	1.5	c	3.9	5.6	81.1	4.0	9.3	94.4	100
Italy	15-to-19	c	1.6	0.7	79.4	81.6	6.6	3.5	8.3	18.4	100
	20-to-24	0.2	4.2	1.6	34.2	40.2	37.0	10.1	12.7	59.8	100
	25-to-29	c	3.9	1.1	10.2	15.2	60.7	8.3	15.8	84.8	100
Japan	15-to-24	a	7.2	0.1	49.3	56.7	34.2	3.9	5.2	43.3	100
Luxembourg	15-to-19	a	2.9	c	89.9	93.1	2.8	2.7	c	6.9	100
	20-to-24	,	2.2	c	47.9	50.3	39.4	5.9	4.4	49.7	100
	25-to-29	a	c	c	8.5	9.2	79.6	5.6	5.6	90.8	100
Mexico ${ }^{2}$	15-to-19	a	7.1	0.5	47.3	54.9	28.0	2.2	14.9	45.1	100
	20-to-24	a	4.7	0.4	15.2	20.3	52.3	3.2	24.2	79.7	100
	25-to-29	a	1.9	0.1	2.4	4.4	65.4	2.7	27.6	95.6	100
Netherlands	15-to-19	a	46.3	5.5	39.9	91.7	5.2	1.2	1.9	8.3	100
	20-to-24	a	33.7	1.8	14.8	50.3	42.4	2.1	5.2	49.7	100
	25-to-29	a	13.3	0.4	4.3	18.1	71.2	3.1	7.7	81.9	100

1. Students in work-study programmes are considered to be both in education and employed, irrespective of their labour market status according to the ILO definition.
2. Year of reference 2004.
3. Year of reference 2005.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).

Table C4.2a. (continued)
Percentage of the youth population in education and not in education (2006)
By age group and work status

1. Students in work-study programmes are considered to be both in education and employed, irrespective of their labour market status according to the ILO definition.
2. Year of reference 2004.
3. Year of reference 2005.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink ज्ञाता

Table C4.3.
Percentage of the cohort population not in education and unemployed (2006) By level of educational attainment, age group and gender

1.Differences between countries in these columns reflect in part the fact that the average age of graduation varies across countries. For instance, in some countries a smaller share of 15 -to-19-year-olds attain upper secondary education simply because graduation typically occurs at 19. This means that the denominator in the ratio for the reported columns will be smaller than those for which graduation occurs at an earlier age.
Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ज्ilाsम http://dx.doi.org/10.1787/402165765880

Table C4.3. (continued)
Percentage of the cohort population not in education and unemployed (2006) By level of educational attainment, age group and gender

1.Differences between countries in these columns reflect in part the fact that the average age of graduation varies across countries. For instance, in some countries a smaller share of 15 -to-19-year-olds attain upper secondary education simply because graduation typically occurs at 19. This means that the denominator in the ratio for the reported columns will be smaller than those for which graduation occurs at an earlier age. Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink 케엔 http://dx.doi.org/10.1787/402165765880

Table C4.4a.
Trends in the percentage of the youth population in education and not in education $(1995,1998-2006)$
By age group and work status

[^7]Table C4.4a. (continued-1)
Trends in the percentage of the youth population in education and not in education (1995, 1998-2006) By age group and work status

Note: Due to incomplete data, some averages have not been calculated.

1. Breaks in time series are due to a change in survey methodology from 2003 to 2004.
2. Breaks in time series are due to a change in methodology: age is measured in the reference week from 2003, as is participation in education. Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink 可il|stu http://dx.doi.org/10.1787/402165765880

Table C4.4a. (continued-2)
Trends in the percentage of the youth population in education and not in education (1995, 1998-2006)
By age group and work status

[^8]Table C4.4a. (continued-3)
Trends in the percentage of the youth population in education and not in education (1995, 1998-2006) By age group and work status

Note: Due to incomplete data, some averages have not been calculated.

1. Breaks in time series are due to a change in survey methodology from 2003 to 2004.
2. Breaks in time series are due to a change in methodology: age is measured in the reference week from 2003, as is participation in education. Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ज्ञाड्रD http://dx.doi.org/10.1787/402165765880

DO ADULTS PARTICIPATE INTRAINING AND EDUCATION AT WORK?

This indicator examines the participation of the adult population in non-formal jobrelated education and training in terms of the expected number of hours of such education and training. It focuses particularly on the time a hypothetical individual is expected to spend in such education and training over a typical working life (of 40 years) and the intensity of this education and training towards the end of the working life.

Key results

Chart C5.1. Number of hours in non-formal job-related education and training for 55-to-64-year-olds relative to 25-to-34-year-olds by level of educational attainment (2003)
This chart shows the intensity of training for the age group nearing retirement age (55 -to-64-year-olds) relative to the cohort that has just entered the labour market (25-34-year-olds).
\square Tertiary education (ISCED 5/6)
\square Upper secondary education (ISCED 3/4)
\square Below upper secondary education (ISCED $0 / 1 / 2$)
There are major differences among countries in the time older workers can expect to spend in non-formal job-related education and training. The relative intensity (number of hours) of nonformal job-related education and training typically increases with educational attainment (except in the United Kingdom, Italy and the Netherlands) but decreases with age. An older worker with tertiary education can expect to receive at least 70% of the education and training of a young worker in Denmark, Sweden and the United States, but the proportion falls below 20\% in France, Hungary and the Netherlands.

[^9]
Other highlights of this indicator

- Adults with higher levels of educational attainment are more likely to participate in non-formal job-related continuing education and training than adults with lower educational attainment.
- There are major differences among countries in the number of hours that individuals can expect to spend in non-formal job-related education and training over a typical working life. At the tertiary level, it ranges from less than 350 hours in Greece, Italy and the Netherlands to more than 1000 in Denmark, Finland, France and Switzerland.
- Males can expect to spend more hours in non-formal job-related education and training than females. Gender differences in participation rates are generally less pronounced. Females with tertiary educational attainment are more likely to participate in non-formal job-related education and training in 15 out 22 OECD countries.
- The number of hours of non-formal job-related education and training generally decreases with age and in most countries the drop is dramatic.There are, however, some indications that equitable training opportunities for older workers (55-to64 -year-olds) with tertiary education are associated with better employment rates for this age group.

Policy context

The ageing of the population and the demand for skills associated with new technologies, globalisation and organisational change are among the main reasons why lifelong learning occupies a prominent place on today's policy agenda. Many observers also hold that changes in workplace organisation are leading to shifts in the demand for different types of skills and to greater emphasis on continuing education and training.

For the growing number of workers nearing retirement age, it is important to continue to invest in updating their knowledge and skills. Increasing life expectancy means that there is mounting pressure to continue to work beyond the current retirement age, yet in most countries employment rates drop long before the stipulated retirement age, in part, because older workers' knowledge and skills are in less demand.

Education and training among 55-to-64-year-olds constitute an important indicator of skill acquisition and potential employability up to retirement age and beyond. The complex relation between education and training, employment rates, and national retirement and pension systems makes it difficult to disentangle statistically the effect of investing in education and training for older age cohorts. Even so, as the acquisition of new skills become more critical for all workers, it is likely that, with age, this will become not less but more important for employment.

Evidence and explanations

Variation in participation rates

There is substantial cross-country variation in participation in non-formal job-related continuing education and training. Four OECD countries - Denmark, Finland, Sweden and the United States - take the lead, with more than 35% of 25 -to- 64 -year-olds having participated in some type of non-formal job-related continuing education and training over the previous 12 months. The participation rate is less than 10% in Greece, Hungary, Italy, the Netherlands, Poland, Portugal and Spain. Between these two extremes, participation in education and training varies greatly; it is about 11% in the Czech Republic and Ireland but over twice that in Canada and the United Kingdom (Table C5.1a).

Training leads to further training

Adult education and training increase with the level of initial education (Table C5.1a). In all countries, it is striking that participation rates vary significantly depending on prior levels of educational attainment. For the OECD countries surveyed, participation in adult non-formal job-related education and training is 14 percentage points higher on average among individuals with tertiary education than among those with only an upper secondary or post-secondary nontertiary education. Similarly, participation is 10 percentage points higher for those with an upper secondary and post-secondary non-tertiary education than for those with below upper secondary level of education. Better understanding of the underlying causes of these differentials could help to promote lifelong learning among the less qualified.

Gender difference in training

Employed males can expect to spend more hours in non-formal job-related education and training than employed females in all OECD countries except in France, Finland, Hungary,
the Netherlands, and Portugal (Table C5.1a). Switzerland has by far the largest gender difference, with employed males registering almost 360 more expected hours of non-formal job-related education and training than employed females. However, gender differences in participation rates are less pronounced (Chart C5.2). That gender differences in participation rates are less pronounced than for hours spent in education and training suggest that males typically have longer training episodes than females, perhaps due to differences in their occupations.

Chart C5.2. Gender difference in participation in non-formal job-related education
and training for 25-to- 64 -year-olds, by level of educational attainment (2003)

1. Year of reference 2002.

Countries are ranked in descending order of the difference between male and female with tertiary education.
Source: OECD. Table C5.1a. See Annex 3 for notes (www.oecd.org/edu/eag2008).

In 15 out of 22 countries, females with tertiary educational attainment can expect to participate more than their male counterparts in education and training, but the opposite is true among those with lower secondary education and upper secondary and post-secondary non-tertiary education. In Belgium, France, Luxembourg and Switzerland females are disadvantaged at all three levels of educational attainment, while in Finland females have an advantage at all three levels. On the other hand, differences in participation rates are relatively small and do not exceed 6 percentage points in any OECD country.

Box C5.1. Benefits of education and training for individuals

The major portion of all non-formal job-related education and training is sponsored by the employer, and employer-sponsored training is the single most important source of further education and training for the working age population. Much recent research suggests that employers finance training whether specific to the firm or general in nature and that individuals only contribute to the investment to a minor extent.

Although the employer pays the lion's share of the investment, empirical literature from various countries suggests that training generates significant wage returns for those who participate. A part of the return to education and training is typically captured by the employer financing the training, that is, the productivity effects from the investment are larger than what is normally detected in wage returns.
While employers benefit from investing in education and training, most studies also suggest that employer-financed training generates larger wage returns than self-financed training. There are also some indications that training initiated by firms and training more closely related to the job yield higher wage returns for the individual. It seems that individuals with poor employment prospects (older and less educated employees) have relatively modest wage returns to training but gain more stable employment prospects, with less risk of job loss and better prospects for re-employment when laid off.

Research also indicates that training for female workers is more rationed (females want more training than they receive) and that they finance their own training more than males. However, there is no clear evidence that females have lower returns to training than males.

For further information on the effects of job-related training, see OECD (2008d).

Expected hours of non-formal job-related education and training

Table C5.1a shows the expected number of hours of non-formal job-related education and training by level of educational attainment. In Switzerland, workers with tertiary education can expect to receive over 1300 hours of non-formal job-related education and training over a typical working life, the highest figure among all OECD countries (Table C5.1a). This implies that, over their working life, they can expect to spend the equivalent of over 84% of an average year of work in continuing education and training. Considering all levels of education together,
lifetime hours of non-formal job-related education and training as a percentage of an average year of work range from below 10% in the Czech Republic, Greece, Italy and Poland to 40% and above in Denmark, France, Sweden and Switzerland.

Chart C5.3 shows major differences among countries in the number of hours that workers with different levels of educational attainment can expect to spend in non-formal job-related education and training over a typical working life. At the tertiary level of attainment, it ranges from less than 350 hours in Greece, Italy and the Netherlands to more than 1000 in Denmark, Finland, France and Switzerland. In Denmark, France and Finland, workers whose educational attainment is below the upper secondary level can expect to spend considerably more hours in non-formal job-related continuing education and training than those with tertiary education in other countries.

Chart C5.3. Expected hours of non-formal job-related education and training, by level of educational attainment (2003)

Expected number of hours of non-formal job-related education and training for 25-to-64-year-olds

1. Year of reference 2002.

Countries are ranked in ascending order of expected hours of non-formal job-related training at the tertiary level of education. Source: OECD. Table C5.1a. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink (페인 http://dx.doi.org/10.1787/402178012235

Expected hours in non-formal job-related education and training by age

Participation in non-formal job-related education and training declines with age, although the extent of the decline varies across countries. As shown in Chart C5.1 there are substantial differences in how education and training efforts are distributed across age groups. Countries such as France and Belgium, with relatively large investments in education and training, orient most of their investments to those entering the labour market (initial job-related education and training) whereas Denmark, Finland, Sweden, and United States, also with large investments in education and training, spread them more evenly over the working life. Denmark, Sweden, and Switzerland are exceptional as regards the high number of expected hours of non-formal learning among tertiary educated in the oldest age group, with over 200 hours (Table C5.1b).

The decline in non-formal job-related education and training may occur because older adults place less value on investment in training and/or because employers propose training less frequently to older workers (possibly in light of the shorter time available for capturing returns to this investment). By presenting data on how hours in training are distributed across age cohorts, Table C5.1b sheds light on whether a country is putting the concept of lifelong learning into practice (it is important to look at both the absolute number of hours of training and their distribution). For a complete picture of lifelong learning, information on employment rates among older workers is also important.

Employment rates typically rise with educational attainment but for all levels of educational attainment employment rates generally drop before retirement age. At all levels of educational attainment, employment rates generally drop before retirement age and so do participation in non-formal job-related education and training. Chart C5.4 shows the relationship between the relative number of hours of non-formal job-related education and training for 55-to-64-year-olds to 25-to-34-year-olds with tertiary education and employment rates for the older age group with tertiary education. Employment rates among the oldest age cohort increases in countries where older workers are less disadvantaged in receiving education and training compared with the younger cohort. The pattern is similar with respect to the absolute number of hours of non-formal job-related education and training received by 55 -to-64-year-olds with tertiary education. Whether the link is due to interaction with retirement and pension schemes in different countries or whether education and training generate these employment effects is difficult to ascertain. However, the positive impact of adult education and training on employment has been documented in a number of studies, such as the OECD Employment Outlook (OECD 2004c).

Job-related education and training may also be effective in combating unemployment by helping workers to develop skills that make them more attractive to employers. In the face of changing technologies, work practices and markets, policy makers in many countries are promoting more general work-related training and informal learning. However, employed workers accumulate many more hours of non-formal job-related education and training than unemployed workers. In all countries, employed workers have significantly higher expected hours of job-related education and training than the unemployed (Table C5.1b). This is mainly because the time spent in unemployment is generally much shorter than the time spent in employment, but the incidence and intensity of education and training are typically lower among the unemployed as well.

Chart C5.4. Training efforts and employment rates for 55-to-64-year-olds with tertiary education
Number of hours of non-formal job-related education and training for 55-to-64-year-olds relative to 25-to-34-year-olds (2003) and employment rate for the 55-to-64-year-old population (2003)

Source: OECD. Table C5.1b. See Annex 3 for notes (www.oecd.org/edu/eag2008).
StatLink (nills http://dx.doi.org/10.1787/402178012235

Definition and methodologies

Data for non-European countries were calculated from country-specific household surveys (see Annex 3 at www.oecd.org/edu/eag2008). Data for countries in the European statistical system come from the European Labour Force Survey ad hoc module "Lifelong Learning 2003". The reference period of the LLL ad hoc module was the whole of 2003 in some countries, for some it was Q2 (April-June) and for others it was Spring (March-May). For most European countries, data on training hours in job-related activities are available for up to the three most recent non-formal learning activities. Data for Canada cover up to five job-related training activities per participant. Data for the United States cover up to four job-related training activities per participant.

The analysis in this indicator focuses on non-formal job-related continuing education and training. Non-formal education is defined as any organised and sustained educational activity that cannot be considered as formal education according to ISCED and does not lead to a qualification. Nonformal education may therefore take place both within and outside educational institutions and may cater to persons of any age. Depending on the country, it may cover educational programmes for adult literacy, basic education for out-of-school children, life skills, work skills and general culture. Non-formal education programmes do not follow the educational ladder. The term "jobrelated" refers to education and training activities intended mainly for work reasons as opposed to personal or social reasons. That is, the respondent takes part in the activity in order to obtain knowledge and/or learn new skills for a current or a future job, increase earnings, improve career opportunities and generally improve his or her opportunities for advancement and promotion.

The calculation of time spent in non-formal job-related learning activities by labour force status (Table C5.1b) is weighted by the time a hypothetical individual is expected to spend as "employed", "unemployed" and "inactive". For most countries the data refer to labour force status during a reference week, while the time spent in learning activities refers to all activities during a one-year reference period (prior to the interview), regardless of the labour force status when participating in the learning activity.

Further references

OECD (2004c), Employment Outlook 2004 - Improving skills for more and better jobs: Does training make a difference?, OECD, Paris.

OECD (2008d), "Job-related training and benefits for individuals: A review of evidence and explanations", OECD Education Working Paper Series, No. 19, OECD publishing, Paris.

Table C5.1a.
Participation rate and expected number of hours in non-formal job-related education and training, by level of educational attainment (2003)
Participation rate and expected number of hours in non-formal job-related education and training for a 40-year period
for 25-to-64-year-olds in the population, by gender and educational attainment

[^10]Table C5.1a. (continued)
Participation rate and expected number of hours in non-formal job-related education and training, by level of educational attainment (2003)
Participation rate and expected number of hours in non-formal job-related education and training for a 40-year period for 25-to-64-year-olds in the population, by gender and educational attainment

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's guide for information concerning the symbols replacing missing data.
StatLink ग्गिा stu http://dx.doi.org/10.1787/402178012235

Table C5.1b.
Expected number of hours in non-formal job-related education and training, by level of educational attainment (2003)
Expected number of hours in non-formal job-related education and training, by age group and labour force status

		Expected hours in non-formal job-related education and training between the ages of 25 and 64							
		Age group				Labour force status			
	Level of education	$\begin{gathered} \pm \\ \text { + } \\ \stackrel{\rightharpoonup}{N} \\ \text { N } \end{gathered}$	$\begin{gathered} \ddagger \\ 0 \\ \text { in } \end{gathered}$	$\begin{gathered} \text { I } \\ \text { e } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { dy } \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0 0 0	$\begin{aligned} & \stackrel{0}{U} \\ & \underset{\Xi}{E} \\ & \hline \end{aligned}$	\%
Austria	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 58 \\ 175 \\ 241 \end{array}$	$\begin{array}{r} 48 \\ 136 \\ 250 \end{array}$	$\begin{array}{r} 29 \\ 89 \\ 212 \end{array}$	$\begin{array}{r} 5 \\ 21 \\ 64 \end{array}$	$\begin{aligned} & 110 \\ & 368 \\ & 714 \end{aligned}$	$\begin{array}{r} \text { c } \\ 22 \\ \text { c } \end{array}$	c 29 c	$\begin{aligned} & 140 \\ & 420 \\ & 767 \end{aligned}$
号 Belgium	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 127 \\ & 151 \\ & 286 \end{aligned}$	$\begin{aligned} & 115 \\ & 171 \\ & 205 \end{aligned}$	$\begin{array}{r} 49 \\ 95 \\ 159 \end{array}$	$\begin{array}{r} 3 \\ 21 \\ 69 \end{array}$	$\begin{aligned} & 186 \\ & 340 \\ & 640 \end{aligned}$	$\begin{aligned} & 59 \\ & 57 \\ & 43 \end{aligned}$	$\begin{aligned} & 48 \\ & 41 \\ & 37 \end{aligned}$	$\begin{aligned} & 293 \\ & 437 \\ & 719 \end{aligned}$
Canada ${ }^{1}$	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	m m m	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \\ & \mathrm{~m} \end{aligned}$
Czech Republic	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 14 \\ 47 \\ 186 \end{array}$	$\begin{array}{r} 7 \\ 45 \\ 186 \end{array}$	$\begin{array}{r} 12 \\ 38 \\ 114 \end{array}$	$\begin{array}{r} 1 \\ 12 \\ 70 \end{array}$	$\begin{array}{r} 23 \\ 129 \\ 546 \end{array}$	$\begin{aligned} & \text { c } \\ & 9 \\ & \text { c } \end{aligned}$	c 4 c	$\begin{array}{r} 34 \\ 142 \\ 556 \end{array}$
Denmark	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 239 \\ & 205 \\ & 282 \end{aligned}$	$\begin{aligned} & 243 \\ & 284 \\ & 379 \end{aligned}$	$\begin{aligned} & 171 \\ & 199 \\ & 362 \end{aligned}$	$\begin{array}{r} 65 \\ 147 \\ 207 \end{array}$	$\begin{array}{r} 455 \\ 685 \\ 1011 \end{array}$	$\begin{array}{r} \text { c } \\ 86 \\ 116 \end{array}$	$\begin{array}{r} 184 \\ 65 \\ 103 \end{array}$	$\begin{array}{r} 719 \\ 836 \\ 1230 \end{array}$
Finland	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 194 \\ & 147 \\ & 247 \end{aligned}$	$\begin{aligned} & 149 \\ & 175 \\ & 309 \end{aligned}$	$\begin{aligned} & 118 \\ & 146 \\ & 277 \end{aligned}$	$\begin{array}{r} 36 \\ 62 \\ 170 \end{array}$	$\begin{aligned} & 273 \\ & 389 \\ & 889 \end{aligned}$	$\begin{array}{r} \text { c } \\ 102 \\ \text { c } \end{array}$	$\begin{array}{r} \text { c } \\ 39 \\ 51 \end{array}$	$\begin{array}{r} 497 \\ 530 \\ 1003 \end{array}$
France	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 245 \\ & 324 \\ & 488 \end{aligned}$	$\begin{aligned} & 118 \\ & 227 \\ & 291 \end{aligned}$	$\begin{array}{r} 75 \\ 123 \\ 206 \end{array}$	$\begin{aligned} & 12 \\ & 18 \\ & 76 \end{aligned}$	$\begin{aligned} & 247 \\ & 470 \\ & 809 \end{aligned}$	$\begin{aligned} & 107 \\ & 106 \\ & 105 \end{aligned}$	$\begin{array}{r} 96 \\ 116 \\ 146 \end{array}$	$\begin{array}{r} 450 \\ 692 \\ 1061 \end{array}$
Germany	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 54 \\ 162 \\ 243 \end{array}$	$\begin{array}{r} 39 \\ 120 \\ 187 \end{array}$	$\begin{array}{r} 32 \\ 87 \\ 153 \end{array}$	$\begin{array}{r} 5 \\ 22 \\ 66 \end{array}$	$\begin{array}{r} 46 \\ 230 \\ 522 \end{array}$	$\begin{array}{r} 59 \\ 109 \\ 86 \end{array}$	$\begin{aligned} & 24 \\ & 52 \\ & 42 \end{aligned}$	$\begin{aligned} & 130 \\ & 390 \\ & 650 \end{aligned}$
Greece	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 11 \\ & 48 \\ & 98 \end{aligned}$	$\begin{array}{r} \text { c } \\ 26 \\ 91 \end{array}$	$\begin{array}{r} \text { c } \\ 15 \\ 79 \end{array}$	$\begin{array}{r} \text { c } \\ \text { c } \\ 45 \end{array}$	$\begin{array}{r} 12 \\ 76 \\ 285 \end{array}$	$\begin{array}{r} \text { c } \\ 10 \\ 15 \end{array}$	c 8 c	$\begin{array}{r} 15 \\ 94 \\ 312 \end{array}$
Hungary	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 45 \\ 118 \\ 176 \end{array}$	$\begin{array}{r} 31 \\ 99 \\ 120 \end{array}$	$\begin{aligned} & 11 \\ & 42 \\ & 81 \end{aligned}$	$\begin{gathered} \text { c } \\ 11 \\ 25 \end{gathered}$	$\begin{array}{r} 56 \\ 170 \\ 337 \end{array}$	$\begin{array}{r} \mathrm{c} \\ 21 \\ \text { c } \end{array}$	$\begin{array}{r} \text { c } \\ 79 \\ 49 \end{array}$	$\begin{array}{r} 90 \\ 270 \\ 402 \end{array}$
Ireland	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 29 \\ 60 \\ 109 \end{array}$	$\begin{array}{r} 28 \\ 56 \\ 113 \end{array}$	$\begin{array}{r} 18 \\ 43 \\ 102 \end{array}$	$\begin{array}{r} 8 \\ 27 \\ 69 \end{array}$	$\begin{array}{r} 66 \\ 161 \\ 371 \end{array}$	$\begin{aligned} & \text { c } \\ & \text { c } \\ & \text { c } \end{aligned}$	c c c	$\begin{array}{r} 82 \\ 185 \\ 392 \end{array}$
Italy	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 10 \\ & 27 \\ & 90 \end{aligned}$	$\begin{array}{r} 9 \\ 34 \\ 72 \end{array}$	$\begin{array}{r} 5 \\ 32 \\ 65 \end{array}$	$\begin{array}{r} 1 \\ 17 \\ 28 \end{array}$	$\begin{array}{r} 25 \\ 102 \\ 222 \end{array}$	$\begin{array}{r} \mathrm{c} \\ 5 \\ 12 \end{array}$	$\begin{array}{r} \text { c } \\ 3 \\ 21 \end{array}$	$\begin{array}{r} 26 \\ 111 \\ 254 \end{array}$
Luxembourg	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 17 \\ 64 \\ 128 \end{array}$	$\begin{array}{r} 6 \\ 56 \\ 126 \end{array}$	$\begin{aligned} & 10 \\ & 57 \\ & 98 \end{aligned}$	$\begin{array}{r} \text { c } \\ 12 \\ 50 \end{array}$	$\begin{array}{r} 33 \\ 165 \\ 396 \\ \hline \end{array}$	c c	$\begin{aligned} & \mathrm{c} \\ & \mathrm{c} \\ & \mathrm{c} \end{aligned}$	$\begin{array}{r} 34 \\ 189 \\ 402 \end{array}$

1. Year of reference 2002.

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink ज्ञाता St http://dx.doi.org/10.1787/402178012235

Table C5.1b. (continued)
Expected number of hours in non-formal job-related education and training, by level of educational attainment (2003)
Expected number of hours in non-formal job-related education and training, by age group and labour force status

		Expected hours in non-formal job-related education and training between the ages of 25 and 64							
		Age group				Labour force status			
	Level of education	$\begin{aligned} & \text { + } \\ & 0 \\ & \stackrel{1}{N} \end{aligned}$	$\begin{aligned} & \ddagger \\ & 0 \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { In } \\ & 0 \\ & 0 \\ & 4 \end{aligned}$	$\begin{aligned} & \text { do } \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \hline y y \end{aligned}$	$\begin{aligned} & \text { D } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{0}{U} \\ & \underset{\Xi}{\Xi} \\ & \end{aligned}$	\%
Netherlands	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 92 \\ 131 \\ 130 \end{array}$	$\begin{array}{r} 73 \\ 87 \\ 103 \end{array}$	$\begin{aligned} & 41 \\ & 55 \\ & 67 \end{aligned}$	$\begin{aligned} & 11 \\ & 34 \\ & 22 \end{aligned}$	$\begin{aligned} & 134 \\ & 254 \\ & 294 \end{aligned}$	$\begin{array}{r} \text { c } \\ 17 \end{array}$	$\begin{aligned} & 78 \\ & 37 \end{aligned}$	$\begin{aligned} & 216 \\ & 308 \\ & 322 \end{aligned}$
Poland	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 6 \\ 32 \\ 145 \end{array}$	$\begin{array}{r} 6 \\ 32 \\ 169 \end{array}$	$\begin{array}{r} 3 \\ 20 \\ 132 \end{array}$	$\begin{array}{r} 1 \\ 6 \\ 68 \end{array}$	$\begin{array}{r} 12 \\ 78 \\ 497 \end{array}$	$\begin{array}{r} \text { c } \\ 10 \\ 10 \end{array}$	c	$\begin{array}{r} 16 \\ 90 \\ 513 \end{array}$
Portugal	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 88 \\ 261 \\ 336 \end{array}$	$\begin{array}{r} 92 \\ 145 \\ 226 \end{array}$	$\begin{array}{r} 41 \\ 79 \\ 169 \end{array}$	$\begin{array}{r} 10 \\ \text { с } \\ \text { с } \end{array}$	$\begin{aligned} & 149 \\ & 463 \\ & 764 \end{aligned}$		c	$\begin{aligned} & 232 \\ & 529 \\ & 835 \end{aligned}$
Slovak Republic	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 11 \\ 61 \\ 217 \end{array}$	$\begin{array}{r} 21 \\ 58 \\ 218 \end{array}$	$\begin{array}{r} 10 \\ 44 \\ 185 \end{array}$	$\begin{array}{r} 1 \\ 15 \\ 101 \end{array}$	$\begin{array}{r} 27 \\ 159 \\ 703 \end{array}$	$\begin{array}{r} \text { c } \\ 15 \end{array}$	c	$\begin{array}{r} 43 \\ 178 \\ 721 \end{array}$
Spain	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 48 \\ 86 \\ 180 \end{array}$	$\begin{array}{r} 29 \\ 83 \\ 151 \end{array}$	$\begin{array}{r} 19 \\ 73 \\ 129 \end{array}$	$\begin{array}{r} 6 \\ 18 \\ 43 \end{array}$	$\begin{array}{r} 73 \\ 188 \\ 409 \end{array}$	$\begin{aligned} & 22 \\ & 40 \\ & 62 \end{aligned}$	$\begin{array}{r} 7 \\ 33 \\ 32 \end{array}$	$\begin{aligned} & 102 \\ & 261 \\ & 503 \end{aligned}$
Sweden	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 106 \\ & 123 \\ & 183 \end{aligned}$	$\begin{array}{r} 73 \\ 164 \\ 249 \end{array}$	$\begin{aligned} & 107 \\ & 149 \\ & 244 \end{aligned}$	$\begin{array}{r} 64 \\ 125 \\ 241 \end{array}$	$\begin{aligned} & 325 \\ & 504 \\ & 889 \end{aligned}$	$\begin{aligned} & 46 \\ & 18 \end{aligned}$	$\begin{array}{r} \text { C } \\ 12 \\ 10 \end{array}$	$\begin{aligned} & 350 \\ & 562 \\ & 917 \end{aligned}$
Switzerland	Below upper secondary $(0 / 1 / 2)$ Upper secondary (3/4) Tertiary (5/6)	$\begin{aligned} & 108 \\ & 214 \\ & 407 \end{aligned}$	$\begin{array}{r} 62 \\ 175 \\ 352 \end{array}$	$\begin{array}{r} 25 \\ 164 \\ 317 \end{array}$	$\begin{array}{r} 17 \\ 68 \\ 225 \end{array}$	$\begin{array}{r} 126 \\ 552 \\ 1171 \end{array}$	$\begin{aligned} & 56 \\ & 35 \\ & 76 \end{aligned}$	$\begin{array}{r} \mathrm{c} \\ 34 \\ 54 \end{array}$	$\begin{array}{r} 212 \\ 621 \\ 1301 \end{array}$
United Kingdom	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} 30 \\ 101 \\ 161 \end{array}$	$\begin{array}{r} 35 \\ 93 \\ 140 \end{array}$	$\begin{array}{r} 27 \\ 67 \\ 117 \end{array}$	$\begin{aligned} & 12 \\ & 35 \\ & 62 \end{aligned}$	$\begin{array}{r} 56 \\ 254 \\ 442 \end{array}$	$\begin{array}{r} \text { c } \\ 16 \\ 10 \end{array}$	$\begin{array}{r} \text { C } \\ 27 \\ 27 \end{array}$	$\begin{aligned} & 103 \\ & 297 \\ & 480 \end{aligned}$
United States	Below upper secondary ($0 / 1 / 2$) Upper secondary (3/4) Tertiary (5/6)	$\begin{array}{r} \text { c } \\ 98 \\ 190 \end{array}$	$\begin{array}{r} \text { c } \\ 107 \\ 186 \end{array}$	$\begin{array}{r} \text { c } \\ 97 \\ 223 \end{array}$	$\begin{array}{r} \text { c } \\ 72 \\ 148 \end{array}$	$\begin{array}{r} \text { c } \\ 337 \\ 695 \end{array}$	$\begin{aligned} & \text { c } \\ & \text { c } \end{aligned}$	c c c	$\begin{array}{r} \text { c } \\ 374 \\ 746 \end{array}$

Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
StatLink 司ist http://dx.doi.org/10.1787/402178012235

Reader's Guide

Coverage of the statistics

Although a lack of data still limits the scope of the indicators in many countries, the coverage extends, in principle, to the entire national education system (within the national territory) regardless of the ownership or sponsorship of the institutions concerned and regardless of education delivery mechanisms. With one exception described below, all types of students and all age groups are meant to be included: children (including students with special needs), adults, nationals, foreigners, as well as students in open distance learning, in special education programmes or in educational programmes organised by ministries other than the Ministry of Education, provided the main aim of the programme is the educational development of the individual. However, vocational and technical training in the workplace, with the exception of combined school and work-based programmes that are explicitly deemed to be parts of the education system, is not included in the basic education expenditure and enrolment data.
Educational activities classified as "adult" or "non-regular" are covered, provided that the activities involve studies or have a subject matter content similar to "regular" education studies or that the underlying programmes lead to potential qualifications similar to corresponding regular educational programmes. Courses for adults that are primarily for general interest, personal enrichment, leisure or recreation are excluded.

Calculation of international means

For many indicators an OECD average is presented and for some an OECD total.
The OECD average is calculated as the unweighted mean of the data values of all OECD countries for which data are available or can be estimated. The OECD average therefore refers to an average of data values at the level of the national systems and can be used to answer the question of how an indicator value for a given country compares with the value for a typical or average country. It does not take into account the absolute size of the education system in each country.
The OECD total is calculated as a weighted mean of the data values of all OECD countries for which data are available or can be estimated. It reflects the value for a given indicator when the OECD area is considered as a whole. This approach is taken for the purpose of comparing, for example, expenditure charts for individual countries with those of the entire OECD area for which valid data are available, with this area considered as a single entity.
Note that both the OECD average and the OECD total can be significantly affected by missing data. Given the relatively small number of countries, no statistical methods are used to compensate for this. In cases where a category is not applicable (code "a") in a country or where the data value is negligible (code " n ") for the corresponding calculation, the value zero is imputed for the purpose of calculating OECD averages. In cases where both the numerator and the denominator of a ratio are not applicable (code "a") for a certain country, this country is not included in the OECD average.

For financial tables using 1995 and 2000 data, both the OECD average and OECD total are calculated for countries providing 1995, 2000 and 2005 data. This allows comparison of the OECD average and OECD total over time with no distortion due to the exclusion of certain countries in the different years.

For many indicators an EU19 average is also presented. It is calculated as the unweighted mean of the data values of the 19 OECD countries that are members of the European Union for which data are available or can be estimated. These 19 countries are Austria, Belgium, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Ireland, Luxembourg, the Netherlands, Poland, Portugal, the Slovak Republic, Spain, Sweden and the United Kingdom.

Classification of levels of education

The classification of the levels of education is based on the revised International Standard Classification of Education (ISCED-97). The biggest change between the revised ISCED and the former ISCED (ISCED-76) is the introduction of a multi-dimensional classification framework, allowing for the alignment of the educational content of programmes using multiple classification criteria. ISCED is an instrument for compiling statistics on education internationally and distinguishes among six levels of education. The glossary available at www.oecd.org/edu/eag2008 describes in detail the ISCED levels of education, and Annex 1 shows corresponding typical graduation ages of the main educational programmes by ISCED level.

Symbols for missing data

Six symbols are employed in the tables and charts to denote missing data:
a Data is not applicable because the category does not apply.
c There are too few observations to provide reliable estimates (i.e. there are fewer than 3% of students for this cell or too few schools for valid inferences). However, these statistics were included in the calculation of cross-country averages.
m Data is not available.
n Magnitude is either negligible or zero.
${ }_{w}$ Data has been withdrawn at the request of the country concerned.
x Data included in another category or column of the table (e.g. x (2) means that data are included in column 2 of the table).
\sim Average is not comparable with other levels of education

Further resources

The website www.oecd.org/edu/eag2008 provides a rich source of information on the methods employed for the calculation of the indicators, the interpretation of the indicators in the respective national contexts and the data sources involved. The website also provides access to the data underlying the indicators as well as to a comprehensive glossary for technical terms used in this publication.

Any post-production changes to this publication are listed at www.oecd.org/edu/eag2008.
The website www.pisa.oecd.org provides information on the OECD Programme for International Student Assessment (PISA), on which many of the indicators in this publication draw.

Education at a Glance uses the OECD's StatLinks service. Below each table and chart in Education at Glance 2008 is a url which leads to a corresponding Excel workbook containing the underlying data for the indicator. These urls are stable and will remain unchanged over time. In addition, readers of the Education at a Glance e-book will be able to click directly on these links and the workbook will open in a separate window.

Codes used for territorial entities

These codes are used in certain charts. Country or territorial entity names are used in the text. Note that in the text the Flemish Community of Belgium is referred to as "Belgium (Fl.)" and the French Community of Belgium as "Belgium (Fr.)".

AUS Australia	ITA Italy
AUT Austria	JPN Japan
BEL Belgium	KOR Korea
BFL Belgium (Flemish Community)	LUX Luxembourg
BFR Belgium (French Community)	MEX Mexico
BRA Brazil	NLD Netherlands
CAN Canada	NZL New Zealand
CHL Chile	NOR Norway
CZE Czech Republic	POL Poland
DNK Denmark	PRT Portugal
ENG England	RUS Russian Federation
EST Estonia	SCO Scotland
FIN Finland	SVK Slovak Republic
FRA France	SVN Slovenia
DEU Germany	ESP Spain
GRC Greece	CHE Switzerland
HUN Hungary	TUR Turkey
ISL Iceland	UKM United Kingdom
IRL Ireland	USA United States
ISR Israel	

Table of Contents

Indicator A4 How many students complete and drop out of tertiary education? 92
Table A4.1. Completion rates in tertiary education (2005) 98
Table A4.2. Completion rates in tertiary-type A education by mode of study (2005) 99
Indicator A5 What can 15-year-olds do in science? 100
Table A5.1. Mean score, variation and gender differences in student performance on the PISA science scale (2006) 114
Table A5.2. Percentage of students at each proficiency level on the PISA science scale (2006) 116
Table A5.3. Mean score, variation and gender differences in student performance on the PISA science competency scales (2006) 117
Indicator A6 What are the parents' perceptions related to school and science learning? 120
Table A6.1. Parents' reports of child's past science reading and student performance on the PISA science scale (2006) 128
Table A6.2a. Parents' view of the standards of achievement of their child's school and socio-economic background (PISA 2006) 129
Table A6.2b. Parents' view of the disciplinary atmosphere in their child's school and socio-economic background (PISA 2006) 130
Table A6.2c. Parents' view of the good job in educating students done by their child's school and socio-economic background (PISA 2006)...... 131
Table A6.3a. Parents' perceptions of competence and dedication of their child's teachers (PISA 2006) 132
Table A6.3b. Parents' perceptions of the content taught and the instructional methods used in their child's school (PISA 2006) 133
Table A6.3c. Parents' perceptions of the school's monitoring of their child's progress (PISA 2006) 134
Table A6.3d. Parents' perceptions of the regularity and usefulness of the information provided by the school on their child's progress (PISA 2006) 135
Indicator A7 Does their parents' socio-economic status affect students' participation in higher education? 136
Indicator A8 How does participation in education affect participation in the labour market? 142
Table A8.1a. Employment rates and educational attainment, by gender (2006) 151
Table A8.2a. Unemployment rates and educational attainment, by gender (2006)... 153
Table A8.3a. Trends in employment rates, by educational attainment (1997-2006) 155
Table A8.4. Trends in employment rates among 55-to-64-year-olds, by educational attainment (1997-2006) 157
Table A8.5a. Trends in unemployment rates by educational attainment (1997-2006) 159
Indicator A9 What are the economic benefits of education? 162
Table A9.1a. Relative earnings of the population with income from employment (2006 or latest available year) 173Table A9.1b. Differences in earnings between females and males(2006 or latest available year)175

Table A9.2a.	Trends in relative earnings: adult population (1997-2006)................. 176
Table A9.3.	Trends in differences in earnings between females and males (1997-2006) \qquad
Table A9.4a.	Distribution of the 25 -to-64-year-old population by level of earnings and educational attainment (2006 or latest available year) \qquad
Indicator A10	What are the incentives to invest in education? 182
Table A10.1.	Private internal rates of return (IRR) for an individual obtaining upper secondary or post-secondary non-tertiary education, ISCED 3/4 (2004). \qquad 196
Table A10.2.	Private internal rates of return (IRR) for an individual obtaining tertiary education, ISCED 5/6 (2004) \qquad 196
Table A10.3.	Private internal rates of return for an individual obtaining upper secondary education at age 40 (2004) \qquad 197
Table A10.4.	Private internal rates of return for an individual obtaining tertiary education at age 40 (2004).
Table A10.5.	Public internal rates of return for an individual obtaining higher education as part of initial education (2004) \qquad 198
Table A10.6.	Public internal rates of return for an individual obtaining higher education at age 40 (2004) \qquad 198
CHAPTER B	FINANCIAL AND HUMAN RESOURCES INVESTED IN EDUCATION \qquad 199
Indicator B1	How much is spent per student? .. 202
Table B1.1a.	Annual expenditure on educational institutions per student for all services (2005) \qquad
Table B1.1b.	Annual expenditure per student on core services, ancillary services and R\&D (2005)
Table B1.2.	Distribution of expenditure (as a percentage) on educational institutions compared to the number of students enrolled at each level of education (2005)
Table B1.3a.	Cumulative expenditure on educational institutions per student for all services over the theoretical duration of primary and secondary studies (2005). \qquad
Table B1.3b.	Cumulative expenditure on educational institutions per student for all services over the average duration of tertiary studies (2005) ... 222
Table B1.4.	Annual expenditure on educational institutions per student for all services relative to GDP per capita (2005)
Table B1.5.	Change in expenditure on educational institutions for all services per student relative to different factors, by level of education $(1995,2000,2005)$
Indicator B2	What proportion of national wealth is spent on education?..... 226
Table B2.1.	Expenditure on educational institutions as a percentage of GDP, by level of education $(1995,2000,2005)$
Table B2.2.	Expenditure on educational institutions as a percentage of GDP, by level of education (2005) \qquad

Name of
Table B2.3. Change in expenditure on educational institutions and in $\operatorname{GDP}(1995,2000,2005)$ 239
Table B2.4. Expenditure on educational institutions as a percentage of GDP, by source of funds and level of education (2005) 240
Indicator B3 How much public and private investment is there in education? 242
Table B3.1. Relative proportions of public and private expenditure on educational institutions for all levels of education $(2000,2005)$. 251
Table B3.2a. Relative proportions of public and private expenditure on educational institutions, as a percentage, by level of education $(2000,2005)$ 252
Table B3.2b. Relative proportions of public and private expenditure on educational institutions, as a percentage, for tertiary education (2000, 2005)....... 253
Table B3.3. Trends in relative proportions of public expenditure on educational institutions and index of change between 1995 and 2005 (2000=100), for tertiary education (1995, 2000, 2001, 2002, 2003, 2004, 2005) 254
Indicator B4 What is the total public spending on education? 256
Table B4.1. Total public expenditure on education (1995, 2000, 2005) 262
Table B4.2. Distribution of total public expenditure on education (2005). 263
Indicator B5 How much do tertiary students pay and what public subsidies do they receive? 264
Table B5.1a. Estimated annual average tuition fees charged by tertiary-type A educational institutions for national students (academic year 2004/05) 279
Table B5.1b. Estimated annual average tuition fees charged by tertiary-type B educational institutions for national students (academic year 2004/05) 281
Table B5.1c. Distribution of financial aid to students compared to amount of tuition fees charged in tertary-type A education (academic year 2004/05) 283
Table B5.1d. Governance of tertiary institutions (academic year 2004/05) 284
Table B5.1e. Financial support to students through public loans in tertiary-type A education (academic year 2004/05) 288
Table B5.2. Public subsidies for households and other private entities as a percentage of total public expenditure on education and GDP, for tertiary education (2005) 290
Indicator B 6 On what resources and services is education funding spent? 292
Table B6.1. Expenditure on educational institutions by service category as a percentage of GDP (2005) 300
Table B6.2a. Expenditure on educational institutions by resource category in primary and secondary education (2005) 301
Table B6.2b. Expenditure on educational institutions by resource category and level of education (2005) 302
Indicator B7 How efficiently are resources used in education? 304
Table B7.1. Economic and social indicators and the relationship with performancein science $(2005,2006)$.316
Table B7.2. Contribution of various factors to salary cost per student
at the upper secondary level of education (2004) 317
Table B7.3. Relationships between expenditure per student as a percentage of GDPper capita and 10 explanatory variables, at the upper secondary level ofeducation (2005, 25 OECD countries)319
CHAPTER C ACCESS TO EDUCATION, PARTICIPATION AND PROGRESSION 321
Indicator C1 How prevalent are vocational programmes? 322
Table C1.1. Upper secondary enrolment patterns (2006) 331
Table C1.2. Percentage of upper secondary and post-secondary non-tertiary pre-vocational/vocational graduates, by field of education (2006) 332
Table C1.3. Annual expenditure on educational institutions per student for all services, by programme orientation (2005) 334
Table C1.4. Performance of 15 -year-old students on the PISA science scale by programme orientation (2006) 335
Indicator C2 Who participates in education? 336
Table C2.1. Enrolment rates, by age (2006) 343
Table C2.2. Trends in enrolment rates (1995-2006) 344
Table C2.3. Transition characteristics from age 15 to 20, by level of education (2006) 345
Table C2.4. Students in primary and secondary education by type of institution or mode of study (2006) 346
Table C2.5. Students in tertiary education by type of institution or mode of study (2006) 347
Indicator C3 Who studies abroad and where? 348
Table C3.1. Student mobility and foreign students in tertiary education (2000, 2006) 366
Table C3.2. Distribution of international and foreign students in tertiary education, by country of origin (2006) 367
Table C3.3. Citizens studying abroad in tertiary education, by country of destination (2006) 369
Table C3.4. Distribution of international and foreign students in tertiary education, by level and type of tertiary education (2006) 371
Table C3.5. Distribution of international and foreign students in tertiary education, by field of education (2006) 372
Table C3.6. Trends in the number of foreign students enrolled outside their country of origin (2000 to 2006) 373
Indicator C4 How successful are students in moving from education to work? 374
Table C4.1a. Expected years in education and not in education for 15 -to-29-year-olds (2006) 385
Table C4.1b. Trends in expected years in education and not in education for 15-to-29-year-olds (1998-2006) 387
not in education (2006) 389
Table C4.3. Percentage of the cohort population not in education and unemployed (2006) 391
Table C4.4a. Trends in the percentage of the youth population in education and not in education (1995, 1998-2006) 393
Indicator C5 Do adults participate in training and education at work? 398
Table C5.1a. Participation rate and expected number of hours in non-formal job-related education and training, by level of educational attainment (2003) 407
Table C5.1b. Expected number of hours in non-formal job-related education and training, by level of educational attainment (2003) 409
CHAPTER D THE LEARNING ENVIRONMENT AND ORGANISATION OF SCHOOLS 411
Indicator D1 How much time do students spend in the classroom? 412
Table D1.1. Compulsory and intended instruction time in public institutions (2006) 420
Table D1.2a. Instruction time per subject as a percentage of total compulsory instruction time for 9-to-11-year-olds (2006) 421
Table D1.2b. Instruction time per subject as a percentage of total compulsory instruction time for 12 -to-14-year-olds (2006) 422
Indicator D2 What is the student-teacher ratio and how big are classes? 424
Table D2.1. Average class size, by type of institution and level of education (2006). 436
Table D2.2. Ratio of students to teaching staff in educational institutions (2006) 437
Table D2.3. Ratio of students to teaching staff, by type of institution (2006) 438
Indicator D3 How much are teachers paid? 440
Table D3.1. Teachers' salaries (2006) 452
Table D3.2. Change in teachers' salaries (1996 and 2006) 454
Table D3.3a. Decisions on payments for teachers in public institutions (2006) 455
Indicator D4 How much time do teachers spend teaching? 458
Table D4.1. Organisation of teachers' working time (2006) 466
Indicator D5 How are evaluations and assessments used in education systems? 468
Table D5.1. National examinations in general education programmes (lower secondary education, 2006) 475
Table D5.2. National periodical assessments in general education programmes (lower secondary education, 2006) 476
Table D5.3. Possible influence of national examinations (lower secondary education, 2006) 477
Table D5.4. Possible influence of national periodical assessments (lower secondary education, 2006) 478
Table D5.5. Possible influence of school evaluations by an inspectorate (lower secondary education, 2006) 479
Table D5.6. Possible influence of school self-evaluations (lower secondary education, 2006) 480
Indicator D6 What is the level of decision making in education systems? 482
Table D6.1. Percentage of decisions taken at each level of government in public lower secondary education (2007) 488
Table D6.2a. Percentage of decisions taken at each level of government in public lower secondary education, by domain (2007) 489
Table D6.2b. Percentage of decisions taken at each level of government in public lower secondary education, by domain (2007) 490
Table D6.3. Percentage of decisions taken at the school level in public lower secondary education by mode of decision making (2007) 491
Table D6.4a. Percentage of decisions taken at the school level in public lower secondary education, by mode of decision making and domain (2007)... 492
Table D6.4b. Percentage of decisions taken at the school level in public lower secondary education, by mode of decision making and domain (2007) 493
Table D6.5. Level of government at which different types of decisions about curriculum are taken in public lower secondary education (2007) 494
Table D6.6. Percentage of decisions taken at each level of government in public lower secondary education (2007, 2003 and difference) 496
ANNEX 1 Characteristics of Educational Systems 497
Table X1.1a. Typical age of graduation in upper secondary education (2006) 498
Table X1.1b. Typical age of graduation in post-secondary non-tertiary education (2006) 499
Table X1.1c. Typical age of graduation in tertiary education (2006) 500
Table X1.2a. School year and financial year used for the calculation of indicators, OECD countries 501
Table X1.2b. School year and financial year used for the calculation of indicators, partner countries 502
Table X1.3. Summary of completion requirements for upper secondary programmes 503
ANNEX 2 Reference Statistics 505
Table X2.1. Overview of the economic context using basic variables (reference period: calendar year 2005, 2005 current prices) 506
Table X2.2. Basic reference statistics (reference period: calendar year 2005, 2005 current prices) 507
Table X2.3a. Reference statistics used in the calculation of teachers' salaries, by level of education $(1996,2006)$ 508
Table X2.3b. Reference statistics used in the calculation of teachers' salaries (1996, 2006) 510
Table X2.3c. Teachers' salaries (2006) 511
ANNEX 3 Sources, Methods and Technical Notes 513
References. 515
Contributors to this Publication 517
Related OECD Publications 521

From:
Education at a Glance 2008
OECD Indicators

Access the complete publication at:

https://doi.org/10.1787/eag-2008-en

Please cite this chapter as:

OECD (2009), "Access to Education, Participation and Progression", in Education at a Glance 2008: OECD Indicators, OECD Publishing, Paris.

DOI: https://doi.org/10.1787/eag-2008-6-en

This work is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and arguments employed herein do not necessarily reflect the official views of OECD member countries.

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for public or commercial use and translation rights should be submitted to rights@oecd.org. Requests for permission to photocopy portions of this material for public or commercial use shall be addressed directly to the Copyright Clearance Center (CCC) at info@copyright.com or the Centre français d'exploitation du droit de copie (CFC) at contact@cfcopies.com.

[^0]: Note: Column 1 specifies the level of education: 3 equals upper secondary education and 4 equals post-secondary non-tertiary education.

 1. Year of reference 2005.

 Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
 StatLink ‥7ा sta http://dx.doi.org/10.1787/402134482176

[^1]: Note: The classification of students into programme type is based on self-reports of 15 -year-old students, whereas the classification of students into programme type in Table C1.1 is based on national statistics of upper seconday students and may differ.
 Two symbols are used to denote missing data:
 a: Because the category does not apply in the country concerned, there are no data.
 c: There are too few observations to provide reliable estimates (fewer than 3% of students or too few schools). However, these statistics were included in the calculation of cross-country averages.
 Source: OECD PISA 2006 database. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 StatLink जinाst http://dx.doi.org/10.1787/402134482176

[^2]: Note: Ending age of compulsory education is the age at which compulsory schooling ends. For example, an ending age of 18 indicates that all students under 18 are legally obliged to participate in education. Mismatches between the coverage of the population data and the student/ graduate data mean that the participation/graduation rates may be underestimated for countries such as Luxembourg that are net exporters of students and may be overestimated for those that are net importers.

 1. The rates " 4 and under as a percentage of the population of 3-to-4-year-olds" are overestimated. A significant number of students are younger than 3 years old. The net rates between 3 and 5 are around 100%.
 2. Year of reference 2005.
 3. Underestimated because many resident students go to school in the neighborhood countries.
 4. Excludes programmes for children younger than 3 years old, resulting in substantially lower figures than in previous years.

 Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
 StatLink जinाsta http://dx.doi.org/10.1787/402156412821

[^3]: Note: Assessing the extent to which a country offers a few or many programmes in English is subjective. In doing so, country size has been taken into account, hence the classification of France and Germany among countries with comparatively few English programmes, although they have more English programmes than Sweden in absolute terms.

 1. In Canada, tertiary institutions are either French- (mostly Quebec) or English-speaking.

 Source: OECD, compiled from brochures for prospective international students by OAD (Austria), CHES and NARIC (Czech Republic), Cirius (Denmark), CIMO (Finland), EduFrance (France), DAAD (Germany), Campus Hungary (Hungary), University of Iceland (Iceland), JPSS (Japan), NIIED (Korea), NUFFIC (Netherlands), SIU (Norway), CRASP (Poland), Swedish Institute (Sweden) and Middle-East Technical University (Turkey).

[^4]: 1. International students are defined on the basis of their country of residence.
 2. Based on the number of registrations, not head-counts.
 3. Excludes tertiary-type B programmes.
 4. Year of reference 2005.
 5. Excludes private institutions.
 6. International students are defined on the basis of their country of prior education.
 7. Excludes advanced research programmes.
 8. Foreign students are defined on the basis of their country of citizenship, these data are not comparable with data on international students and are therefore presented separately in the table.
 Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
 StatLink ․ㅔㅇㅔN http://dx.doi.org/10.1787/402158641726
[^5]: Countries are ranked in descending order of the ratio of the population not in education and unemployed to the 25-to-29-year-old population having attained below upper secondary education.
 Source: OECD. Table C4.3. See Annex 3 (www.oecd.org/edu/eag2008).
 StatLink (ninist http://dx.doi.org/10.1787/402165765880

[^6]: 1. Breaks in time series are due to a change in survey methodology from 2003 to 2004.
[^7]: Note: Due to incomplete data, some averages have not been calculated.

 1. Breaks in time series are due to a change in survey methodology from 2003 to 2004.
 2. Breaks in time series are due to a change in methodology: age is measured in the reference week from 2003, as is participation in education. Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
 StatLink ज्ञात्रम http://dx.doi.org/10.1787/402165765880
[^8]: Note: Due to incomplete data, some averages have not been calculated.

 1. Breaks in time series are due to a change in survey methodology from 2003 to 2004.
 2. Breaks in time series are due to a change in methodology: age is measured in the reference week from 2003, as is participation in education. Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 Please refer to the Reader's Guide for information concerning the symbols replacing missing data.
 StatLink ज्ञात्रम http://dx.doi.org/10.1787/402165765880
[^9]: Countries are ranked by relative number of hours in training for those with tertiary education. Source: OECD. Table C5.1b. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 StatLink ज्ञात्रम http://dx.doi.org/10.1787/402178012235

[^10]: 1. Year of reference 2002.

 Source: OECD. See Annex 3 for notes (www.oecd.org/edu/eag2008).
 Please refer to the Reader's guide for information concerning the symbols replacing missing data.
 StatLink ज्ञात्रम http://dx.doi.org/10.1787/402178012235

